Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elab2 | Structured version Visualization version GIF version |
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elab2.1 | ⊢ 𝐴 ∈ V |
elab2.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
elab2.3 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
Ref | Expression |
---|---|
elab2 | ⊢ (𝐴 ∈ 𝐵 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab2.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elab2.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | elab2.3 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
4 | 2, 3 | elab2g 3612 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2109 {cab 2716 Vcvv 3430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 |
This theorem is referenced by: elpwOLD 4544 opabidw 5439 opabid 5440 oprabidw 7299 oprabid 7300 wfrlem3OLDa 8126 tfrlem3a 8192 fsetfcdm 8622 cardprclem 9721 iunfictbso 9854 aceq3lem 9860 dfac5lem4 9866 kmlem9 9898 domtriomlem 10182 ltexprlem3 10778 ltexprlem4 10779 reclem2pr 10788 reclem3pr 10789 supsrlem 10851 supaddc 11925 supadd 11926 supmul1 11927 supmullem1 11928 supmullem2 11929 supmul 11930 sqrlem6 14940 infcvgaux2i 15551 mertenslem1 15577 mertenslem2 15578 4sqlem12 16638 conjnmzb 18850 sylow3lem2 19214 mdetunilem9 21750 txuni2 22697 xkoopn 22721 met2ndci 23659 2sqlem8 26555 2sqlem11 26558 eulerpartlemt 32317 eulerpartlemr 32320 eulerpartlemn 32327 subfacp1lem3 33123 subfacp1lem5 33125 soseq 33782 madef 34019 rdgssun 35528 finxpsuclem 35547 heiborlem1 35948 heiborlem6 35953 heiborlem8 35955 cllem0 41126 fsetsnf 44496 fsetsnfo 44498 cfsetsnfsetf 44503 cfsetsnfsetf1 44504 cfsetsnfsetfo 44505 |
Copyright terms: Public domain | W3C validator |