| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpw | Structured version Visualization version GIF version | ||
| Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 31-Dec-1993.) (Proof shortened by BJ, 31-Dec-2023.) |
| Ref | Expression |
|---|---|
| elpw.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elpw | ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpw.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elpwg 4583 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Vcvv 3464 ⊆ wss 3931 𝒫 cpw 4580 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ss 3948 df-pw 4582 |
| This theorem is referenced by: velpw 4585 0elpw 5331 snelpwiOLD 5424 prelpw 5426 sspwb 5429 pwssun 5550 xpsspw 5793 knatar 7355 iunpw 7770 ssenen 9170 fissuni 9374 fipreima 9375 fipwuni 9443 dffi3 9448 marypha1lem 9450 inf3lem6 9652 tz9.12lem3 9808 rankonidlem 9847 r0weon 10031 infpwfien 10081 dfac5lem4 10145 dfac5lem4OLD 10147 dfac2b 10150 dfac12lem2 10164 enfin2i 10340 isfin1-3 10405 itunitc1 10439 hsmexlem4 10448 hsmexlem5 10449 axdc4lem 10474 pwfseqlem1 10677 eltsk2g 10770 ixxssxr 13379 ioof 13469 fzof 13678 hashbclem 14475 incexclem 15857 ramub1lem1 17051 ramub1lem2 17052 prdsplusg 17477 prdsmulr 17478 prdsvsca 17479 submrc 17645 isacs2 17670 isssc 17838 homaf 18048 catcfuccl 18136 catcxpccl 18224 clatl 18523 isacs4lem 18559 isacs5lem 18560 dprd2dlem1 20029 ablfac1b 20058 cssval 21647 tgdom 22921 distop 22938 fctop 22947 cctop 22949 ppttop 22950 pptbas 22951 epttop 22952 mretopd 23035 resttopon 23104 dishaus 23325 discmp 23341 cmpsublem 23342 cmpsub 23343 conncompid 23374 2ndcsep 23402 cldllycmp 23438 dislly 23440 iskgen3 23492 kgencn2 23500 txuni2 23508 dfac14 23561 prdstopn 23571 txcmplem1 23584 txcmplem2 23585 hmphdis 23739 fbssfi 23780 trfbas2 23786 uffixsn 23868 hauspwpwf1 23930 alexsubALTlem2 23991 ustuqtop0 24184 met1stc 24465 restmetu 24514 icccmplem1 24767 icccmplem2 24768 opnmbllem 25559 sqff1o 27149 0slt1s 27798 oldf 27822 newf 27823 leftf 27834 rightf 27835 elons2 28216 onscutlt 28222 onsiso 28226 onaddscl 28231 onmulscl 28232 incistruhgr 29063 upgrbi 29077 umgrbi 29085 upgr1e 29097 umgredg 29122 uspgr1e 29228 uhgrspansubgrlem 29274 eupth2lems 30224 sspval 30709 foresf1o 32490 cmpcref 33886 esumpcvgval 34114 esumcvg 34122 esum2d 34129 pwsiga 34166 difelsiga 34169 sigainb 34172 pwldsys 34193 rossros 34216 measssd 34251 cntnevol 34264 ddemeas 34272 mbfmcnt 34305 br2base 34306 sxbrsigalem0 34308 oms0 34334 probun 34456 coinfliprv 34520 ballotth 34575 cvmcov2 35302 satfvel 35439 elfuns 35938 altxpsspw 36000 elhf2 36198 neibastop1 36382 neibastop2lem 36383 ctbssinf 37429 opnmbllem0 37685 heiborlem1 37840 heiborlem8 37847 pclfinN 39924 mapd1o 41672 elrfi 42692 ismrcd2 42697 istopclsd 42698 mrefg2 42705 isnacs3 42708 dfac11 43061 islssfg2 43070 lnr2i 43115 clsk1independent 44045 isotone2 44048 gneispace 44133 ismnushort 44300 trsspwALT 44817 trsspwALT2 44818 trsspwALT3 44819 pwtrVD 44823 permaxpow 45009 icof 45223 stoweidlem57 46066 intsal 46339 salexct 46343 sge0resplit 46415 sge0reuz 46456 omeiunltfirp 46528 smfpimbor1lem1 46807 sprvalpw 47474 sprsymrelf 47489 sprsymrelf1 47490 prprvalpw 47509 grimuhgr 47880 uspgropssxp 48099 uspgrsprf 48101 |
| Copyright terms: Public domain | W3C validator |