![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elab2 | Structured version Visualization version GIF version |
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elab2.1 | ⊢ 𝐴 ∈ V |
elab2.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
elab2.3 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
Ref | Expression |
---|---|
elab2 | ⊢ (𝐴 ∈ 𝐵 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab2.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elab2.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | elab2.3 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
4 | 2, 3 | elab2g 3683 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 {cab 2712 Vcvv 3478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 |
This theorem is referenced by: opabidw 5534 opabid 5535 oprabidw 7462 oprabid 7463 soseq 8183 wfrlem3OLDa 8350 tfrlem3a 8416 fsetfcdm 8899 cardprclem 10017 iunfictbso 10152 aceq3lem 10158 dfac5lem4 10164 dfac5lem4OLD 10166 kmlem9 10197 domtriomlem 10480 ltexprlem3 11076 ltexprlem4 11077 reclem2pr 11086 reclem3pr 11087 supsrlem 11149 supaddc 12233 supadd 12234 supmul1 12235 supmullem1 12236 supmullem2 12237 supmul 12238 01sqrexlem6 15283 infcvgaux2i 15891 mertenslem1 15917 mertenslem2 15918 4sqlem12 16990 conjnmzb 19284 sylow3lem2 19661 mdetunilem9 22642 txuni2 23589 xkoopn 23613 met2ndci 24551 2sqlem8 27485 2sqlem11 27488 madef 27910 eulerpartlemt 34353 eulerpartlemr 34356 eulerpartlemn 34363 subfacp1lem3 35167 subfacp1lem5 35169 rdgssun 37361 finxpsuclem 37380 heiborlem1 37798 heiborlem6 37803 heiborlem8 37805 cllem0 43556 fsetsnf 47001 fsetsnfo 47003 cfsetsnfsetf 47008 cfsetsnfsetf1 47009 cfsetsnfsetfo 47010 |
Copyright terms: Public domain | W3C validator |