| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpw | Structured version Visualization version GIF version | ||
| Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 31-Dec-1993.) (Proof shortened by BJ, 31-Dec-2023.) |
| Ref | Expression |
|---|---|
| elpw.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elpw | ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpw.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elpwg 4552 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 𝒫 cpw 4549 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ss 3915 df-pw 4551 |
| This theorem is referenced by: velpw 4554 0elpw 5296 prelpw 5389 sspwb 5392 pwssun 5511 xpsspw 5753 knatar 7297 iunpw 7710 ssenen 9071 fissuni 9248 fipreima 9249 fipwuni 9317 dffi3 9322 marypha1lem 9324 inf3lem6 9530 tz9.12lem3 9689 rankonidlem 9728 r0weon 9910 infpwfien 9960 dfac5lem4 10024 dfac5lem4OLD 10026 dfac2b 10029 dfac12lem2 10043 enfin2i 10219 isfin1-3 10284 itunitc1 10318 hsmexlem4 10327 hsmexlem5 10328 axdc4lem 10353 pwfseqlem1 10556 eltsk2g 10649 ixxssxr 13259 ioof 13349 fzof 13558 hashbclem 14361 incexclem 15745 ramub1lem1 16940 ramub1lem2 16941 prdsplusg 17364 prdsmulr 17365 prdsvsca 17366 submrc 17536 isacs2 17561 isssc 17729 homaf 17939 catcfuccl 18027 catcxpccl 18115 clatl 18416 isacs4lem 18452 isacs5lem 18453 dprd2dlem1 19957 ablfac1b 19986 cssval 21621 tgdom 22894 distop 22911 fctop 22920 cctop 22922 ppttop 22923 pptbas 22924 epttop 22925 mretopd 23008 resttopon 23077 dishaus 23298 discmp 23314 cmpsublem 23315 cmpsub 23316 conncompid 23347 2ndcsep 23375 cldllycmp 23411 dislly 23413 iskgen3 23465 kgencn2 23473 txuni2 23481 dfac14 23534 prdstopn 23544 txcmplem1 23557 txcmplem2 23558 hmphdis 23712 fbssfi 23753 trfbas2 23759 uffixsn 23841 hauspwpwf1 23903 alexsubALTlem2 23964 ustuqtop0 24156 met1stc 24437 restmetu 24486 icccmplem1 24739 icccmplem2 24740 opnmbllem 25530 sqff1o 27120 0slt1s 27774 oldf 27799 newf 27800 leftf 27811 rightf 27812 elons2 28196 onscutlt 28202 onsiso 28206 onaddscl 28211 onmulscl 28212 incistruhgr 29059 upgrbi 29073 umgrbi 29081 upgr1e 29093 umgredg 29118 uspgr1e 29224 uhgrspansubgrlem 29270 eupth2lems 30220 sspval 30705 foresf1o 32486 cmpcref 33884 esumpcvgval 34112 esumcvg 34120 esum2d 34127 pwsiga 34164 difelsiga 34167 sigainb 34170 pwldsys 34191 rossros 34214 measssd 34249 cntnevol 34262 ddemeas 34270 mbfmcnt 34302 br2base 34303 sxbrsigalem0 34305 oms0 34331 probun 34453 coinfliprv 34517 ballotth 34572 cvmcov2 35340 satfvel 35477 elfuns 35978 altxpsspw 36042 elhf2 36240 neibastop1 36424 neibastop2lem 36425 ctbssinf 37471 opnmbllem0 37716 heiborlem1 37871 heiborlem8 37878 pclfinN 40019 mapd1o 41767 elrfi 42811 ismrcd2 42816 istopclsd 42817 mrefg2 42824 isnacs3 42827 dfac11 43179 islssfg2 43188 lnr2i 43233 clsk1independent 44163 isotone2 44166 gneispace 44251 ismnushort 44418 trsspwALT 44934 trsspwALT2 44935 trsspwALT3 44936 pwtrVD 44940 permaxpow 45126 icof 45340 stoweidlem57 46179 intsal 46452 salexct 46456 sge0resplit 46528 sge0reuz 46569 omeiunltfirp 46641 smfpimbor1lem1 46920 sprvalpw 47604 sprsymrelf 47619 sprsymrelf1 47620 prprvalpw 47639 grimuhgr 48011 uspgropssxp 48268 uspgrsprf 48270 |
| Copyright terms: Public domain | W3C validator |