Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elpw | Structured version Visualization version GIF version |
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 31-Dec-1993.) (Proof shortened by BJ, 31-Dec-2023.) |
Ref | Expression |
---|---|
elpw.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elpw | ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpw.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elpwg 4536 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 𝒫 cpw 4533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-pw 4535 |
This theorem is referenced by: velpw 4538 0elpw 5278 snelpwi 5360 snelpw 5361 prelpw 5362 sspwb 5365 pwssun 5485 xpsspw 5719 knatar 7228 iunpw 7621 ssenen 8938 fissuni 9124 fipreima 9125 fipwuni 9185 dffi3 9190 marypha1lem 9192 inf3lem6 9391 tz9.12lem3 9547 rankonidlem 9586 r0weon 9768 infpwfien 9818 dfac5lem4 9882 dfac2b 9886 dfac12lem2 9900 enfin2i 10077 isfin1-3 10142 itunitc1 10176 hsmexlem4 10185 hsmexlem5 10186 axdc4lem 10211 pwfseqlem1 10414 eltsk2g 10507 ixxssxr 13091 ioof 13179 fzof 13384 hashbclem 14164 incexclem 15548 ramub1lem1 16727 ramub1lem2 16728 prdsplusg 17169 prdsmulr 17170 prdsvsca 17171 submrc 17337 isacs2 17362 isssc 17532 homaf 17745 catcfuccl 17834 catcfucclOLD 17835 catcxpccl 17924 catcxpcclOLD 17925 clatl 18226 isacs4lem 18262 isacs5lem 18263 dprd2dlem1 19644 ablfac1b 19673 cssval 20887 tgdom 22128 distop 22145 fctop 22154 cctop 22156 ppttop 22157 pptbas 22158 epttop 22159 mretopd 22243 resttopon 22312 dishaus 22533 discmp 22549 cmpsublem 22550 cmpsub 22551 conncompid 22582 2ndcsep 22610 cldllycmp 22646 dislly 22648 iskgen3 22700 kgencn2 22708 txuni2 22716 dfac14 22769 prdstopn 22779 txcmplem1 22792 txcmplem2 22793 hmphdis 22947 fbssfi 22988 trfbas2 22994 uffixsn 23076 hauspwpwf1 23138 alexsubALTlem2 23199 ustuqtop0 23392 met1stc 23677 restmetu 23726 icccmplem1 23985 icccmplem2 23986 opnmbllem 24765 sqff1o 26331 incistruhgr 27449 upgrbi 27463 umgrbi 27471 upgr1e 27483 umgredg 27508 uspgr1e 27611 uhgrspansubgrlem 27657 eupth2lems 28602 sspval 29085 foresf1o 30850 cmpcref 31800 esumpcvgval 32046 esumcvg 32054 esum2d 32061 pwsiga 32098 difelsiga 32101 sigainb 32104 pwldsys 32125 rossros 32148 measssd 32183 cntnevol 32196 ddemeas 32204 mbfmcnt 32235 br2base 32236 sxbrsigalem0 32238 oms0 32264 probun 32386 coinfliprv 32449 ballotth 32504 cvmcov2 33237 satfvel 33374 0slt1s 34023 oldf 34041 newf 34042 leftf 34049 rightf 34050 elfuns 34217 altxpsspw 34279 elhf2 34477 neibastop1 34548 neibastop2lem 34549 ctbssinf 35577 opnmbllem0 35813 heiborlem1 35969 heiborlem8 35976 pclfinN 37914 mapd1o 39662 elrfi 40516 ismrcd2 40521 istopclsd 40522 mrefg2 40529 isnacs3 40532 dfac11 40887 islssfg2 40896 lnr2i 40941 clsk1independent 41656 isotone2 41659 gneispace 41744 ismnushort 41919 trsspwALT 42438 trsspwALT2 42439 trsspwALT3 42440 pwtrVD 42444 icof 42759 stoweidlem57 43598 intsal 43869 salexct 43873 sge0resplit 43944 sge0reuz 43985 omeiunltfirp 44057 smfpimbor1lem1 44332 sprvalpw 44932 sprsymrelf 44947 sprsymrelf1 44948 prprvalpw 44967 uspgropssxp 45306 uspgrsprf 45308 |
Copyright terms: Public domain | W3C validator |