Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elpri | Structured version Visualization version GIF version |
Description: If a class is an element of a pair, then it is one of the two paired elements. (Contributed by Scott Fenton, 1-Apr-2011.) |
Ref | Expression |
---|---|
elpri | ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elprg 4583 | . 2 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
2 | 1 | ibi 266 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 844 = wceq 1539 ∈ wcel 2107 {cpr 4564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3435 df-un 3893 df-sn 4563 df-pr 4565 |
This theorem is referenced by: nelpri 4591 nelprd 4593 tppreqb 4739 elpreqpr 4798 elpr2elpr 4800 prproe 4838 3elpr2eq 4839 opth1 5391 0nelop 5411 ftpg 7037 2oconcl 8342 cantnflem2 9457 eldju1st 9690 m1expcl2 13813 hash2pwpr 14199 bitsinv1lem 16157 prm23lt5 16524 fnpr2ob 17278 fvprif 17281 xpsfeq 17283 pmtrprfval 19104 m1expaddsub 19115 psgnprfval 19138 frgpuptinv 19386 frgpup3lem 19392 simpgnsgeqd 19713 2nsgsimpgd 19714 simpgnsgbid 19715 cnmsgnsubg 20791 zrhpsgnelbas 20808 mdetralt 21766 m2detleiblem1 21782 indiscld 22251 cnindis 22452 connclo 22575 txindis 22794 xpsxmetlem 23541 xpsmet 23544 ishl2 24543 recnprss 25077 recnperf 25078 dvlip2 25168 coseq0negpitopi 25669 pythag 25976 reasinsin 26055 scvxcvx 26144 perfectlem2 26387 lgslem4 26457 lgseisenlem2 26533 2lgsoddprmlem3 26571 usgredg4 27593 konigsberg 28630 ex-pr 28803 elpreq 30887 1neg1t1neg1 31081 tocyc01 31394 signswch 32549 kur14lem7 33183 poimirlem31 35817 ftc1anclem2 35860 wepwsolem 40874 relexp01min 41328 clsk1indlem1 41662 mnuprdlem1 41897 mnuprdlem2 41898 mnuprdlem3 41899 mnurndlem1 41906 ssrecnpr 41933 seff 41934 sblpnf 41935 expgrowthi 41958 dvconstbi 41959 sumpair 42585 refsum2cnlem1 42587 iooinlbub 43046 elprn1 43181 elprn2 43182 cncfiooicclem1 43441 dvmptconst 43463 dvmptidg 43465 dvmulcncf 43473 dvdivcncf 43475 elprneb 44534 perfectALTVlem2 45185 0dig2pr01 45967 prelrrx2b 46071 setc2othin 46348 |
Copyright terms: Public domain | W3C validator |