| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elab2 | Structured version Visualization version GIF version | ||
| Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elab2.1 | ⊢ 𝐴 ∈ V |
| elab2.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| elab2.3 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| elab2 | ⊢ (𝐴 ∈ 𝐵 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab2.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elab2.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | elab2.3 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
| 4 | 2, 3 | elab2g 3664 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2714 Vcvv 3464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 |
| This theorem is referenced by: opabidw 5504 opabid 5505 oprabidw 7441 oprabid 7442 soseq 8163 wfrlem3OLDa 8330 tfrlem3a 8396 fsetfcdm 8879 cardprclem 9998 iunfictbso 10133 aceq3lem 10139 dfac5lem4 10145 dfac5lem4OLD 10147 kmlem9 10178 domtriomlem 10461 ltexprlem3 11057 ltexprlem4 11058 reclem2pr 11067 reclem3pr 11068 supsrlem 11130 supaddc 12214 supadd 12215 supmul1 12216 supmullem1 12217 supmullem2 12218 supmul 12219 01sqrexlem6 15271 infcvgaux2i 15879 mertenslem1 15905 mertenslem2 15906 4sqlem12 16981 conjnmzb 19241 sylow3lem2 19614 mdetunilem9 22563 txuni2 23508 xkoopn 23532 met2ndci 24466 2sqlem8 27394 2sqlem11 27397 madef 27821 eulerpartlemt 34408 eulerpartlemr 34411 eulerpartlemn 34418 subfacp1lem3 35209 subfacp1lem5 35211 rdgssun 37401 finxpsuclem 37420 heiborlem1 37840 heiborlem6 37845 heiborlem8 37847 cllem0 43565 brpermmodel 45003 fsetsnf 47060 fsetsnfo 47062 cfsetsnfsetf 47067 cfsetsnfsetf1 47068 cfsetsnfsetfo 47069 |
| Copyright terms: Public domain | W3C validator |