| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > velpw | Structured version Visualization version GIF version | ||
| Description: Setvar variable membership in a power class. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| velpw | ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3451 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | 1 | elpw 4567 | 1 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 ⊆ wss 3914 𝒫 cpw 4563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-pw 4565 |
| This theorem is referenced by: sspw 4574 pwss 4586 snsspw 4808 pwpr 4865 pwtp 4866 pwv 4868 pwuni 4909 sspwuni 5064 iinpw 5070 iunpwss 5071 ssextss 5413 pwin 5529 dffr6 5594 sorpsscmpl 7710 iunpw 7747 ordpwsuc 7790 fabexd 7913 fabexgOLD 7915 abexssex 7949 qsss 8749 fsetsspwxp 8826 mapval2 8845 pmsspw 8850 uniixp 8894 fineqvlem 9209 fival 9363 hartogslem1 9495 tskwe 9903 cfval2 10213 cflim3 10215 cflim2 10216 cfslb 10219 compsscnvlem 10323 fin1a2lem13 10365 axdc3lem 10403 fpwwe2lem1 10584 fpwwe2lem10 10593 fpwwe2lem11 10594 fpwwe 10599 canthwe 10604 axgroth5 10777 axgroth6 10781 wuncn 11123 ishashinf 14428 vdwmc 16949 ramub2 16985 ram0 16993 restsspw 17394 ismred 17563 mremre 17565 acsfn 17620 submgmacs 18644 submacs 18754 subgacs 19093 nsgacs 19094 sylow2alem2 19548 sylow2a 19549 dprdres 19960 subgdmdprd 19966 pgpfac1lem5 20011 subrngmre 20471 subsubrng2 20473 subrgmre 20506 subsubrg2 20508 sdrgacs 20710 lssintcl 20870 lssmre 20872 lssacs 20873 cssmre 21602 istopon 22799 isbasis2g 22835 tgval2 22843 unitg 22854 distop 22882 cldss2 22917 ntreq0 22964 discld 22976 neisspw 22994 restdis 23065 cnntr 23162 isnrm2 23245 cmpcovf 23278 fincmp 23280 cmpsublem 23286 cmpsub 23287 cmpcld 23289 cmpfi 23295 is1stc2 23329 2ndcdisj 23343 llyi 23361 nllyi 23362 nlly2i 23363 llynlly 23364 subislly 23368 restnlly 23369 llyrest 23372 llyidm 23375 nllyidm 23376 islocfin 23404 ptuni2 23463 prdstopn 23515 qtoptop2 23586 qtopuni 23589 tgqtop 23599 isfbas2 23722 isfild 23745 elfg 23758 cfinfil 23780 csdfil 23781 supfil 23782 isufil2 23795 filssufilg 23798 uffix 23808 ufildr 23818 fin1aufil 23819 alexsubb 23933 alexsubALTlem1 23934 alexsubALTlem2 23935 alexsubALT 23938 ptcmplem5 23943 cldsubg 23998 ustfn 24089 ustfilxp 24100 ustn0 24108 dscopn 24461 voliunlem2 25452 vitali 25514 dmscut 27723 madef 27764 nbuhgr 29270 nbuhgr2vtx1edgblem 29278 shex 31141 dfch2 31336 fpwrelmap 32656 xrsclat 32949 cmpcref 33840 sigaex 34100 sigaval 34101 insiga 34127 sigapisys 34145 sigaldsys 34149 measdivcst 34214 ballotlem2 34480 erdszelem7 35184 erdsze2lem2 35191 rellysconn 35238 dffr5 35741 neibastop2lem 36348 neibastop3 36350 topmeet 36352 topjoin 36353 neifg 36359 bj-snglss 36958 bj-pw0ALT 37037 bj-restpw 37080 bj-imdirval2lem 37170 bj-imdiridlem 37173 dissneqlem 37328 topdifinfeq 37338 pibt2 37405 heibor1lem 37803 psubspset 39738 psubclsetN 39930 lcdlss 41613 ismrcd1 42686 pw2f1ocnv 43026 filnm 43079 hbtlem6 43118 dfno2 43417 elmapintrab 43565 clcnvlem 43612 psshepw 43777 ssclaxsep 44972 pwclaxpow 44974 sprsymrelfo 47498 uspgrsprfo 48136 setrec2fun 49681 setrecsres 49691 |
| Copyright terms: Public domain | W3C validator |