| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > velpw | Structured version Visualization version GIF version | ||
| Description: Setvar variable membership in a power class. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| velpw | ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3448 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | 1 | elpw 4563 | 1 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 ⊆ wss 3911 𝒫 cpw 4559 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-ss 3928 df-pw 4561 |
| This theorem is referenced by: sspw 4570 pwss 4582 snsspw 4804 pwpr 4861 pwtp 4862 pwv 4864 pwuni 4905 sspwuni 5059 iinpw 5065 iunpwss 5066 ssextss 5408 pwin 5522 dffr6 5587 sorpsscmpl 7690 iunpw 7727 ordpwsuc 7770 fabexd 7893 fabexgOLD 7895 abexssex 7928 qsss 8726 fsetsspwxp 8803 mapval2 8822 pmsspw 8827 uniixp 8871 fineqvlem 9185 fival 9339 hartogslem1 9471 tskwe 9879 cfval2 10189 cflim3 10191 cflim2 10192 cfslb 10195 compsscnvlem 10299 fin1a2lem13 10341 axdc3lem 10379 fpwwe2lem1 10560 fpwwe2lem10 10569 fpwwe2lem11 10570 fpwwe 10575 canthwe 10580 axgroth5 10753 axgroth6 10757 wuncn 11099 ishashinf 14404 vdwmc 16925 ramub2 16961 ram0 16969 restsspw 17370 ismred 17539 mremre 17541 acsfn 17596 submgmacs 18620 submacs 18730 subgacs 19069 nsgacs 19070 sylow2alem2 19524 sylow2a 19525 dprdres 19936 subgdmdprd 19942 pgpfac1lem5 19987 subrngmre 20447 subsubrng2 20449 subrgmre 20482 subsubrg2 20484 sdrgacs 20686 lssintcl 20846 lssmre 20848 lssacs 20849 cssmre 21578 istopon 22775 isbasis2g 22811 tgval2 22819 unitg 22830 distop 22858 cldss2 22893 ntreq0 22940 discld 22952 neisspw 22970 restdis 23041 cnntr 23138 isnrm2 23221 cmpcovf 23254 fincmp 23256 cmpsublem 23262 cmpsub 23263 cmpcld 23265 cmpfi 23271 is1stc2 23305 2ndcdisj 23319 llyi 23337 nllyi 23338 nlly2i 23339 llynlly 23340 subislly 23344 restnlly 23345 llyrest 23348 llyidm 23351 nllyidm 23352 islocfin 23380 ptuni2 23439 prdstopn 23491 qtoptop2 23562 qtopuni 23565 tgqtop 23575 isfbas2 23698 isfild 23721 elfg 23734 cfinfil 23756 csdfil 23757 supfil 23758 isufil2 23771 filssufilg 23774 uffix 23784 ufildr 23794 fin1aufil 23795 alexsubb 23909 alexsubALTlem1 23910 alexsubALTlem2 23911 alexsubALT 23914 ptcmplem5 23919 cldsubg 23974 ustfn 24065 ustfilxp 24076 ustn0 24084 dscopn 24437 voliunlem2 25428 vitali 25490 dmscut 27699 madef 27740 nbuhgr 29246 nbuhgr2vtx1edgblem 29254 shex 31114 dfch2 31309 fpwrelmap 32629 xrsclat 32922 cmpcref 33813 sigaex 34073 sigaval 34074 insiga 34100 sigapisys 34118 sigaldsys 34122 measdivcst 34187 ballotlem2 34453 erdszelem7 35157 erdsze2lem2 35164 rellysconn 35211 dffr5 35714 neibastop2lem 36321 neibastop3 36323 topmeet 36325 topjoin 36326 neifg 36332 bj-snglss 36931 bj-pw0ALT 37010 bj-restpw 37053 bj-imdirval2lem 37143 bj-imdiridlem 37146 dissneqlem 37301 topdifinfeq 37311 pibt2 37378 heibor1lem 37776 psubspset 39711 psubclsetN 39903 lcdlss 41586 ismrcd1 42659 pw2f1ocnv 42999 filnm 43052 hbtlem6 43091 dfno2 43390 elmapintrab 43538 clcnvlem 43585 psshepw 43750 ssclaxsep 44945 pwclaxpow 44947 sprsymrelfo 47471 uspgrsprfo 48109 setrec2fun 49654 setrecsres 49664 |
| Copyright terms: Public domain | W3C validator |