| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > velpw | Structured version Visualization version GIF version | ||
| Description: Setvar variable membership in a power class. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| velpw | ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | 1 | elpw 4554 | 1 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2111 ⊆ wss 3902 𝒫 cpw 4550 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3919 df-pw 4552 |
| This theorem is referenced by: sspw 4561 pwss 4573 snsspw 4796 pwpr 4853 pwtp 4854 pwv 4856 pwuni 4896 sspwuni 5048 iinpw 5054 iunpwss 5055 ssextss 5394 pwin 5507 dffr6 5572 sorpsscmpl 7667 iunpw 7704 ordpwsuc 7745 fabexd 7867 fabexgOLD 7869 abexssex 7902 qsss 8700 fsetsspwxp 8777 mapval2 8796 pmsspw 8801 uniixp 8845 fineqvlem 9150 fival 9296 hartogslem1 9428 tskwe 9843 cfval2 10151 cflim3 10153 cflim2 10154 cfslb 10157 compsscnvlem 10261 fin1a2lem13 10303 axdc3lem 10341 fpwwe2lem1 10522 fpwwe2lem10 10531 fpwwe2lem11 10532 fpwwe 10537 canthwe 10542 axgroth5 10715 axgroth6 10719 wuncn 11061 ishashinf 14370 vdwmc 16890 ramub2 16926 ram0 16934 restsspw 17335 ismred 17504 mremre 17506 acsfn 17565 submgmacs 18625 submacs 18735 subgacs 19074 nsgacs 19075 sylow2alem2 19531 sylow2a 19532 dprdres 19943 subgdmdprd 19949 pgpfac1lem5 19994 subrngmre 20478 subsubrng2 20480 subrgmre 20513 subsubrg2 20515 sdrgacs 20717 lssintcl 20898 lssmre 20900 lssacs 20901 cssmre 21631 istopon 22828 isbasis2g 22864 tgval2 22872 unitg 22883 distop 22911 cldss2 22946 ntreq0 22993 discld 23005 neisspw 23023 restdis 23094 cnntr 23191 isnrm2 23274 cmpcovf 23307 fincmp 23309 cmpsublem 23315 cmpsub 23316 cmpcld 23318 cmpfi 23324 is1stc2 23358 2ndcdisj 23372 llyi 23390 nllyi 23391 nlly2i 23392 llynlly 23393 subislly 23397 restnlly 23398 llyrest 23401 llyidm 23404 nllyidm 23405 islocfin 23433 ptuni2 23492 prdstopn 23544 qtoptop2 23615 qtopuni 23618 tgqtop 23628 isfbas2 23751 isfild 23774 elfg 23787 cfinfil 23809 csdfil 23810 supfil 23811 isufil2 23824 filssufilg 23827 uffix 23837 ufildr 23847 fin1aufil 23848 alexsubb 23962 alexsubALTlem1 23963 alexsubALTlem2 23964 alexsubALT 23967 ptcmplem5 23972 cldsubg 24027 ustfn 24118 ustfilxp 24129 ustn0 24137 dscopn 24489 voliunlem2 25480 vitali 25542 dmscut 27753 madef 27798 nbuhgr 29322 nbuhgr2vtx1edgblem 29330 shex 31190 dfch2 31385 fpwrelmap 32714 xrsclat 32990 cmpcref 33861 sigaex 34121 sigaval 34122 insiga 34148 sigapisys 34166 sigaldsys 34170 measdivcst 34235 ballotlem2 34500 erdszelem7 35239 erdsze2lem2 35246 rellysconn 35293 dffr5 35796 neibastop2lem 36400 neibastop3 36402 topmeet 36404 topjoin 36405 neifg 36411 bj-snglss 37010 bj-pw0ALT 37089 bj-restpw 37132 bj-imdirval2lem 37222 bj-imdiridlem 37225 dissneqlem 37380 topdifinfeq 37390 pibt2 37457 heibor1lem 37855 psubspset 39789 psubclsetN 39981 lcdlss 41664 ismrcd1 42737 pw2f1ocnv 43076 filnm 43129 hbtlem6 43168 dfno2 43467 elmapintrab 43615 clcnvlem 43662 psshepw 43827 ssclaxsep 45021 pwclaxpow 45023 sprsymrelfo 47534 uspgrsprfo 48185 setrec2fun 49730 setrecsres 49740 |
| Copyright terms: Public domain | W3C validator |