| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpw | Structured version Visualization version GIF version | ||
| Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 31-Dec-1993.) (Proof shortened by BJ, 31-Dec-2023.) |
| Ref | Expression |
|---|---|
| elpw.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elpw | ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpw.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elpwg 4585 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2107 Vcvv 3464 ⊆ wss 3933 𝒫 cpw 4582 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ss 3950 df-pw 4584 |
| This theorem is referenced by: velpw 4587 0elpw 5338 snelpwiOLD 5431 prelpw 5433 sspwb 5436 pwssun 5557 xpsspw 5801 knatar 7360 iunpw 7774 ssenen 9174 fissuni 9380 fipreima 9381 fipwuni 9449 dffi3 9454 marypha1lem 9456 inf3lem6 9656 tz9.12lem3 9812 rankonidlem 9851 r0weon 10035 infpwfien 10085 dfac5lem4 10149 dfac5lem4OLD 10151 dfac2b 10154 dfac12lem2 10168 enfin2i 10344 isfin1-3 10409 itunitc1 10443 hsmexlem4 10452 hsmexlem5 10453 axdc4lem 10478 pwfseqlem1 10681 eltsk2g 10774 ixxssxr 13382 ioof 13470 fzof 13679 hashbclem 14474 incexclem 15855 ramub1lem1 17047 ramub1lem2 17048 prdsplusg 17479 prdsmulr 17480 prdsvsca 17481 submrc 17647 isacs2 17672 isssc 17840 homaf 18051 catcfuccl 18139 catcxpccl 18227 clatl 18527 isacs4lem 18563 isacs5lem 18564 dprd2dlem1 20034 ablfac1b 20063 cssval 21667 tgdom 22951 distop 22968 fctop 22977 cctop 22979 ppttop 22980 pptbas 22981 epttop 22982 mretopd 23065 resttopon 23134 dishaus 23355 discmp 23371 cmpsublem 23372 cmpsub 23373 conncompid 23404 2ndcsep 23432 cldllycmp 23468 dislly 23470 iskgen3 23522 kgencn2 23530 txuni2 23538 dfac14 23591 prdstopn 23601 txcmplem1 23614 txcmplem2 23615 hmphdis 23769 fbssfi 23810 trfbas2 23816 uffixsn 23898 hauspwpwf1 23960 alexsubALTlem2 24021 ustuqtop0 24214 met1stc 24497 restmetu 24546 icccmplem1 24799 icccmplem2 24800 opnmbllem 25591 sqff1o 27180 0slt1s 27829 oldf 27851 newf 27852 leftf 27859 rightf 27860 elons2 28236 onaddscl 28241 onmulscl 28242 incistruhgr 29043 upgrbi 29057 umgrbi 29065 upgr1e 29077 umgredg 29102 uspgr1e 29208 uhgrspansubgrlem 29254 eupth2lems 30204 sspval 30689 foresf1o 32470 cmpcref 33790 esumpcvgval 34020 esumcvg 34028 esum2d 34035 pwsiga 34072 difelsiga 34075 sigainb 34078 pwldsys 34099 rossros 34122 measssd 34157 cntnevol 34170 ddemeas 34178 mbfmcnt 34211 br2base 34212 sxbrsigalem0 34214 oms0 34240 probun 34362 coinfliprv 34426 ballotth 34481 cvmcov2 35221 satfvel 35358 elfuns 35857 altxpsspw 35919 elhf2 36117 neibastop1 36301 neibastop2lem 36302 ctbssinf 37348 opnmbllem0 37604 heiborlem1 37759 heiborlem8 37766 pclfinN 39843 mapd1o 41591 elrfi 42650 ismrcd2 42655 istopclsd 42656 mrefg2 42663 isnacs3 42666 dfac11 43019 islssfg2 43028 lnr2i 43073 clsk1independent 44004 isotone2 44007 gneispace 44092 ismnushort 44265 trsspwALT 44783 trsspwALT2 44784 trsspwALT3 44785 pwtrVD 44789 icof 45169 stoweidlem57 46017 intsal 46290 salexct 46294 sge0resplit 46366 sge0reuz 46407 omeiunltfirp 46479 smfpimbor1lem1 46758 sprvalpw 47413 sprsymrelf 47428 sprsymrelf1 47429 prprvalpw 47448 grimuhgr 47824 uspgropssxp 48006 uspgrsprf 48008 |
| Copyright terms: Public domain | W3C validator |