| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elab2 | Structured version Visualization version GIF version | ||
| Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elab2.1 | ⊢ 𝐴 ∈ V |
| elab2.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| elab2.3 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| elab2 | ⊢ (𝐴 ∈ 𝐵 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab2.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elab2.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | elab2.3 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
| 4 | 2, 3 | elab2g 3650 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2708 Vcvv 3450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 |
| This theorem is referenced by: opabidw 5487 opabid 5488 oprabidw 7421 oprabid 7422 soseq 8141 tfrlem3a 8348 fsetfcdm 8836 cardprclem 9939 iunfictbso 10074 aceq3lem 10080 dfac5lem4 10086 dfac5lem4OLD 10088 kmlem9 10119 domtriomlem 10402 ltexprlem3 10998 ltexprlem4 10999 reclem2pr 11008 reclem3pr 11009 supsrlem 11071 supaddc 12157 supadd 12158 supmul1 12159 supmullem1 12160 supmullem2 12161 supmul 12162 01sqrexlem6 15220 infcvgaux2i 15831 mertenslem1 15857 mertenslem2 15858 4sqlem12 16934 conjnmzb 19192 sylow3lem2 19565 mdetunilem9 22514 txuni2 23459 xkoopn 23483 met2ndci 24417 2sqlem8 27344 2sqlem11 27347 madef 27771 eulerpartlemt 34369 eulerpartlemr 34372 eulerpartlemn 34379 subfacp1lem3 35176 subfacp1lem5 35178 rdgssun 37373 finxpsuclem 37392 heiborlem1 37812 heiborlem6 37817 heiborlem8 37819 cllem0 43562 brpermmodel 45000 fsetsnf 47056 fsetsnfo 47058 cfsetsnfsetf 47063 cfsetsnfsetf1 47064 cfsetsnfsetfo 47065 |
| Copyright terms: Public domain | W3C validator |