![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpw | Structured version Visualization version GIF version |
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 31-Dec-1993.) (Proof shortened by BJ, 31-Dec-2023.) |
Ref | Expression |
---|---|
elpw.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elpw | ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpw.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elpwg 4606 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2107 Vcvv 3475 ⊆ wss 3949 𝒫 cpw 4603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-in 3956 df-ss 3966 df-pw 4605 |
This theorem is referenced by: velpw 4608 0elpw 5355 snelpwiOLD 5445 prelpw 5447 sspwb 5450 pwssun 5572 xpsspw 5810 knatar 7354 iunpw 7758 ssenen 9151 fissuni 9357 fipreima 9358 fipwuni 9421 dffi3 9426 marypha1lem 9428 inf3lem6 9628 tz9.12lem3 9784 rankonidlem 9823 r0weon 10007 infpwfien 10057 dfac5lem4 10121 dfac2b 10125 dfac12lem2 10139 enfin2i 10316 isfin1-3 10381 itunitc1 10415 hsmexlem4 10424 hsmexlem5 10425 axdc4lem 10450 pwfseqlem1 10653 eltsk2g 10746 ixxssxr 13336 ioof 13424 fzof 13629 hashbclem 14411 incexclem 15782 ramub1lem1 16959 ramub1lem2 16960 prdsplusg 17404 prdsmulr 17405 prdsvsca 17406 submrc 17572 isacs2 17597 isssc 17767 homaf 17980 catcfuccl 18069 catcfucclOLD 18070 catcxpccl 18159 catcxpcclOLD 18160 clatl 18461 isacs4lem 18497 isacs5lem 18498 dprd2dlem1 19911 ablfac1b 19940 cssval 21235 tgdom 22481 distop 22498 fctop 22507 cctop 22509 ppttop 22510 pptbas 22511 epttop 22512 mretopd 22596 resttopon 22665 dishaus 22886 discmp 22902 cmpsublem 22903 cmpsub 22904 conncompid 22935 2ndcsep 22963 cldllycmp 22999 dislly 23001 iskgen3 23053 kgencn2 23061 txuni2 23069 dfac14 23122 prdstopn 23132 txcmplem1 23145 txcmplem2 23146 hmphdis 23300 fbssfi 23341 trfbas2 23347 uffixsn 23429 hauspwpwf1 23491 alexsubALTlem2 23552 ustuqtop0 23745 met1stc 24030 restmetu 24079 icccmplem1 24338 icccmplem2 24339 opnmbllem 25118 sqff1o 26686 0slt1s 27330 oldf 27352 newf 27353 leftf 27360 rightf 27361 incistruhgr 28339 upgrbi 28353 umgrbi 28361 upgr1e 28373 umgredg 28398 uspgr1e 28501 uhgrspansubgrlem 28547 eupth2lems 29491 sspval 29976 foresf1o 31742 cmpcref 32830 esumpcvgval 33076 esumcvg 33084 esum2d 33091 pwsiga 33128 difelsiga 33131 sigainb 33134 pwldsys 33155 rossros 33178 measssd 33213 cntnevol 33226 ddemeas 33234 mbfmcnt 33267 br2base 33268 sxbrsigalem0 33270 oms0 33296 probun 33418 coinfliprv 33481 ballotth 33536 cvmcov2 34266 satfvel 34403 elfuns 34887 altxpsspw 34949 elhf2 35147 neibastop1 35244 neibastop2lem 35245 ctbssinf 36287 opnmbllem0 36524 heiborlem1 36679 heiborlem8 36686 pclfinN 38771 mapd1o 40519 elrfi 41432 ismrcd2 41437 istopclsd 41438 mrefg2 41445 isnacs3 41448 dfac11 41804 islssfg2 41813 lnr2i 41858 clsk1independent 42797 isotone2 42800 gneispace 42885 ismnushort 43060 trsspwALT 43579 trsspwALT2 43580 trsspwALT3 43581 pwtrVD 43585 icof 43918 stoweidlem57 44773 intsal 45046 salexct 45050 sge0resplit 45122 sge0reuz 45163 omeiunltfirp 45235 smfpimbor1lem1 45514 sprvalpw 46148 sprsymrelf 46163 sprsymrelf1 46164 prprvalpw 46183 uspgropssxp 46522 uspgrsprf 46524 |
Copyright terms: Public domain | W3C validator |