Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elab2 | Structured version Visualization version GIF version |
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elab2.1 | ⊢ 𝐴 ∈ V |
elab2.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
elab2.3 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
Ref | Expression |
---|---|
elab2 | ⊢ (𝐴 ∈ 𝐵 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab2.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elab2.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | elab2.3 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
4 | 2, 3 | elab2g 3604 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 {cab 2715 Vcvv 3422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 |
This theorem is referenced by: elpwOLD 4536 opabidw 5431 opabid 5432 oprabidw 7286 oprabid 7287 wfrlem3OLDa 8113 tfrlem3a 8179 fsetfcdm 8606 cardprclem 9668 iunfictbso 9801 aceq3lem 9807 dfac5lem4 9813 kmlem9 9845 domtriomlem 10129 ltexprlem3 10725 ltexprlem4 10726 reclem2pr 10735 reclem3pr 10736 supsrlem 10798 supaddc 11872 supadd 11873 supmul1 11874 supmullem1 11875 supmullem2 11876 supmul 11877 sqrlem6 14887 infcvgaux2i 15498 mertenslem1 15524 mertenslem2 15525 4sqlem12 16585 conjnmzb 18784 sylow3lem2 19148 mdetunilem9 21677 txuni2 22624 xkoopn 22648 met2ndci 23584 2sqlem8 26479 2sqlem11 26482 eulerpartlemt 32238 eulerpartlemr 32241 eulerpartlemn 32248 subfacp1lem3 33044 subfacp1lem5 33046 soseq 33730 madef 33967 rdgssun 35476 finxpsuclem 35495 heiborlem1 35896 heiborlem6 35901 heiborlem8 35903 cllem0 41062 fsetsnf 44432 fsetsnfo 44434 cfsetsnfsetf 44439 cfsetsnfsetf1 44440 cfsetsnfsetfo 44441 |
Copyright terms: Public domain | W3C validator |