![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpri | Structured version Visualization version GIF version |
Description: If a class is an element of a pair, then it is one of the two paired elements. (Contributed by Scott Fenton, 1-Apr-2011.) |
Ref | Expression |
---|---|
elpri | ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elprg 4670 | . 2 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
2 | 1 | ibi 267 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 = wceq 1537 ∈ wcel 2108 {cpr 4650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-sn 4649 df-pr 4651 |
This theorem is referenced by: nelpri 4677 nelprd 4679 tppreqb 4830 elpreqpr 4891 elpr2elpr 4893 prproe 4929 3elpr2eq 4930 opth1 5495 0nelop 5515 ftpg 7190 fvf1pr 7343 2oconcl 8559 cantnflem2 9759 eldju1st 9992 m1expcl2 14136 hash2pwpr 14525 bitsinv1lem 16487 prm23lt5 16861 fnpr2ob 17618 fvprif 17621 xpsfeq 17623 pmtrprfval 19529 m1expaddsub 19540 psgnprfval 19563 frgpuptinv 19813 frgpup3lem 19819 simpgnsgeqd 20145 2nsgsimpgd 20146 simpgnsgbid 20147 cnmsgnsubg 21618 zrhpsgnelbas 21635 mdetralt 22635 m2detleiblem1 22651 indiscld 23120 cnindis 23321 connclo 23444 txindis 23663 xpsxmetlem 24410 xpsmet 24413 ishl2 25423 recnprss 25959 recnperf 25960 dvlip2 26054 coseq0negpitopi 26563 pythag 26878 reasinsin 26957 scvxcvx 27047 perfectlem2 27292 lgslem4 27362 lgseisenlem2 27438 2lgsoddprmlem3 27476 usgredg4 29252 konigsberg 30289 ex-pr 30462 elpreq 32558 1neg1t1neg1 32751 tocyc01 33111 drngidl 33426 drng0mxidl 33469 ply1dg3rt0irred 33572 rtelextdg2 33718 constrconj 33735 signswch 34538 kur14lem7 35180 poimirlem31 37611 ftc1anclem2 37654 wepwsolem 42999 omabs2 43294 omcl3g 43296 relexp01min 43675 clsk1indlem1 44007 mnuprdlem1 44241 mnuprdlem2 44242 mnuprdlem3 44243 mnurndlem1 44250 ssrecnpr 44277 seff 44278 sblpnf 44279 expgrowthi 44302 dvconstbi 44303 sumpair 44935 refsum2cnlem1 44937 iooinlbub 45419 elprn1 45554 elprn2 45555 cncfiooicclem1 45814 dvmptconst 45836 dvmptidg 45838 dvmulcncf 45846 dvdivcncf 45848 elprneb 46944 perfectALTVlem2 47596 grtriclwlk3 47796 0dig2pr01 48344 prelrrx2b 48448 setc2othin 48723 |
Copyright terms: Public domain | W3C validator |