![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpw | Structured version Visualization version GIF version |
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 31-Dec-1993.) (Proof shortened by BJ, 31-Dec-2023.) |
Ref | Expression |
---|---|
elpw.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elpw | ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpw.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elpwg 4625 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 𝒫 cpw 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ss 3993 df-pw 4624 |
This theorem is referenced by: velpw 4627 0elpw 5374 snelpwiOLD 5464 prelpw 5466 sspwb 5469 pwssun 5590 xpsspw 5833 knatar 7393 iunpw 7806 ssenen 9217 fissuni 9427 fipreima 9428 fipwuni 9495 dffi3 9500 marypha1lem 9502 inf3lem6 9702 tz9.12lem3 9858 rankonidlem 9897 r0weon 10081 infpwfien 10131 dfac5lem4 10195 dfac5lem4OLD 10197 dfac2b 10200 dfac12lem2 10214 enfin2i 10390 isfin1-3 10455 itunitc1 10489 hsmexlem4 10498 hsmexlem5 10499 axdc4lem 10524 pwfseqlem1 10727 eltsk2g 10820 ixxssxr 13419 ioof 13507 fzof 13713 hashbclem 14501 incexclem 15884 ramub1lem1 17073 ramub1lem2 17074 prdsplusg 17518 prdsmulr 17519 prdsvsca 17520 submrc 17686 isacs2 17711 isssc 17881 homaf 18097 catcfuccl 18186 catcfucclOLD 18187 catcxpccl 18276 catcxpcclOLD 18277 clatl 18578 isacs4lem 18614 isacs5lem 18615 dprd2dlem1 20085 ablfac1b 20114 cssval 21723 tgdom 23006 distop 23023 fctop 23032 cctop 23034 ppttop 23035 pptbas 23036 epttop 23037 mretopd 23121 resttopon 23190 dishaus 23411 discmp 23427 cmpsublem 23428 cmpsub 23429 conncompid 23460 2ndcsep 23488 cldllycmp 23524 dislly 23526 iskgen3 23578 kgencn2 23586 txuni2 23594 dfac14 23647 prdstopn 23657 txcmplem1 23670 txcmplem2 23671 hmphdis 23825 fbssfi 23866 trfbas2 23872 uffixsn 23954 hauspwpwf1 24016 alexsubALTlem2 24077 ustuqtop0 24270 met1stc 24555 restmetu 24604 icccmplem1 24863 icccmplem2 24864 opnmbllem 25655 sqff1o 27243 0slt1s 27892 oldf 27914 newf 27915 leftf 27922 rightf 27923 elons2 28299 onaddscl 28304 onmulscl 28305 incistruhgr 29114 upgrbi 29128 umgrbi 29136 upgr1e 29148 umgredg 29173 uspgr1e 29279 uhgrspansubgrlem 29325 eupth2lems 30270 sspval 30755 foresf1o 32532 cmpcref 33796 esumpcvgval 34042 esumcvg 34050 esum2d 34057 pwsiga 34094 difelsiga 34097 sigainb 34100 pwldsys 34121 rossros 34144 measssd 34179 cntnevol 34192 ddemeas 34200 mbfmcnt 34233 br2base 34234 sxbrsigalem0 34236 oms0 34262 probun 34384 coinfliprv 34447 ballotth 34502 cvmcov2 35243 satfvel 35380 elfuns 35879 altxpsspw 35941 elhf2 36139 neibastop1 36325 neibastop2lem 36326 ctbssinf 37372 opnmbllem0 37616 heiborlem1 37771 heiborlem8 37778 pclfinN 39857 mapd1o 41605 elrfi 42650 ismrcd2 42655 istopclsd 42656 mrefg2 42663 isnacs3 42666 dfac11 43019 islssfg2 43028 lnr2i 43073 clsk1independent 44008 isotone2 44011 gneispace 44096 ismnushort 44270 trsspwALT 44789 trsspwALT2 44790 trsspwALT3 44791 pwtrVD 44795 icof 45126 stoweidlem57 45978 intsal 46251 salexct 46255 sge0resplit 46327 sge0reuz 46368 omeiunltfirp 46440 smfpimbor1lem1 46719 sprvalpw 47354 sprsymrelf 47369 sprsymrelf1 47370 prprvalpw 47389 grimuhgr 47762 uspgropssxp 47867 uspgrsprf 47869 |
Copyright terms: Public domain | W3C validator |