![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpri | Structured version Visualization version GIF version |
Description: If a class is an element of a pair, then it is one of the two paired elements. (Contributed by Scott Fenton, 1-Apr-2011.) |
Ref | Expression |
---|---|
elpri | ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elprg 4648 | . 2 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
2 | 1 | ibi 266 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 845 = wceq 1541 ∈ wcel 2106 {cpr 4629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-un 3952 df-sn 4628 df-pr 4630 |
This theorem is referenced by: nelpri 4656 nelprd 4658 tppreqb 4807 elpreqpr 4866 elpr2elpr 4868 prproe 4905 3elpr2eq 4906 opth1 5474 0nelop 5495 ftpg 7150 2oconcl 8499 cantnflem2 9681 eldju1st 9914 m1expcl2 14047 hash2pwpr 14433 bitsinv1lem 16378 prm23lt5 16743 fnpr2ob 17500 fvprif 17503 xpsfeq 17505 pmtrprfval 19349 m1expaddsub 19360 psgnprfval 19383 frgpuptinv 19633 frgpup3lem 19639 simpgnsgeqd 19965 2nsgsimpgd 19966 simpgnsgbid 19967 cnmsgnsubg 21121 zrhpsgnelbas 21138 mdetralt 22101 m2detleiblem1 22117 indiscld 22586 cnindis 22787 connclo 22910 txindis 23129 xpsxmetlem 23876 xpsmet 23879 ishl2 24878 recnprss 25412 recnperf 25413 dvlip2 25503 coseq0negpitopi 26004 pythag 26311 reasinsin 26390 scvxcvx 26479 perfectlem2 26722 lgslem4 26792 lgseisenlem2 26868 2lgsoddprmlem3 26906 usgredg4 28463 konigsberg 29499 ex-pr 29672 elpreq 31754 1neg1t1neg1 31949 tocyc01 32264 drngidl 32539 drng0mxidl 32580 signswch 33560 kur14lem7 34191 poimirlem31 36507 ftc1anclem2 36550 wepwsolem 41769 omabs2 42067 omcl3g 42069 relexp01min 42449 clsk1indlem1 42781 mnuprdlem1 43016 mnuprdlem2 43017 mnuprdlem3 43018 mnurndlem1 43025 ssrecnpr 43052 seff 43053 sblpnf 43054 expgrowthi 43077 dvconstbi 43078 sumpair 43704 refsum2cnlem1 43706 iooinlbub 44200 elprn1 44335 elprn2 44336 cncfiooicclem1 44595 dvmptconst 44617 dvmptidg 44619 dvmulcncf 44627 dvdivcncf 44629 elprneb 45725 perfectALTVlem2 46376 0dig2pr01 47249 prelrrx2b 47353 setc2othin 47629 |
Copyright terms: Public domain | W3C validator |