| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpw | Structured version Visualization version GIF version | ||
| Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 31-Dec-1993.) (Proof shortened by BJ, 31-Dec-2023.) |
| Ref | Expression |
|---|---|
| elpw.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elpw | ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpw.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elpwg 4569 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 𝒫 cpw 4566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ss 3934 df-pw 4568 |
| This theorem is referenced by: velpw 4571 0elpw 5314 snelpwiOLD 5407 prelpw 5409 sspwb 5412 pwssun 5533 xpsspw 5775 knatar 7335 iunpw 7750 ssenen 9121 fissuni 9315 fipreima 9316 fipwuni 9384 dffi3 9389 marypha1lem 9391 inf3lem6 9593 tz9.12lem3 9749 rankonidlem 9788 r0weon 9972 infpwfien 10022 dfac5lem4 10086 dfac5lem4OLD 10088 dfac2b 10091 dfac12lem2 10105 enfin2i 10281 isfin1-3 10346 itunitc1 10380 hsmexlem4 10389 hsmexlem5 10390 axdc4lem 10415 pwfseqlem1 10618 eltsk2g 10711 ixxssxr 13325 ioof 13415 fzof 13624 hashbclem 14424 incexclem 15809 ramub1lem1 17004 ramub1lem2 17005 prdsplusg 17428 prdsmulr 17429 prdsvsca 17430 submrc 17596 isacs2 17621 isssc 17789 homaf 17999 catcfuccl 18087 catcxpccl 18175 clatl 18474 isacs4lem 18510 isacs5lem 18511 dprd2dlem1 19980 ablfac1b 20009 cssval 21598 tgdom 22872 distop 22889 fctop 22898 cctop 22900 ppttop 22901 pptbas 22902 epttop 22903 mretopd 22986 resttopon 23055 dishaus 23276 discmp 23292 cmpsublem 23293 cmpsub 23294 conncompid 23325 2ndcsep 23353 cldllycmp 23389 dislly 23391 iskgen3 23443 kgencn2 23451 txuni2 23459 dfac14 23512 prdstopn 23522 txcmplem1 23535 txcmplem2 23536 hmphdis 23690 fbssfi 23731 trfbas2 23737 uffixsn 23819 hauspwpwf1 23881 alexsubALTlem2 23942 ustuqtop0 24135 met1stc 24416 restmetu 24465 icccmplem1 24718 icccmplem2 24719 opnmbllem 25509 sqff1o 27099 0slt1s 27748 oldf 27772 newf 27773 leftf 27784 rightf 27785 elons2 28166 onscutlt 28172 onsiso 28176 onaddscl 28181 onmulscl 28182 incistruhgr 29013 upgrbi 29027 umgrbi 29035 upgr1e 29047 umgredg 29072 uspgr1e 29178 uhgrspansubgrlem 29224 eupth2lems 30174 sspval 30659 foresf1o 32440 cmpcref 33847 esumpcvgval 34075 esumcvg 34083 esum2d 34090 pwsiga 34127 difelsiga 34130 sigainb 34133 pwldsys 34154 rossros 34177 measssd 34212 cntnevol 34225 ddemeas 34233 mbfmcnt 34266 br2base 34267 sxbrsigalem0 34269 oms0 34295 probun 34417 coinfliprv 34481 ballotth 34536 cvmcov2 35269 satfvel 35406 elfuns 35910 altxpsspw 35972 elhf2 36170 neibastop1 36354 neibastop2lem 36355 ctbssinf 37401 opnmbllem0 37657 heiborlem1 37812 heiborlem8 37819 pclfinN 39901 mapd1o 41649 elrfi 42689 ismrcd2 42694 istopclsd 42695 mrefg2 42702 isnacs3 42705 dfac11 43058 islssfg2 43067 lnr2i 43112 clsk1independent 44042 isotone2 44045 gneispace 44130 ismnushort 44297 trsspwALT 44814 trsspwALT2 44815 trsspwALT3 44816 pwtrVD 44820 permaxpow 45006 icof 45220 stoweidlem57 46062 intsal 46335 salexct 46339 sge0resplit 46411 sge0reuz 46452 omeiunltfirp 46524 smfpimbor1lem1 46803 sprvalpw 47485 sprsymrelf 47500 sprsymrelf1 47501 prprvalpw 47520 grimuhgr 47891 uspgropssxp 48136 uspgrsprf 48138 |
| Copyright terms: Public domain | W3C validator |