![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > velpw | Structured version Visualization version GIF version |
Description: Setvar variable membership in a power class. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
velpw | ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3492 | . 2 ⊢ 𝑥 ∈ V | |
2 | 1 | elpw 4626 | 1 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2108 ⊆ wss 3976 𝒫 cpw 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-pw 4624 |
This theorem is referenced by: sspw 4633 pwss 4645 snsspw 4869 pwpr 4925 pwtp 4926 pwv 4928 pwuni 4969 sspwuni 5123 iinpw 5129 iunpwss 5130 ssextss 5473 pwin 5589 dffr6 5655 sorpsscmpl 7769 iunpw 7806 ordpwsuc 7851 fabexd 7975 fabexgOLD 7977 abexssex 8011 qsss 8836 fsetsspwxp 8911 mapval2 8930 pmsspw 8935 uniixp 8979 fineqvlem 9325 fival 9481 hartogslem1 9611 tskwe 10019 cfval2 10329 cflim3 10331 cflim2 10332 cfslb 10335 compsscnvlem 10439 fin1a2lem13 10481 axdc3lem 10519 fpwwe2lem1 10700 fpwwe2lem10 10709 fpwwe2lem11 10710 fpwwe 10715 canthwe 10720 axgroth5 10893 axgroth6 10897 wuncn 11239 ishashinf 14512 vdwmc 17025 ramub2 17061 ram0 17069 restsspw 17491 ismred 17660 mremre 17662 acsfn 17717 submgmacs 18755 submacs 18862 subgacs 19201 nsgacs 19202 sylow2alem2 19660 sylow2a 19661 dprdres 20072 subgdmdprd 20078 pgpfac1lem5 20123 subrngmre 20588 subsubrng2 20590 subrgmre 20625 subsubrg2 20627 sdrgacs 20824 lssintcl 20985 lssmre 20987 lssacs 20988 cssmre 21734 istopon 22939 isbasis2g 22976 tgval2 22984 unitg 22995 distop 23023 cldss2 23059 ntreq0 23106 discld 23118 neisspw 23136 restdis 23207 cnntr 23304 isnrm2 23387 cmpcovf 23420 fincmp 23422 cmpsublem 23428 cmpsub 23429 cmpcld 23431 cmpfi 23437 is1stc2 23471 2ndcdisj 23485 llyi 23503 nllyi 23504 nlly2i 23505 llynlly 23506 subislly 23510 restnlly 23511 llyrest 23514 llyidm 23517 nllyidm 23518 islocfin 23546 ptuni2 23605 prdstopn 23657 qtoptop2 23728 qtopuni 23731 tgqtop 23741 isfbas2 23864 isfild 23887 elfg 23900 cfinfil 23922 csdfil 23923 supfil 23924 isufil2 23937 filssufilg 23940 uffix 23950 ufildr 23960 fin1aufil 23961 alexsubb 24075 alexsubALTlem1 24076 alexsubALTlem2 24077 alexsubALT 24080 ptcmplem5 24085 cldsubg 24140 ustfn 24231 ustfilxp 24242 ustn0 24250 dscopn 24607 voliunlem2 25605 vitali 25667 dmscut 27874 madef 27913 nbuhgr 29378 nbuhgr2vtx1edgblem 29386 shex 31244 dfch2 31439 fpwrelmap 32747 xrsclat 32994 cmpcref 33796 sigaex 34074 sigaval 34075 insiga 34101 sigapisys 34119 sigaldsys 34123 measdivcst 34188 ballotlem2 34453 erdszelem7 35165 erdsze2lem2 35172 rellysconn 35219 dffr5 35716 neibastop2lem 36326 neibastop3 36328 topmeet 36330 topjoin 36331 neifg 36337 bj-snglss 36936 bj-pw0ALT 37015 bj-restpw 37058 bj-imdirval2lem 37148 bj-imdiridlem 37151 dissneqlem 37306 topdifinfeq 37316 pibt2 37383 heibor1lem 37769 psubspset 39701 psubclsetN 39893 lcdlss 41576 ismrcd1 42654 pw2f1ocnv 42994 filnm 43047 hbtlem6 43086 dfno2 43390 elmapintrab 43538 clcnvlem 43585 psshepw 43750 sprsymrelfo 47371 uspgrsprfo 47871 setrec2fun 48784 setrecsres 48794 |
Copyright terms: Public domain | W3C validator |