MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpwOLD Structured version   Visualization version   GIF version

Theorem elpwOLD 4544
Description: Obsolete proof of elpw 4542 as of 31-Dec-2023. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by NM, 31-Dec-1993.)
Hypothesis
Ref Expression
elpwOLD.1 𝐴 ∈ V
Assertion
Ref Expression
elpwOLD (𝐴 ∈ 𝒫 𝐵𝐴𝐵)

Proof of Theorem elpwOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elpwOLD.1 . 2 𝐴 ∈ V
2 sseq1 3950 . 2 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
3 df-pw 4540 . 2 𝒫 𝐵 = {𝑥𝑥𝐵}
41, 2, 3elab2 3614 1 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2109  Vcvv 3430  wss 3891  𝒫 cpw 4538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-v 3432  df-in 3898  df-ss 3908  df-pw 4540
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator