| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elab2 | Structured version Visualization version GIF version | ||
| Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elab2.1 | ⊢ 𝐴 ∈ V |
| elab2.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| elab2.3 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| elab2 | ⊢ (𝐴 ∈ 𝐵 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab2.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elab2.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | elab2.3 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
| 4 | 2, 3 | elab2g 3679 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 {cab 2713 Vcvv 3479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 |
| This theorem is referenced by: opabidw 5528 opabid 5529 oprabidw 7463 oprabid 7464 soseq 8185 wfrlem3OLDa 8352 tfrlem3a 8418 fsetfcdm 8901 cardprclem 10020 iunfictbso 10155 aceq3lem 10161 dfac5lem4 10167 dfac5lem4OLD 10169 kmlem9 10200 domtriomlem 10483 ltexprlem3 11079 ltexprlem4 11080 reclem2pr 11089 reclem3pr 11090 supsrlem 11152 supaddc 12236 supadd 12237 supmul1 12238 supmullem1 12239 supmullem2 12240 supmul 12241 01sqrexlem6 15287 infcvgaux2i 15895 mertenslem1 15921 mertenslem2 15922 4sqlem12 16995 conjnmzb 19272 sylow3lem2 19647 mdetunilem9 22627 txuni2 23574 xkoopn 23598 met2ndci 24536 2sqlem8 27471 2sqlem11 27474 madef 27896 eulerpartlemt 34374 eulerpartlemr 34377 eulerpartlemn 34384 subfacp1lem3 35188 subfacp1lem5 35190 rdgssun 37380 finxpsuclem 37399 heiborlem1 37819 heiborlem6 37824 heiborlem8 37826 cllem0 43584 fsetsnf 47068 fsetsnfo 47070 cfsetsnfsetf 47075 cfsetsnfsetf1 47076 cfsetsnfsetfo 47077 |
| Copyright terms: Public domain | W3C validator |