![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpw | Structured version Visualization version GIF version |
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 31-Dec-1993.) (Proof shortened by BJ, 31-Dec-2023.) |
Ref | Expression |
---|---|
elpw.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elpw | ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpw.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elpwg 4607 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2105 Vcvv 3477 ⊆ wss 3962 𝒫 cpw 4604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ss 3979 df-pw 4606 |
This theorem is referenced by: velpw 4609 0elpw 5361 snelpwiOLD 5454 prelpw 5456 sspwb 5459 pwssun 5579 xpsspw 5821 knatar 7376 iunpw 7789 ssenen 9189 fissuni 9394 fipreima 9395 fipwuni 9463 dffi3 9468 marypha1lem 9470 inf3lem6 9670 tz9.12lem3 9826 rankonidlem 9865 r0weon 10049 infpwfien 10099 dfac5lem4 10163 dfac5lem4OLD 10165 dfac2b 10168 dfac12lem2 10182 enfin2i 10358 isfin1-3 10423 itunitc1 10457 hsmexlem4 10466 hsmexlem5 10467 axdc4lem 10492 pwfseqlem1 10695 eltsk2g 10788 ixxssxr 13395 ioof 13483 fzof 13692 hashbclem 14487 incexclem 15868 ramub1lem1 17059 ramub1lem2 17060 prdsplusg 17504 prdsmulr 17505 prdsvsca 17506 submrc 17672 isacs2 17697 isssc 17867 homaf 18083 catcfuccl 18172 catcfucclOLD 18173 catcxpccl 18262 catcxpcclOLD 18263 clatl 18565 isacs4lem 18601 isacs5lem 18602 dprd2dlem1 20075 ablfac1b 20104 cssval 21717 tgdom 23000 distop 23017 fctop 23026 cctop 23028 ppttop 23029 pptbas 23030 epttop 23031 mretopd 23115 resttopon 23184 dishaus 23405 discmp 23421 cmpsublem 23422 cmpsub 23423 conncompid 23454 2ndcsep 23482 cldllycmp 23518 dislly 23520 iskgen3 23572 kgencn2 23580 txuni2 23588 dfac14 23641 prdstopn 23651 txcmplem1 23664 txcmplem2 23665 hmphdis 23819 fbssfi 23860 trfbas2 23866 uffixsn 23948 hauspwpwf1 24010 alexsubALTlem2 24071 ustuqtop0 24264 met1stc 24549 restmetu 24598 icccmplem1 24857 icccmplem2 24858 opnmbllem 25649 sqff1o 27239 0slt1s 27888 oldf 27910 newf 27911 leftf 27918 rightf 27919 elons2 28295 onaddscl 28300 onmulscl 28301 incistruhgr 29110 upgrbi 29124 umgrbi 29132 upgr1e 29144 umgredg 29169 uspgr1e 29275 uhgrspansubgrlem 29321 eupth2lems 30266 sspval 30751 foresf1o 32531 cmpcref 33810 esumpcvgval 34058 esumcvg 34066 esum2d 34073 pwsiga 34110 difelsiga 34113 sigainb 34116 pwldsys 34137 rossros 34160 measssd 34195 cntnevol 34208 ddemeas 34216 mbfmcnt 34249 br2base 34250 sxbrsigalem0 34252 oms0 34278 probun 34400 coinfliprv 34463 ballotth 34518 cvmcov2 35259 satfvel 35396 elfuns 35896 altxpsspw 35958 elhf2 36156 neibastop1 36341 neibastop2lem 36342 ctbssinf 37388 opnmbllem0 37642 heiborlem1 37797 heiborlem8 37804 pclfinN 39882 mapd1o 41630 elrfi 42681 ismrcd2 42686 istopclsd 42687 mrefg2 42694 isnacs3 42697 dfac11 43050 islssfg2 43059 lnr2i 43104 clsk1independent 44035 isotone2 44038 gneispace 44123 ismnushort 44296 trsspwALT 44815 trsspwALT2 44816 trsspwALT3 44817 pwtrVD 44821 icof 45161 stoweidlem57 46012 intsal 46285 salexct 46289 sge0resplit 46361 sge0reuz 46402 omeiunltfirp 46474 smfpimbor1lem1 46753 sprvalpw 47404 sprsymrelf 47419 sprsymrelf1 47420 prprvalpw 47439 grimuhgr 47815 uspgropssxp 47987 uspgrsprf 47989 |
Copyright terms: Public domain | W3C validator |