![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elab2 | Structured version Visualization version GIF version |
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elab2.1 | ⊢ 𝐴 ∈ V |
elab2.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
elab2.3 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
Ref | Expression |
---|---|
elab2 | ⊢ (𝐴 ∈ 𝐵 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab2.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elab2.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | elab2.3 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
4 | 2, 3 | elab2g 3696 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 {cab 2717 Vcvv 3488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 |
This theorem is referenced by: opabidw 5543 opabid 5544 oprabidw 7479 oprabid 7480 soseq 8200 wfrlem3OLDa 8367 tfrlem3a 8433 fsetfcdm 8918 cardprclem 10048 iunfictbso 10183 aceq3lem 10189 dfac5lem4 10195 dfac5lem4OLD 10197 kmlem9 10228 domtriomlem 10511 ltexprlem3 11107 ltexprlem4 11108 reclem2pr 11117 reclem3pr 11118 supsrlem 11180 supaddc 12262 supadd 12263 supmul1 12264 supmullem1 12265 supmullem2 12266 supmul 12267 01sqrexlem6 15296 infcvgaux2i 15906 mertenslem1 15932 mertenslem2 15933 4sqlem12 17003 conjnmzb 19293 sylow3lem2 19670 mdetunilem9 22647 txuni2 23594 xkoopn 23618 met2ndci 24556 2sqlem8 27488 2sqlem11 27491 madef 27913 eulerpartlemt 34336 eulerpartlemr 34339 eulerpartlemn 34346 subfacp1lem3 35150 subfacp1lem5 35152 rdgssun 37344 finxpsuclem 37363 heiborlem1 37771 heiborlem6 37776 heiborlem8 37778 cllem0 43528 fsetsnf 46966 fsetsnfo 46968 cfsetsnfsetf 46973 cfsetsnfsetf1 46974 cfsetsnfsetfo 46975 |
Copyright terms: Public domain | W3C validator |