| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpw | Structured version Visualization version GIF version | ||
| Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 31-Dec-1993.) (Proof shortened by BJ, 31-Dec-2023.) |
| Ref | Expression |
|---|---|
| elpw.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elpw | ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpw.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elpwg 4556 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 𝒫 cpw 4553 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3922 df-pw 4555 |
| This theorem is referenced by: velpw 4558 0elpw 5298 snelpwiOLD 5391 prelpw 5393 sspwb 5396 pwssun 5515 xpsspw 5756 knatar 7298 iunpw 7711 ssenen 9075 fissuni 9266 fipreima 9267 fipwuni 9335 dffi3 9340 marypha1lem 9342 inf3lem6 9548 tz9.12lem3 9704 rankonidlem 9743 r0weon 9925 infpwfien 9975 dfac5lem4 10039 dfac5lem4OLD 10041 dfac2b 10044 dfac12lem2 10058 enfin2i 10234 isfin1-3 10299 itunitc1 10333 hsmexlem4 10342 hsmexlem5 10343 axdc4lem 10368 pwfseqlem1 10571 eltsk2g 10664 ixxssxr 13278 ioof 13368 fzof 13577 hashbclem 14377 incexclem 15761 ramub1lem1 16956 ramub1lem2 16957 prdsplusg 17380 prdsmulr 17381 prdsvsca 17382 submrc 17552 isacs2 17577 isssc 17745 homaf 17955 catcfuccl 18043 catcxpccl 18131 clatl 18432 isacs4lem 18468 isacs5lem 18469 dprd2dlem1 19940 ablfac1b 19969 cssval 21607 tgdom 22881 distop 22898 fctop 22907 cctop 22909 ppttop 22910 pptbas 22911 epttop 22912 mretopd 22995 resttopon 23064 dishaus 23285 discmp 23301 cmpsublem 23302 cmpsub 23303 conncompid 23334 2ndcsep 23362 cldllycmp 23398 dislly 23400 iskgen3 23452 kgencn2 23460 txuni2 23468 dfac14 23521 prdstopn 23531 txcmplem1 23544 txcmplem2 23545 hmphdis 23699 fbssfi 23740 trfbas2 23746 uffixsn 23828 hauspwpwf1 23890 alexsubALTlem2 23951 ustuqtop0 24144 met1stc 24425 restmetu 24474 icccmplem1 24727 icccmplem2 24728 opnmbllem 25518 sqff1o 27108 0slt1s 27761 oldf 27785 newf 27786 leftf 27797 rightf 27798 elons2 28182 onscutlt 28188 onsiso 28192 onaddscl 28197 onmulscl 28198 incistruhgr 29042 upgrbi 29056 umgrbi 29064 upgr1e 29076 umgredg 29101 uspgr1e 29207 uhgrspansubgrlem 29253 eupth2lems 30200 sspval 30685 foresf1o 32466 cmpcref 33816 esumpcvgval 34044 esumcvg 34052 esum2d 34059 pwsiga 34096 difelsiga 34099 sigainb 34102 pwldsys 34123 rossros 34146 measssd 34181 cntnevol 34194 ddemeas 34202 mbfmcnt 34235 br2base 34236 sxbrsigalem0 34238 oms0 34264 probun 34386 coinfliprv 34450 ballotth 34505 cvmcov2 35247 satfvel 35384 elfuns 35888 altxpsspw 35950 elhf2 36148 neibastop1 36332 neibastop2lem 36333 ctbssinf 37379 opnmbllem0 37635 heiborlem1 37790 heiborlem8 37797 pclfinN 39879 mapd1o 41627 elrfi 42667 ismrcd2 42672 istopclsd 42673 mrefg2 42680 isnacs3 42683 dfac11 43035 islssfg2 43044 lnr2i 43089 clsk1independent 44019 isotone2 44022 gneispace 44107 ismnushort 44274 trsspwALT 44791 trsspwALT2 44792 trsspwALT3 44793 pwtrVD 44797 permaxpow 44983 icof 45197 stoweidlem57 46039 intsal 46312 salexct 46316 sge0resplit 46388 sge0reuz 46429 omeiunltfirp 46501 smfpimbor1lem1 46780 sprvalpw 47465 sprsymrelf 47480 sprsymrelf1 47481 prprvalpw 47500 grimuhgr 47872 uspgropssxp 48129 uspgrsprf 48131 |
| Copyright terms: Public domain | W3C validator |