MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elab2 Structured version   Visualization version   GIF version

Theorem elab2 3635
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.)
Hypotheses
Ref Expression
elab2.1 𝐴 ∈ V
elab2.2 (𝑥 = 𝐴 → (𝜑𝜓))
elab2.3 𝐵 = {𝑥𝜑}
Assertion
Ref Expression
elab2 (𝐴𝐵𝜓)
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem elab2
StepHypRef Expression
1 elab2.1 . 2 𝐴 ∈ V
2 elab2.2 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
3 elab2.3 . . 3 𝐵 = {𝑥𝜑}
42, 3elab2g 3633 . 2 (𝐴 ∈ V → (𝐴𝐵𝜓))
51, 4ax-mp 5 1 (𝐴𝐵𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  {cab 2711  Vcvv 3438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808
This theorem is referenced by:  opabidw  5469  opabid  5470  oprabidw  7386  oprabid  7387  soseq  8098  tfrlem3a  8305  fsetfcdm  8793  cardprclem  9882  iunfictbso  10015  aceq3lem  10021  dfac5lem4  10027  dfac5lem4OLD  10029  kmlem9  10060  domtriomlem  10343  ltexprlem3  10939  ltexprlem4  10940  reclem2pr  10949  reclem3pr  10950  supsrlem  11012  supaddc  12099  supadd  12100  supmul1  12101  supmullem1  12102  supmullem2  12103  supmul  12104  01sqrexlem6  15164  infcvgaux2i  15775  mertenslem1  15801  mertenslem2  15802  4sqlem12  16878  conjnmzb  19175  sylow3lem2  19550  mdetunilem9  22545  txuni2  23490  xkoopn  23514  met2ndci  24447  2sqlem8  27374  2sqlem11  27377  madef  27807  eulerpartlemt  34395  eulerpartlemr  34398  eulerpartlemn  34405  subfacp1lem3  35237  subfacp1lem5  35239  rdgssun  37433  finxpsuclem  37452  heiborlem1  37861  heiborlem6  37866  heiborlem8  37868  cllem0  43673  brpermmodel  45110  fsetsnf  47165  fsetsnfo  47167  cfsetsnfsetf  47172  cfsetsnfsetf1  47173  cfsetsnfsetfo  47174
  Copyright terms: Public domain W3C validator