![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpw | Structured version Visualization version GIF version |
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
elpw.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elpw | ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpw.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | sseq1 3913 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
3 | df-pw 4455 | . 2 ⊢ 𝒫 𝐵 = {𝑥 ∣ 𝑥 ⊆ 𝐵} | |
4 | 1, 2, 3 | elab2 3608 | 1 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 ∈ wcel 2081 Vcvv 3437 ⊆ wss 3859 𝒫 cpw 4453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-in 3866 df-ss 3874 df-pw 4455 |
This theorem is referenced by: selpw 4460 0elpw 5147 snelpwi 5228 snelpw 5229 prelpw 5230 sspwb 5233 pwssun 5344 xpsspw 5568 knatar 6973 iunpw 7349 ssenen 8538 fissuni 8675 fipreima 8676 fiin 8732 fipwuni 8736 dffi3 8741 marypha1lem 8743 inf3lem6 8942 tz9.12lem3 9064 rankonidlem 9103 r0weon 9284 infpwfien 9334 dfac5lem4 9398 dfac2b 9402 dfac12lem2 9416 enfin2i 9589 isfin1-3 9654 itunitc1 9688 hsmexlem4 9697 hsmexlem5 9698 axdc4lem 9723 pwfseqlem1 9926 eltsk2g 10019 ixxssxr 12600 ioof 12685 fzof 12885 hashbclem 13658 incexclem 15024 ramub1lem1 16191 ramub1lem2 16192 prdsplusg 16560 prdsmulr 16561 prdsvsca 16562 submrc 16728 isacs2 16753 isssc 16919 homaf 17119 catcfuccl 17198 catcxpccl 17286 clatl 17555 fpwipodrs 17603 isacs4lem 17607 isacs5lem 17608 dprd2dlem1 18880 ablfac1b 18909 cssval 20508 tgdom 21270 distop 21287 fctop 21296 cctop 21298 ppttop 21299 pptbas 21300 epttop 21301 mretopd 21384 resttopon 21453 dishaus 21674 discmp 21690 cmpsublem 21691 cmpsub 21692 conncompid 21723 2ndcsep 21751 cldllycmp 21787 dislly 21789 iskgen3 21841 kgencn2 21849 txuni2 21857 dfac14 21910 prdstopn 21920 txcmplem1 21933 txcmplem2 21934 hmphdis 22088 fbssfi 22129 trfbas2 22135 uffixsn 22217 hauspwpwf1 22279 alexsubALTlem2 22340 ustuqtop0 22532 met1stc 22814 restmetu 22863 icccmplem1 23113 icccmplem2 23114 opnmbllem 23885 sqff1o 25441 incistruhgr 26547 upgrbi 26561 umgrbi 26569 upgr1e 26581 umgredg 26606 uspgr1e 26709 uhgrspansubgrlem 26755 eupth2lems 27705 sspval 28191 foresf1o 29957 cmpcref 30731 esumpcvgval 30954 esumcvg 30962 esum2d 30969 pwsiga 31006 difelsiga 31009 sigainb 31012 inelpisys 31030 pwldsys 31033 rossros 31056 measssd 31091 cntnevol 31104 ddemeas 31112 mbfmcnt 31143 br2base 31144 sxbrsigalem0 31146 oms0 31172 probun 31294 coinfliprv 31357 ballotth 31412 cvmcov2 32131 satfvel 32268 elfuns 32986 altxpsspw 33048 elhf2 33246 neibastop1 33317 neibastop2lem 33318 ctbssinf 34237 opnmbllem0 34478 heiborlem1 34640 heiborlem8 34647 pclfinN 36586 mapd1o 38334 elrfi 38795 ismrcd2 38800 istopclsd 38801 mrefg2 38808 isnacs3 38811 dfac11 39166 islssfg2 39175 lnr2i 39220 clsk1independent 39900 isotone1 39902 isotone2 39903 gneispace 39988 trsspwALT 40710 trsspwALT2 40711 trsspwALT3 40712 pwtrVD 40716 icof 41041 stoweidlem57 41904 intsal 42175 salexct 42179 sge0resplit 42250 sge0reuz 42291 omeiunltfirp 42363 smfpimbor1lem1 42635 sprvalpw 43144 sprsymrelf 43159 sprsymrelf1 43160 prprvalpw 43179 uspgropssxp 43521 uspgrsprf 43523 |
Copyright terms: Public domain | W3C validator |