| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elab2 | Structured version Visualization version GIF version | ||
| Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elab2.1 | ⊢ 𝐴 ∈ V |
| elab2.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| elab2.3 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| elab2 | ⊢ (𝐴 ∈ 𝐵 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab2.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elab2.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | elab2.3 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
| 4 | 2, 3 | elab2g 3634 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2110 {cab 2708 Vcvv 3434 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 |
| This theorem is referenced by: opabidw 5462 opabid 5463 oprabidw 7372 oprabid 7373 soseq 8084 tfrlem3a 8291 fsetfcdm 8779 cardprclem 9864 iunfictbso 9997 aceq3lem 10003 dfac5lem4 10009 dfac5lem4OLD 10011 kmlem9 10042 domtriomlem 10325 ltexprlem3 10921 ltexprlem4 10922 reclem2pr 10931 reclem3pr 10932 supsrlem 10994 supaddc 12081 supadd 12082 supmul1 12083 supmullem1 12084 supmullem2 12085 supmul 12086 01sqrexlem6 15146 infcvgaux2i 15757 mertenslem1 15783 mertenslem2 15784 4sqlem12 16860 conjnmzb 19158 sylow3lem2 19533 mdetunilem9 22528 txuni2 23473 xkoopn 23497 met2ndci 24430 2sqlem8 27357 2sqlem11 27360 madef 27790 eulerpartlemt 34374 eulerpartlemr 34377 eulerpartlemn 34384 subfacp1lem3 35194 subfacp1lem5 35196 rdgssun 37391 finxpsuclem 37410 heiborlem1 37830 heiborlem6 37835 heiborlem8 37837 cllem0 43578 brpermmodel 45015 fsetsnf 47061 fsetsnfo 47063 cfsetsnfsetf 47068 cfsetsnfsetf1 47069 cfsetsnfsetfo 47070 |
| Copyright terms: Public domain | W3C validator |