| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > velpw | Structured version Visualization version GIF version | ||
| Description: Setvar variable membership in a power class. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| velpw | ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3441 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | 1 | elpw 4555 | 1 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2113 ⊆ wss 3898 𝒫 cpw 4551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-ss 3915 df-pw 4553 |
| This theorem is referenced by: sspw 4562 pwss 4574 snsspw 4797 pwpr 4854 pwtp 4855 pwv 4857 pwuni 4898 sspwuni 5052 iinpw 5058 iunpwss 5059 ssextss 5398 pwin 5512 dffr6 5577 sorpsscmpl 7676 iunpw 7713 ordpwsuc 7754 fabexd 7876 fabexgOLD 7878 abexssex 7911 qsss 8709 fsetsspwxp 8786 mapval2 8806 pmsspw 8811 uniixp 8855 fineqvlem 9161 fival 9307 hartogslem1 9439 tskwe 9854 cfval2 10162 cflim3 10164 cflim2 10165 cfslb 10168 compsscnvlem 10272 fin1a2lem13 10314 axdc3lem 10352 fpwwe2lem1 10533 fpwwe2lem10 10542 fpwwe2lem11 10543 fpwwe 10548 canthwe 10553 axgroth5 10726 axgroth6 10730 wuncn 11072 ishashinf 14377 vdwmc 16897 ramub2 16933 ram0 16941 restsspw 17342 ismred 17512 mremre 17514 acsfn 17573 submgmacs 18633 submacs 18743 subgacs 19081 nsgacs 19082 sylow2alem2 19538 sylow2a 19539 dprdres 19950 subgdmdprd 19956 pgpfac1lem5 20001 subrngmre 20486 subsubrng2 20488 subrgmre 20521 subsubrg2 20523 sdrgacs 20725 lssintcl 20906 lssmre 20908 lssacs 20909 cssmre 21639 istopon 22847 isbasis2g 22883 tgval2 22891 unitg 22902 distop 22930 cldss2 22965 ntreq0 23012 discld 23024 neisspw 23042 restdis 23113 cnntr 23210 isnrm2 23293 cmpcovf 23326 fincmp 23328 cmpsublem 23334 cmpsub 23335 cmpcld 23337 cmpfi 23343 is1stc2 23377 2ndcdisj 23391 llyi 23409 nllyi 23410 nlly2i 23411 llynlly 23412 subislly 23416 restnlly 23417 llyrest 23420 llyidm 23423 nllyidm 23424 islocfin 23452 ptuni2 23511 prdstopn 23563 qtoptop2 23634 qtopuni 23637 tgqtop 23647 isfbas2 23770 isfild 23793 elfg 23806 cfinfil 23828 csdfil 23829 supfil 23830 isufil2 23843 filssufilg 23846 uffix 23856 ufildr 23866 fin1aufil 23867 alexsubb 23981 alexsubALTlem1 23982 alexsubALTlem2 23983 alexsubALT 23986 ptcmplem5 23991 cldsubg 24046 ustfn 24137 ustfilxp 24148 ustn0 24156 dscopn 24508 voliunlem2 25499 vitali 25561 dmscut 27772 madef 27817 nbuhgr 29342 nbuhgr2vtx1edgblem 29350 shex 31213 dfch2 31408 fpwrelmap 32740 xrsclat 33021 cmpcref 33935 sigaex 34195 sigaval 34196 insiga 34222 sigapisys 34240 sigaldsys 34244 measdivcst 34309 ballotlem2 34574 erdszelem7 35313 erdsze2lem2 35320 rellysconn 35367 dffr5 35870 neibastop2lem 36476 neibastop3 36478 topmeet 36480 topjoin 36481 neifg 36487 bj-snglss 37087 bj-pw0ALT 37166 bj-restpw 37209 bj-imdirval2lem 37299 bj-imdiridlem 37302 dissneqlem 37457 topdifinfeq 37467 pibt2 37534 heibor1lem 37922 psubspset 39916 psubclsetN 40108 lcdlss 41791 ismrcd1 42855 pw2f1ocnv 43194 filnm 43247 hbtlem6 43286 dfno2 43585 elmapintrab 43733 clcnvlem 43780 psshepw 43945 ssclaxsep 45139 pwclaxpow 45141 sprsymrelfo 47659 uspgrsprfo 48310 setrec2fun 49853 setrecsres 49863 |
| Copyright terms: Public domain | W3C validator |