![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elprn1 | Structured version Visualization version GIF version |
Description: A member of an unordered pair that is not the "first", must be the "second". (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
elprn1 | ⊢ ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴 ≠ 𝐵) → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neneq 2974 | . . 3 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) | |
2 | 1 | adantl 475 | . 2 ⊢ ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴 ≠ 𝐵) → ¬ 𝐴 = 𝐵) |
3 | elpri 4419 | . . . 4 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
4 | 3 | adantr 474 | . . 3 ⊢ ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴 ≠ 𝐵) → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
5 | 4 | ord 853 | . 2 ⊢ ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴 ≠ 𝐵) → (¬ 𝐴 = 𝐵 → 𝐴 = 𝐶)) |
6 | 2, 5 | mpd 15 | 1 ⊢ ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴 ≠ 𝐵) → 𝐴 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 ∨ wo 836 = wceq 1601 ∈ wcel 2106 ≠ wne 2968 {cpr 4399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-ext 2753 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-v 3399 df-un 3796 df-sn 4398 df-pr 4400 |
This theorem is referenced by: fourierdlem70 41313 fourierdlem71 41314 fouriersw 41368 prsal 41455 sge0pr 41528 |
Copyright terms: Public domain | W3C validator |