| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elab2 | Structured version Visualization version GIF version | ||
| Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elab2.1 | ⊢ 𝐴 ∈ V |
| elab2.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| elab2.3 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| elab2 | ⊢ (𝐴 ∈ 𝐵 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab2.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elab2.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | elab2.3 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
| 4 | 2, 3 | elab2g 3638 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2707 Vcvv 3438 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: opabidw 5471 opabid 5472 oprabidw 7384 oprabid 7385 soseq 8099 tfrlem3a 8306 fsetfcdm 8794 cardprclem 9894 iunfictbso 10027 aceq3lem 10033 dfac5lem4 10039 dfac5lem4OLD 10041 kmlem9 10072 domtriomlem 10355 ltexprlem3 10951 ltexprlem4 10952 reclem2pr 10961 reclem3pr 10962 supsrlem 11024 supaddc 12110 supadd 12111 supmul1 12112 supmullem1 12113 supmullem2 12114 supmul 12115 01sqrexlem6 15172 infcvgaux2i 15783 mertenslem1 15809 mertenslem2 15810 4sqlem12 16886 conjnmzb 19150 sylow3lem2 19525 mdetunilem9 22523 txuni2 23468 xkoopn 23492 met2ndci 24426 2sqlem8 27353 2sqlem11 27356 madef 27784 eulerpartlemt 34338 eulerpartlemr 34341 eulerpartlemn 34348 subfacp1lem3 35154 subfacp1lem5 35156 rdgssun 37351 finxpsuclem 37370 heiborlem1 37790 heiborlem6 37795 heiborlem8 37797 cllem0 43539 brpermmodel 44977 fsetsnf 47036 fsetsnfo 47038 cfsetsnfsetf 47043 cfsetsnfsetf1 47044 cfsetsnfsetfo 47045 |
| Copyright terms: Public domain | W3C validator |