 Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elprn1 Structured version   Visualization version   GIF version

Theorem elprn1 40766
 Description: A member of an unordered pair that is not the "first", must be the "second". (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
elprn1 ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴𝐵) → 𝐴 = 𝐶)

Proof of Theorem elprn1
StepHypRef Expression
1 neneq 2974 . . 3 (𝐴𝐵 → ¬ 𝐴 = 𝐵)
21adantl 475 . 2 ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴𝐵) → ¬ 𝐴 = 𝐵)
3 elpri 4419 . . . 4 (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵𝐴 = 𝐶))
43adantr 474 . . 3 ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴𝐵) → (𝐴 = 𝐵𝐴 = 𝐶))
54ord 853 . 2 ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴𝐵) → (¬ 𝐴 = 𝐵𝐴 = 𝐶))
62, 5mpd 15 1 ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴𝐵) → 𝐴 = 𝐶)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 386   ∨ wo 836   = wceq 1601   ∈ wcel 2106   ≠ wne 2968  {cpr 4399 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-ext 2753 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-v 3399  df-un 3796  df-sn 4398  df-pr 4400 This theorem is referenced by:  fourierdlem70  41313  fourierdlem71  41314  fouriersw  41368  prsal  41455  sge0pr  41528
 Copyright terms: Public domain W3C validator