Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elprn1 Structured version   Visualization version   GIF version

Theorem elprn1 45638
Description: A member of an unordered pair that is not the "first", must be the "second". (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
elprn1 ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴𝐵) → 𝐴 = 𝐶)

Proof of Theorem elprn1
StepHypRef Expression
1 neneq 2932 . . 3 (𝐴𝐵 → ¬ 𝐴 = 𝐵)
21adantl 481 . 2 ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴𝐵) → ¬ 𝐴 = 𝐵)
3 elpri 4616 . . . 4 (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵𝐴 = 𝐶))
43adantr 480 . . 3 ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴𝐵) → (𝐴 = 𝐵𝐴 = 𝐶))
54ord 864 . 2 ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴𝐵) → (¬ 𝐴 = 𝐵𝐴 = 𝐶))
62, 5mpd 15 1 ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴𝐵) → 𝐴 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  {cpr 4594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-v 3452  df-un 3922  df-sn 4593  df-pr 4595
This theorem is referenced by:  fourierdlem70  46181  fourierdlem71  46182  fouriersw  46236  prsal  46323  sge0pr  46399
  Copyright terms: Public domain W3C validator