Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elpri | Structured version Visualization version GIF version |
Description: If a class is an element of a pair, then it is one of the two paired elements. (Contributed by Scott Fenton, 1-Apr-2011.) |
Ref | Expression |
---|---|
elpri | ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elprg 4579 | . 2 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
2 | 1 | ibi 266 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 = wceq 1539 ∈ wcel 2108 {cpr 4560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-sn 4559 df-pr 4561 |
This theorem is referenced by: nelpri 4587 nelprd 4589 tppreqb 4735 elpreqpr 4794 elpr2elpr 4796 prproe 4834 3elpr2eq 4835 opth1 5384 0nelop 5404 ftpg 7010 2oconcl 8295 cantnflem2 9378 eldju1st 9612 m1expcl2 13732 hash2pwpr 14118 bitsinv1lem 16076 prm23lt5 16443 fnpr2ob 17186 fvprif 17189 xpsfeq 17191 pmtrprfval 19010 m1expaddsub 19021 psgnprfval 19044 frgpuptinv 19292 frgpup3lem 19298 simpgnsgeqd 19619 2nsgsimpgd 19620 simpgnsgbid 19621 cnmsgnsubg 20694 zrhpsgnelbas 20711 mdetralt 21665 m2detleiblem1 21681 indiscld 22150 cnindis 22351 connclo 22474 txindis 22693 xpsxmetlem 23440 xpsmet 23443 ishl2 24439 recnprss 24973 recnperf 24974 dvlip2 25064 coseq0negpitopi 25565 pythag 25872 reasinsin 25951 scvxcvx 26040 perfectlem2 26283 lgslem4 26353 lgseisenlem2 26429 2lgsoddprmlem3 26467 usgredg4 27487 konigsberg 28522 ex-pr 28695 elpreq 30779 1neg1t1neg1 30974 tocyc01 31287 signswch 32440 kur14lem7 33074 poimirlem31 35735 ftc1anclem2 35778 wepwsolem 40783 relexp01min 41210 clsk1indlem1 41544 mnuprdlem1 41779 mnuprdlem2 41780 mnuprdlem3 41781 mnurndlem1 41788 ssrecnpr 41815 seff 41816 sblpnf 41817 expgrowthi 41840 dvconstbi 41841 sumpair 42467 refsum2cnlem1 42469 iooinlbub 42929 elprn1 43064 elprn2 43065 cncfiooicclem1 43324 dvmptconst 43346 dvmptidg 43348 dvmulcncf 43356 dvdivcncf 43358 elprneb 44410 perfectALTVlem2 45062 0dig2pr01 45844 prelrrx2b 45948 setc2othin 46225 |
Copyright terms: Public domain | W3C validator |