![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpri | Structured version Visualization version GIF version |
Description: If a class is an element of a pair, then it is one of the two paired elements. (Contributed by Scott Fenton, 1-Apr-2011.) |
Ref | Expression |
---|---|
elpri | ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elprg 4642 | . 2 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
2 | 1 | ibi 267 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 844 = wceq 1533 ∈ wcel 2098 {cpr 4623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-un 3946 df-sn 4622 df-pr 4624 |
This theorem is referenced by: nelpri 4650 nelprd 4652 tppreqb 4801 elpreqpr 4860 elpr2elpr 4862 prproe 4898 3elpr2eq 4899 opth1 5466 0nelop 5487 ftpg 7147 2oconcl 8499 cantnflem2 9682 eldju1st 9915 m1expcl2 14049 hash2pwpr 14435 bitsinv1lem 16381 prm23lt5 16748 fnpr2ob 17505 fvprif 17508 xpsfeq 17510 pmtrprfval 19399 m1expaddsub 19410 psgnprfval 19433 frgpuptinv 19683 frgpup3lem 19689 simpgnsgeqd 20015 2nsgsimpgd 20016 simpgnsgbid 20017 cnmsgnsubg 21440 zrhpsgnelbas 21457 mdetralt 22434 m2detleiblem1 22450 indiscld 22919 cnindis 23120 connclo 23243 txindis 23462 xpsxmetlem 24209 xpsmet 24212 ishl2 25222 recnprss 25757 recnperf 25758 dvlip2 25852 coseq0negpitopi 26357 pythag 26668 reasinsin 26747 scvxcvx 26837 perfectlem2 27082 lgslem4 27152 lgseisenlem2 27228 2lgsoddprmlem3 27266 usgredg4 28946 konigsberg 29982 ex-pr 30155 elpreq 32239 1neg1t1neg1 32434 tocyc01 32748 drngidl 33023 drng0mxidl 33064 signswch 34064 kur14lem7 34694 poimirlem31 37013 ftc1anclem2 37056 wepwsolem 42298 omabs2 42596 omcl3g 42598 relexp01min 42978 clsk1indlem1 43310 mnuprdlem1 43545 mnuprdlem2 43546 mnuprdlem3 43547 mnurndlem1 43554 ssrecnpr 43581 seff 43582 sblpnf 43583 expgrowthi 43606 dvconstbi 43607 sumpair 44233 refsum2cnlem1 44235 iooinlbub 44724 elprn1 44859 elprn2 44860 cncfiooicclem1 45119 dvmptconst 45141 dvmptidg 45143 dvmulcncf 45151 dvdivcncf 45153 elprneb 46249 perfectALTVlem2 46900 0dig2pr01 47509 prelrrx2b 47613 setc2othin 47888 |
Copyright terms: Public domain | W3C validator |