| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elab2 | Structured version Visualization version GIF version | ||
| Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elab2.1 | ⊢ 𝐴 ∈ V |
| elab2.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| elab2.3 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| elab2 | ⊢ (𝐴 ∈ 𝐵 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab2.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elab2.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | elab2.3 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
| 4 | 2, 3 | elab2g 3647 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2707 Vcvv 3447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: opabidw 5484 opabid 5485 oprabidw 7418 oprabid 7419 soseq 8138 tfrlem3a 8345 fsetfcdm 8833 cardprclem 9932 iunfictbso 10067 aceq3lem 10073 dfac5lem4 10079 dfac5lem4OLD 10081 kmlem9 10112 domtriomlem 10395 ltexprlem3 10991 ltexprlem4 10992 reclem2pr 11001 reclem3pr 11002 supsrlem 11064 supaddc 12150 supadd 12151 supmul1 12152 supmullem1 12153 supmullem2 12154 supmul 12155 01sqrexlem6 15213 infcvgaux2i 15824 mertenslem1 15850 mertenslem2 15851 4sqlem12 16927 conjnmzb 19185 sylow3lem2 19558 mdetunilem9 22507 txuni2 23452 xkoopn 23476 met2ndci 24410 2sqlem8 27337 2sqlem11 27340 madef 27764 eulerpartlemt 34362 eulerpartlemr 34365 eulerpartlemn 34372 subfacp1lem3 35169 subfacp1lem5 35171 rdgssun 37366 finxpsuclem 37385 heiborlem1 37805 heiborlem6 37810 heiborlem8 37812 cllem0 43555 brpermmodel 44993 fsetsnf 47052 fsetsnfo 47054 cfsetsnfsetf 47059 cfsetsnfsetf1 47060 cfsetsnfsetfo 47061 |
| Copyright terms: Public domain | W3C validator |