| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > velpw | Structured version Visualization version GIF version | ||
| Description: Setvar variable membership in a power class. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| velpw | ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3442 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | 1 | elpw 4557 | 1 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 ⊆ wss 3905 𝒫 cpw 4553 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-ss 3922 df-pw 4555 |
| This theorem is referenced by: sspw 4564 pwss 4576 snsspw 4798 pwpr 4855 pwtp 4856 pwv 4858 pwuni 4898 sspwuni 5052 iinpw 5058 iunpwss 5059 ssextss 5400 pwin 5514 dffr6 5579 sorpsscmpl 7674 iunpw 7711 ordpwsuc 7754 fabexd 7877 fabexgOLD 7879 abexssex 7912 qsss 8710 fsetsspwxp 8787 mapval2 8806 pmsspw 8811 uniixp 8855 fineqvlem 9167 fival 9321 hartogslem1 9453 tskwe 9865 cfval2 10173 cflim3 10175 cflim2 10176 cfslb 10179 compsscnvlem 10283 fin1a2lem13 10325 axdc3lem 10363 fpwwe2lem1 10544 fpwwe2lem10 10553 fpwwe2lem11 10554 fpwwe 10559 canthwe 10564 axgroth5 10737 axgroth6 10741 wuncn 11083 ishashinf 14388 vdwmc 16908 ramub2 16944 ram0 16952 restsspw 17353 ismred 17522 mremre 17524 acsfn 17583 submgmacs 18609 submacs 18719 subgacs 19058 nsgacs 19059 sylow2alem2 19515 sylow2a 19516 dprdres 19927 subgdmdprd 19933 pgpfac1lem5 19978 subrngmre 20465 subsubrng2 20467 subrgmre 20500 subsubrg2 20502 sdrgacs 20704 lssintcl 20885 lssmre 20887 lssacs 20888 cssmre 21618 istopon 22815 isbasis2g 22851 tgval2 22859 unitg 22870 distop 22898 cldss2 22933 ntreq0 22980 discld 22992 neisspw 23010 restdis 23081 cnntr 23178 isnrm2 23261 cmpcovf 23294 fincmp 23296 cmpsublem 23302 cmpsub 23303 cmpcld 23305 cmpfi 23311 is1stc2 23345 2ndcdisj 23359 llyi 23377 nllyi 23378 nlly2i 23379 llynlly 23380 subislly 23384 restnlly 23385 llyrest 23388 llyidm 23391 nllyidm 23392 islocfin 23420 ptuni2 23479 prdstopn 23531 qtoptop2 23602 qtopuni 23605 tgqtop 23615 isfbas2 23738 isfild 23761 elfg 23774 cfinfil 23796 csdfil 23797 supfil 23798 isufil2 23811 filssufilg 23814 uffix 23824 ufildr 23834 fin1aufil 23835 alexsubb 23949 alexsubALTlem1 23950 alexsubALTlem2 23951 alexsubALT 23954 ptcmplem5 23959 cldsubg 24014 ustfn 24105 ustfilxp 24116 ustn0 24124 dscopn 24477 voliunlem2 25468 vitali 25530 dmscut 27740 madef 27784 nbuhgr 29306 nbuhgr2vtx1edgblem 29314 shex 31174 dfch2 31369 fpwrelmap 32689 xrsclat 32978 cmpcref 33819 sigaex 34079 sigaval 34080 insiga 34106 sigapisys 34124 sigaldsys 34128 measdivcst 34193 ballotlem2 34459 erdszelem7 35172 erdsze2lem2 35179 rellysconn 35226 dffr5 35729 neibastop2lem 36336 neibastop3 36338 topmeet 36340 topjoin 36341 neifg 36347 bj-snglss 36946 bj-pw0ALT 37025 bj-restpw 37068 bj-imdirval2lem 37158 bj-imdiridlem 37161 dissneqlem 37316 topdifinfeq 37326 pibt2 37393 heibor1lem 37791 psubspset 39726 psubclsetN 39918 lcdlss 41601 ismrcd1 42674 pw2f1ocnv 43013 filnm 43066 hbtlem6 43105 dfno2 43404 elmapintrab 43552 clcnvlem 43599 psshepw 43764 ssclaxsep 44959 pwclaxpow 44961 sprsymrelfo 47485 uspgrsprfo 48136 setrec2fun 49681 setrecsres 49691 |
| Copyright terms: Public domain | W3C validator |