Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elpw | Structured version Visualization version GIF version |
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 31-Dec-1993.) (Proof shortened by BJ, 31-Dec-2023.) |
Ref | Expression |
---|---|
elpw.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elpw | ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpw.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elpwg 4533 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 𝒫 cpw 4530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 |
This theorem is referenced by: velpw 4535 0elpw 5273 snelpwi 5354 snelpw 5355 prelpw 5356 sspwb 5359 pwssun 5476 xpsspw 5708 knatar 7208 iunpw 7599 ssenen 8887 fissuni 9054 fipreima 9055 fipwuni 9115 dffi3 9120 marypha1lem 9122 inf3lem6 9321 tz9.12lem3 9478 rankonidlem 9517 r0weon 9699 infpwfien 9749 dfac5lem4 9813 dfac2b 9817 dfac12lem2 9831 enfin2i 10008 isfin1-3 10073 itunitc1 10107 hsmexlem4 10116 hsmexlem5 10117 axdc4lem 10142 pwfseqlem1 10345 eltsk2g 10438 ixxssxr 13020 ioof 13108 fzof 13313 hashbclem 14092 incexclem 15476 ramub1lem1 16655 ramub1lem2 16656 prdsplusg 17086 prdsmulr 17087 prdsvsca 17088 submrc 17254 isacs2 17279 isssc 17449 homaf 17661 catcfuccl 17750 catcfucclOLD 17751 catcxpccl 17840 catcxpcclOLD 17841 clatl 18141 isacs4lem 18177 isacs5lem 18178 dprd2dlem1 19559 ablfac1b 19588 cssval 20799 tgdom 22036 distop 22053 fctop 22062 cctop 22064 ppttop 22065 pptbas 22066 epttop 22067 mretopd 22151 resttopon 22220 dishaus 22441 discmp 22457 cmpsublem 22458 cmpsub 22459 conncompid 22490 2ndcsep 22518 cldllycmp 22554 dislly 22556 iskgen3 22608 kgencn2 22616 txuni2 22624 dfac14 22677 prdstopn 22687 txcmplem1 22700 txcmplem2 22701 hmphdis 22855 fbssfi 22896 trfbas2 22902 uffixsn 22984 hauspwpwf1 23046 alexsubALTlem2 23107 ustuqtop0 23300 met1stc 23583 restmetu 23632 icccmplem1 23891 icccmplem2 23892 opnmbllem 24670 sqff1o 26236 incistruhgr 27352 upgrbi 27366 umgrbi 27374 upgr1e 27386 umgredg 27411 uspgr1e 27514 uhgrspansubgrlem 27560 eupth2lems 28503 sspval 28986 foresf1o 30751 cmpcref 31702 esumpcvgval 31946 esumcvg 31954 esum2d 31961 pwsiga 31998 difelsiga 32001 sigainb 32004 pwldsys 32025 rossros 32048 measssd 32083 cntnevol 32096 ddemeas 32104 mbfmcnt 32135 br2base 32136 sxbrsigalem0 32138 oms0 32164 probun 32286 coinfliprv 32349 ballotth 32404 cvmcov2 33137 satfvel 33274 0slt1s 33950 oldf 33968 newf 33969 leftf 33976 rightf 33977 elfuns 34144 altxpsspw 34206 elhf2 34404 neibastop1 34475 neibastop2lem 34476 ctbssinf 35504 opnmbllem0 35740 heiborlem1 35896 heiborlem8 35903 pclfinN 37841 mapd1o 39589 elrfi 40432 ismrcd2 40437 istopclsd 40438 mrefg2 40445 isnacs3 40448 dfac11 40803 islssfg2 40812 lnr2i 40857 clsk1independent 41545 isotone2 41548 gneispace 41633 ismnushort 41808 trsspwALT 42327 trsspwALT2 42328 trsspwALT3 42329 pwtrVD 42333 icof 42648 stoweidlem57 43488 intsal 43759 salexct 43763 sge0resplit 43834 sge0reuz 43875 omeiunltfirp 43947 smfpimbor1lem1 44219 sprvalpw 44820 sprsymrelf 44835 sprsymrelf1 44836 prprvalpw 44855 uspgropssxp 45194 uspgrsprf 45196 |
Copyright terms: Public domain | W3C validator |