| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elab2 | Structured version Visualization version GIF version | ||
| Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elab2.1 | ⊢ 𝐴 ∈ V |
| elab2.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| elab2.3 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| elab2 | ⊢ (𝐴 ∈ 𝐵 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab2.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elab2.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | elab2.3 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
| 4 | 2, 3 | elab2g 3633 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 {cab 2711 Vcvv 3438 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 |
| This theorem is referenced by: opabidw 5469 opabid 5470 oprabidw 7386 oprabid 7387 soseq 8098 tfrlem3a 8305 fsetfcdm 8793 cardprclem 9882 iunfictbso 10015 aceq3lem 10021 dfac5lem4 10027 dfac5lem4OLD 10029 kmlem9 10060 domtriomlem 10343 ltexprlem3 10939 ltexprlem4 10940 reclem2pr 10949 reclem3pr 10950 supsrlem 11012 supaddc 12099 supadd 12100 supmul1 12101 supmullem1 12102 supmullem2 12103 supmul 12104 01sqrexlem6 15164 infcvgaux2i 15775 mertenslem1 15801 mertenslem2 15802 4sqlem12 16878 conjnmzb 19175 sylow3lem2 19550 mdetunilem9 22545 txuni2 23490 xkoopn 23514 met2ndci 24447 2sqlem8 27374 2sqlem11 27377 madef 27807 eulerpartlemt 34395 eulerpartlemr 34398 eulerpartlemn 34405 subfacp1lem3 35237 subfacp1lem5 35239 rdgssun 37433 finxpsuclem 37452 heiborlem1 37861 heiborlem6 37866 heiborlem8 37868 cllem0 43673 brpermmodel 45110 fsetsnf 47165 fsetsnfo 47167 cfsetsnfsetf 47172 cfsetsnfsetf1 47173 cfsetsnfsetfo 47174 |
| Copyright terms: Public domain | W3C validator |