MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpwgOLD Structured version   Visualization version   GIF version

Theorem elpwgOLD 4540
Description: Obsolete proof of elpwg 4536 as of 31-Dec-2023. (Contributed by NM, 6-Aug-2000.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
elpwgOLD (𝐴𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))

Proof of Theorem elpwgOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2826 . 2 (𝑥 = 𝐴 → (𝑥 ∈ 𝒫 𝐵𝐴 ∈ 𝒫 𝐵))
2 sseq1 3946 . 2 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
3 velpw 4538 . 2 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
41, 2, 3vtoclbg 3507 1 (𝐴𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2106  wss 3887  𝒫 cpw 4533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-in 3894  df-ss 3904  df-pw 4535
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator