![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpri | Structured version Visualization version GIF version |
Description: If a class is an element of a pair, then it is one of the two paired elements. (Contributed by Scott Fenton, 1-Apr-2011.) |
Ref | Expression |
---|---|
elpri | ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elprg 4650 | . 2 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
2 | 1 | ibi 267 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 = wceq 1542 ∈ wcel 2107 {cpr 4631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-un 3954 df-sn 4630 df-pr 4632 |
This theorem is referenced by: nelpri 4658 nelprd 4660 tppreqb 4809 elpreqpr 4868 elpr2elpr 4870 prproe 4907 3elpr2eq 4908 opth1 5476 0nelop 5497 ftpg 7154 2oconcl 8503 cantnflem2 9685 eldju1st 9918 m1expcl2 14051 hash2pwpr 14437 bitsinv1lem 16382 prm23lt5 16747 fnpr2ob 17504 fvprif 17507 xpsfeq 17509 pmtrprfval 19355 m1expaddsub 19366 psgnprfval 19389 frgpuptinv 19639 frgpup3lem 19645 simpgnsgeqd 19971 2nsgsimpgd 19972 simpgnsgbid 19973 cnmsgnsubg 21130 zrhpsgnelbas 21147 mdetralt 22110 m2detleiblem1 22126 indiscld 22595 cnindis 22796 connclo 22919 txindis 23138 xpsxmetlem 23885 xpsmet 23888 ishl2 24887 recnprss 25421 recnperf 25422 dvlip2 25512 coseq0negpitopi 26013 pythag 26322 reasinsin 26401 scvxcvx 26490 perfectlem2 26733 lgslem4 26803 lgseisenlem2 26879 2lgsoddprmlem3 26917 usgredg4 28474 konigsberg 29510 ex-pr 29683 elpreq 31767 1neg1t1neg1 31962 tocyc01 32277 drngidl 32551 drng0mxidl 32592 signswch 33572 kur14lem7 34203 poimirlem31 36519 ftc1anclem2 36562 wepwsolem 41784 omabs2 42082 omcl3g 42084 relexp01min 42464 clsk1indlem1 42796 mnuprdlem1 43031 mnuprdlem2 43032 mnuprdlem3 43033 mnurndlem1 43040 ssrecnpr 43067 seff 43068 sblpnf 43069 expgrowthi 43092 dvconstbi 43093 sumpair 43719 refsum2cnlem1 43721 iooinlbub 44214 elprn1 44349 elprn2 44350 cncfiooicclem1 44609 dvmptconst 44631 dvmptidg 44633 dvmulcncf 44641 dvdivcncf 44643 elprneb 45739 perfectALTVlem2 46390 0dig2pr01 47296 prelrrx2b 47400 setc2othin 47676 |
Copyright terms: Public domain | W3C validator |