Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elprn1 | Structured version Visualization version GIF version |
Description: A member of an unordered pair that is not the "first", must be the "second". (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
elprn1 | ⊢ ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴 ≠ 𝐵) → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neneq 2946 | . . 3 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) | |
2 | 1 | adantl 482 | . 2 ⊢ ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴 ≠ 𝐵) → ¬ 𝐴 = 𝐵) |
3 | elpri 4595 | . . . 4 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
4 | 3 | adantr 481 | . . 3 ⊢ ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴 ≠ 𝐵) → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
5 | 4 | ord 861 | . 2 ⊢ ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴 ≠ 𝐵) → (¬ 𝐴 = 𝐵 → 𝐴 = 𝐶)) |
6 | 2, 5 | mpd 15 | 1 ⊢ ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴 ≠ 𝐵) → 𝐴 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∨ wo 844 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 {cpr 4575 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-v 3443 df-un 3903 df-sn 4574 df-pr 4576 |
This theorem is referenced by: fourierdlem70 44062 fourierdlem71 44063 fouriersw 44117 prsal 44204 sge0pr 44278 |
Copyright terms: Public domain | W3C validator |