Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > velpw | Structured version Visualization version GIF version |
Description: Setvar variable membership in a power class. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
velpw | ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3437 | . 2 ⊢ 𝑥 ∈ V | |
2 | 1 | elpw 4538 | 1 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2107 ⊆ wss 3888 𝒫 cpw 4534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3435 df-in 3895 df-ss 3905 df-pw 4536 |
This theorem is referenced by: elpwgOLD 4541 sspw 4547 pwss 4559 snsspw 4776 pwpr 4834 pwtp 4835 pwv 4837 pwuni 4879 sspwuni 5030 iinpw 5036 iunpwss 5037 ssextss 5370 pwin 5484 pwunssOLD 5485 dffr6 5548 sorpsscmpl 7596 iunpw 7630 ordpwsuc 7671 fabexg 7790 abexssex 7822 qsss 8576 fsetsspwxp 8650 mapval2 8669 pmsspw 8674 uniixp 8718 fineqvlem 9046 fival 9180 hartogslem1 9310 tskwe 9717 cfval2 10025 cflim3 10027 cflim2 10028 cfslb 10031 compsscnvlem 10135 fin1a2lem13 10177 axdc3lem 10215 fpwwe2lem1 10396 fpwwe2lem10 10405 fpwwe2lem11 10406 fpwwe 10411 canthwe 10416 axgroth5 10589 axgroth6 10593 wuncn 10935 ishashinf 14186 vdwmc 16688 ramub2 16724 ram0 16732 restsspw 17151 ismred 17320 mremre 17322 acsfn 17377 submacs 18474 subgacs 18798 nsgacs 18799 sylow2alem2 19232 sylow2a 19233 dprdres 19640 subgdmdprd 19646 pgpfac1lem5 19691 subrgmre 20057 subsubrg2 20060 sdrgacs 20078 lssintcl 20235 lssmre 20237 lssacs 20238 cssmre 20907 istopon 22070 isbasis2g 22107 tgval2 22115 unitg 22126 distop 22154 cldss2 22190 ntreq0 22237 discld 22249 neisspw 22267 restdis 22338 cnntr 22435 isnrm2 22518 cmpcovf 22551 fincmp 22553 cmpsublem 22559 cmpsub 22560 cmpcld 22562 cmpfi 22568 is1stc2 22602 2ndcdisj 22616 llyi 22634 nllyi 22635 nlly2i 22636 llynlly 22637 subislly 22641 restnlly 22642 llyrest 22645 llyidm 22648 nllyidm 22649 islocfin 22677 ptuni2 22736 prdstopn 22788 qtoptop2 22859 qtopuni 22862 tgqtop 22872 isfbas2 22995 isfild 23018 elfg 23031 cfinfil 23053 csdfil 23054 supfil 23055 isufil2 23068 filssufilg 23071 uffix 23081 ufildr 23091 fin1aufil 23092 alexsubb 23206 alexsubALTlem1 23207 alexsubALTlem2 23208 alexsubALT 23211 ptcmplem5 23216 cldsubg 23271 ustfn 23362 ustfilxp 23373 ustn0 23381 dscopn 23738 voliunlem2 24724 vitali 24786 nbuhgr 27719 nbuhgr2vtx1edgblem 27727 shex 29583 dfch2 29778 fpwrelmap 31077 xrsclat 31298 cmpcref 31809 sigaex 32087 sigaval 32088 insiga 32114 sigapisys 32132 sigaldsys 32136 measdivcst 32201 ballotlem2 32464 erdszelem7 33168 erdsze2lem2 33175 rellysconn 33222 dffr5 33730 dmscut 34014 madef 34049 neibastop2lem 34558 neibastop3 34560 topmeet 34562 topjoin 34563 neifg 34569 bj-snglss 35169 bj-pw0ALT 35231 bj-restpw 35272 bj-imdirval2lem 35362 bj-imdiridlem 35365 dissneqlem 35520 topdifinfeq 35530 pibt2 35597 heibor1lem 35976 psubspset 37765 psubclsetN 37957 lcdlss 39640 ismrcd1 40527 pw2f1ocnv 40866 filnm 40922 hbtlem6 40961 elmapintrab 41191 clcnvlem 41238 psshepw 41403 sprsymrelfo 44960 uspgrsprfo 45321 submgmacs 45369 setrec2fun 46409 setrecsres 46418 |
Copyright terms: Public domain | W3C validator |