| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpw | Structured version Visualization version GIF version | ||
| Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 31-Dec-1993.) (Proof shortened by BJ, 31-Dec-2023.) |
| Ref | Expression |
|---|---|
| elpw.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elpw | ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpw.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elpwg 4566 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 𝒫 cpw 4563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3931 df-pw 4565 |
| This theorem is referenced by: velpw 4568 0elpw 5311 snelpwiOLD 5404 prelpw 5406 sspwb 5409 pwssun 5530 xpsspw 5772 knatar 7332 iunpw 7747 ssenen 9115 fissuni 9308 fipreima 9309 fipwuni 9377 dffi3 9382 marypha1lem 9384 inf3lem6 9586 tz9.12lem3 9742 rankonidlem 9781 r0weon 9965 infpwfien 10015 dfac5lem4 10079 dfac5lem4OLD 10081 dfac2b 10084 dfac12lem2 10098 enfin2i 10274 isfin1-3 10339 itunitc1 10373 hsmexlem4 10382 hsmexlem5 10383 axdc4lem 10408 pwfseqlem1 10611 eltsk2g 10704 ixxssxr 13318 ioof 13408 fzof 13617 hashbclem 14417 incexclem 15802 ramub1lem1 16997 ramub1lem2 16998 prdsplusg 17421 prdsmulr 17422 prdsvsca 17423 submrc 17589 isacs2 17614 isssc 17782 homaf 17992 catcfuccl 18080 catcxpccl 18168 clatl 18467 isacs4lem 18503 isacs5lem 18504 dprd2dlem1 19973 ablfac1b 20002 cssval 21591 tgdom 22865 distop 22882 fctop 22891 cctop 22893 ppttop 22894 pptbas 22895 epttop 22896 mretopd 22979 resttopon 23048 dishaus 23269 discmp 23285 cmpsublem 23286 cmpsub 23287 conncompid 23318 2ndcsep 23346 cldllycmp 23382 dislly 23384 iskgen3 23436 kgencn2 23444 txuni2 23452 dfac14 23505 prdstopn 23515 txcmplem1 23528 txcmplem2 23529 hmphdis 23683 fbssfi 23724 trfbas2 23730 uffixsn 23812 hauspwpwf1 23874 alexsubALTlem2 23935 ustuqtop0 24128 met1stc 24409 restmetu 24458 icccmplem1 24711 icccmplem2 24712 opnmbllem 25502 sqff1o 27092 0slt1s 27741 oldf 27765 newf 27766 leftf 27777 rightf 27778 elons2 28159 onscutlt 28165 onsiso 28169 onaddscl 28174 onmulscl 28175 incistruhgr 29006 upgrbi 29020 umgrbi 29028 upgr1e 29040 umgredg 29065 uspgr1e 29171 uhgrspansubgrlem 29217 eupth2lems 30167 sspval 30652 foresf1o 32433 cmpcref 33840 esumpcvgval 34068 esumcvg 34076 esum2d 34083 pwsiga 34120 difelsiga 34123 sigainb 34126 pwldsys 34147 rossros 34170 measssd 34205 cntnevol 34218 ddemeas 34226 mbfmcnt 34259 br2base 34260 sxbrsigalem0 34262 oms0 34288 probun 34410 coinfliprv 34474 ballotth 34529 cvmcov2 35262 satfvel 35399 elfuns 35903 altxpsspw 35965 elhf2 36163 neibastop1 36347 neibastop2lem 36348 ctbssinf 37394 opnmbllem0 37650 heiborlem1 37805 heiborlem8 37812 pclfinN 39894 mapd1o 41642 elrfi 42682 ismrcd2 42687 istopclsd 42688 mrefg2 42695 isnacs3 42698 dfac11 43051 islssfg2 43060 lnr2i 43105 clsk1independent 44035 isotone2 44038 gneispace 44123 ismnushort 44290 trsspwALT 44807 trsspwALT2 44808 trsspwALT3 44809 pwtrVD 44813 permaxpow 44999 icof 45213 stoweidlem57 46055 intsal 46328 salexct 46332 sge0resplit 46404 sge0reuz 46445 omeiunltfirp 46517 smfpimbor1lem1 46796 sprvalpw 47481 sprsymrelf 47496 sprsymrelf1 47497 prprvalpw 47516 grimuhgr 47887 uspgropssxp 48132 uspgrsprf 48134 |
| Copyright terms: Public domain | W3C validator |