| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpw | Structured version Visualization version GIF version | ||
| Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 31-Dec-1993.) (Proof shortened by BJ, 31-Dec-2023.) |
| Ref | Expression |
|---|---|
| elpw.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elpw | ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpw.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elpwg 4553 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3902 𝒫 cpw 4550 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ss 3919 df-pw 4552 |
| This theorem is referenced by: velpw 4555 0elpw 5294 prelpw 5387 sspwb 5390 pwssun 5508 xpsspw 5749 knatar 7291 iunpw 7704 ssenen 9064 fissuni 9241 fipreima 9242 fipwuni 9310 dffi3 9315 marypha1lem 9317 inf3lem6 9523 tz9.12lem3 9679 rankonidlem 9718 r0weon 9900 infpwfien 9950 dfac5lem4 10014 dfac5lem4OLD 10016 dfac2b 10019 dfac12lem2 10033 enfin2i 10209 isfin1-3 10274 itunitc1 10308 hsmexlem4 10317 hsmexlem5 10318 axdc4lem 10343 pwfseqlem1 10546 eltsk2g 10639 ixxssxr 13254 ioof 13344 fzof 13553 hashbclem 14356 incexclem 15740 ramub1lem1 16935 ramub1lem2 16936 prdsplusg 17359 prdsmulr 17360 prdsvsca 17361 submrc 17531 isacs2 17556 isssc 17724 homaf 17934 catcfuccl 18022 catcxpccl 18110 clatl 18411 isacs4lem 18447 isacs5lem 18448 dprd2dlem1 19953 ablfac1b 19982 cssval 21617 tgdom 22891 distop 22908 fctop 22917 cctop 22919 ppttop 22920 pptbas 22921 epttop 22922 mretopd 23005 resttopon 23074 dishaus 23295 discmp 23311 cmpsublem 23312 cmpsub 23313 conncompid 23344 2ndcsep 23372 cldllycmp 23408 dislly 23410 iskgen3 23462 kgencn2 23470 txuni2 23478 dfac14 23531 prdstopn 23541 txcmplem1 23554 txcmplem2 23555 hmphdis 23709 fbssfi 23750 trfbas2 23756 uffixsn 23838 hauspwpwf1 23900 alexsubALTlem2 23961 ustuqtop0 24153 met1stc 24434 restmetu 24483 icccmplem1 24736 icccmplem2 24737 opnmbllem 25527 sqff1o 27117 0slt1s 27771 oldf 27796 newf 27797 leftf 27808 rightf 27809 elons2 28193 onscutlt 28199 onsiso 28203 onaddscl 28208 onmulscl 28209 incistruhgr 29055 upgrbi 29069 umgrbi 29077 upgr1e 29089 umgredg 29114 uspgr1e 29220 uhgrspansubgrlem 29266 eupth2lems 30213 sspval 30698 foresf1o 32479 cmpcref 33858 esumpcvgval 34086 esumcvg 34094 esum2d 34101 pwsiga 34138 difelsiga 34141 sigainb 34144 pwldsys 34165 rossros 34188 measssd 34223 cntnevol 34236 ddemeas 34244 mbfmcnt 34276 br2base 34277 sxbrsigalem0 34279 oms0 34305 probun 34427 coinfliprv 34491 ballotth 34546 cvmcov2 35307 satfvel 35444 elfuns 35948 altxpsspw 36010 elhf2 36208 neibastop1 36392 neibastop2lem 36393 ctbssinf 37439 opnmbllem0 37695 heiborlem1 37850 heiborlem8 37857 pclfinN 39938 mapd1o 41686 elrfi 42726 ismrcd2 42731 istopclsd 42732 mrefg2 42739 isnacs3 42742 dfac11 43094 islssfg2 43103 lnr2i 43148 clsk1independent 44078 isotone2 44081 gneispace 44166 ismnushort 44333 trsspwALT 44849 trsspwALT2 44850 trsspwALT3 44851 pwtrVD 44855 permaxpow 45041 icof 45255 stoweidlem57 46094 intsal 46367 salexct 46371 sge0resplit 46443 sge0reuz 46484 omeiunltfirp 46556 smfpimbor1lem1 46835 sprvalpw 47510 sprsymrelf 47525 sprsymrelf1 47526 prprvalpw 47545 grimuhgr 47917 uspgropssxp 48174 uspgrsprf 48176 |
| Copyright terms: Public domain | W3C validator |