Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > velpw | Structured version Visualization version GIF version |
Description: Setvar variable membership in a power class. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
velpw | ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3426 | . 2 ⊢ 𝑥 ∈ V | |
2 | 1 | elpw 4534 | 1 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2108 ⊆ wss 3883 𝒫 cpw 4530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 |
This theorem is referenced by: elpwgOLD 4537 sspw 4543 pwss 4555 snsspw 4772 pwpr 4830 pwtp 4831 pwv 4833 pwuni 4875 sspwuni 5025 iinpw 5031 iunpwss 5032 ssextss 5363 pwin 5474 pwunssOLD 5475 dffr6 5538 sorpsscmpl 7565 iunpw 7599 ordpwsuc 7637 fabexg 7755 abexssex 7786 qsss 8525 fsetsspwxp 8599 mapval2 8618 pmsspw 8623 uniixp 8667 fineqvlem 8966 fival 9101 hartogslem1 9231 tskwe 9639 cfval2 9947 cflim3 9949 cflim2 9950 cfslb 9953 compsscnvlem 10057 fin1a2lem13 10099 axdc3lem 10137 fpwwe2lem1 10318 fpwwe2lem10 10327 fpwwe2lem11 10328 fpwwe 10333 canthwe 10338 axgroth5 10511 axgroth6 10515 wuncn 10857 ishashinf 14105 vdwmc 16607 ramub2 16643 ram0 16651 restsspw 17059 ismred 17228 mremre 17230 acsfn 17285 submacs 18380 subgacs 18704 nsgacs 18705 sylow2alem2 19138 sylow2a 19139 dprdres 19546 subgdmdprd 19552 pgpfac1lem5 19597 subrgmre 19963 subsubrg2 19966 sdrgacs 19984 lssintcl 20141 lssmre 20143 lssacs 20144 cssmre 20810 istopon 21969 isbasis2g 22006 tgval2 22014 unitg 22025 distop 22053 cldss2 22089 ntreq0 22136 discld 22148 neisspw 22166 restdis 22237 cnntr 22334 isnrm2 22417 cmpcovf 22450 fincmp 22452 cmpsublem 22458 cmpsub 22459 cmpcld 22461 cmpfi 22467 is1stc2 22501 2ndcdisj 22515 llyi 22533 nllyi 22534 nlly2i 22535 llynlly 22536 subislly 22540 restnlly 22541 llyrest 22544 llyidm 22547 nllyidm 22548 islocfin 22576 ptuni2 22635 prdstopn 22687 qtoptop2 22758 qtopuni 22761 tgqtop 22771 isfbas2 22894 isfild 22917 elfg 22930 cfinfil 22952 csdfil 22953 supfil 22954 isufil2 22967 filssufilg 22970 uffix 22980 ufildr 22990 fin1aufil 22991 alexsubb 23105 alexsubALTlem1 23106 alexsubALTlem2 23107 alexsubALT 23110 ptcmplem5 23115 cldsubg 23170 ustfn 23261 ustfilxp 23272 ustn0 23280 dscopn 23635 voliunlem2 24620 vitali 24682 nbuhgr 27613 nbuhgr2vtx1edgblem 27621 shex 29475 dfch2 29670 fpwrelmap 30970 xrsclat 31191 cmpcref 31702 sigaex 31978 sigaval 31979 insiga 32005 sigapisys 32023 sigaldsys 32027 measdivcst 32092 ballotlem2 32355 erdszelem7 33059 erdsze2lem2 33066 rellysconn 33113 dffr5 33627 dmscut 33932 madef 33967 neibastop2lem 34476 neibastop3 34478 topmeet 34480 topjoin 34481 neifg 34487 bj-snglss 35087 bj-pw0ALT 35149 bj-restpw 35190 bj-imdirval2lem 35280 bj-imdiridlem 35283 dissneqlem 35438 topdifinfeq 35448 pibt2 35515 heibor1lem 35894 psubspset 37685 psubclsetN 37877 lcdlss 39560 ismrcd1 40436 pw2f1ocnv 40775 filnm 40831 hbtlem6 40870 elmapintrab 41073 clcnvlem 41120 psshepw 41285 sprsymrelfo 44837 uspgrsprfo 45198 submgmacs 45246 setrec2fun 46284 setrecsres 46293 |
Copyright terms: Public domain | W3C validator |