Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elab2 | Structured version Visualization version GIF version |
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elab2.1 | ⊢ 𝐴 ∈ V |
elab2.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
elab2.3 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
Ref | Expression |
---|---|
elab2 | ⊢ (𝐴 ∈ 𝐵 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab2.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elab2.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | elab2.3 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
4 | 2, 3 | elab2g 3611 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 {cab 2715 Vcvv 3432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 |
This theorem is referenced by: elpwOLD 4539 opabidw 5437 opabid 5438 oprabidw 7306 oprabid 7307 wfrlem3OLDa 8142 tfrlem3a 8208 fsetfcdm 8648 cardprclem 9737 iunfictbso 9870 aceq3lem 9876 dfac5lem4 9882 kmlem9 9914 domtriomlem 10198 ltexprlem3 10794 ltexprlem4 10795 reclem2pr 10804 reclem3pr 10805 supsrlem 10867 supaddc 11942 supadd 11943 supmul1 11944 supmullem1 11945 supmullem2 11946 supmul 11947 sqrlem6 14959 infcvgaux2i 15570 mertenslem1 15596 mertenslem2 15597 4sqlem12 16657 conjnmzb 18869 sylow3lem2 19233 mdetunilem9 21769 txuni2 22716 xkoopn 22740 met2ndci 23678 2sqlem8 26574 2sqlem11 26577 eulerpartlemt 32338 eulerpartlemr 32341 eulerpartlemn 32348 subfacp1lem3 33144 subfacp1lem5 33146 soseq 33803 madef 34040 rdgssun 35549 finxpsuclem 35568 heiborlem1 35969 heiborlem6 35974 heiborlem8 35976 cllem0 41173 fsetsnf 44545 fsetsnfo 44547 cfsetsnfsetf 44552 cfsetsnfsetf1 44553 cfsetsnfsetfo 44554 |
Copyright terms: Public domain | W3C validator |