| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > velpw | Structured version Visualization version GIF version | ||
| Description: Setvar variable membership in a power class. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| velpw | ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3461 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | 1 | elpw 4577 | 1 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2107 ⊆ wss 3924 𝒫 cpw 4573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3459 df-ss 3941 df-pw 4575 |
| This theorem is referenced by: sspw 4584 pwss 4596 snsspw 4817 pwpr 4874 pwtp 4875 pwv 4877 pwuni 4918 sspwuni 5073 iinpw 5079 iunpwss 5080 ssextss 5425 pwin 5541 dffr6 5606 sorpsscmpl 7722 iunpw 7759 ordpwsuc 7803 fabexd 7927 fabexgOLD 7929 abexssex 7963 qsss 8786 fsetsspwxp 8861 mapval2 8880 pmsspw 8885 uniixp 8929 fineqvlem 9264 fival 9418 hartogslem1 9548 tskwe 9956 cfval2 10266 cflim3 10268 cflim2 10269 cfslb 10272 compsscnvlem 10376 fin1a2lem13 10418 axdc3lem 10456 fpwwe2lem1 10637 fpwwe2lem10 10646 fpwwe2lem11 10647 fpwwe 10652 canthwe 10657 axgroth5 10830 axgroth6 10834 wuncn 11176 ishashinf 14469 vdwmc 16983 ramub2 17019 ram0 17027 restsspw 17430 ismred 17599 mremre 17601 acsfn 17656 submgmacs 18680 submacs 18790 subgacs 19129 nsgacs 19130 sylow2alem2 19584 sylow2a 19585 dprdres 19996 subgdmdprd 20002 pgpfac1lem5 20047 subrngmre 20507 subsubrng2 20509 subrgmre 20542 subsubrg2 20544 sdrgacs 20746 lssintcl 20906 lssmre 20908 lssacs 20909 cssmre 21638 istopon 22835 isbasis2g 22871 tgval2 22879 unitg 22890 distop 22918 cldss2 22953 ntreq0 23000 discld 23012 neisspw 23030 restdis 23101 cnntr 23198 isnrm2 23281 cmpcovf 23314 fincmp 23316 cmpsublem 23322 cmpsub 23323 cmpcld 23325 cmpfi 23331 is1stc2 23365 2ndcdisj 23379 llyi 23397 nllyi 23398 nlly2i 23399 llynlly 23400 subislly 23404 restnlly 23405 llyrest 23408 llyidm 23411 nllyidm 23412 islocfin 23440 ptuni2 23499 prdstopn 23551 qtoptop2 23622 qtopuni 23625 tgqtop 23635 isfbas2 23758 isfild 23781 elfg 23794 cfinfil 23816 csdfil 23817 supfil 23818 isufil2 23831 filssufilg 23834 uffix 23844 ufildr 23854 fin1aufil 23855 alexsubb 23969 alexsubALTlem1 23970 alexsubALTlem2 23971 alexsubALT 23974 ptcmplem5 23979 cldsubg 24034 ustfn 24125 ustfilxp 24136 ustn0 24144 dscopn 24497 voliunlem2 25489 vitali 25551 dmscut 27759 madef 27798 nbuhgr 29254 nbuhgr2vtx1edgblem 29262 shex 31125 dfch2 31320 fpwrelmap 32645 xrsclat 32922 cmpcref 33789 sigaex 34049 sigaval 34050 insiga 34076 sigapisys 34094 sigaldsys 34098 measdivcst 34163 ballotlem2 34429 erdszelem7 35140 erdsze2lem2 35147 rellysconn 35194 dffr5 35692 neibastop2lem 36299 neibastop3 36301 topmeet 36303 topjoin 36304 neifg 36310 bj-snglss 36909 bj-pw0ALT 36988 bj-restpw 37031 bj-imdirval2lem 37121 bj-imdiridlem 37124 dissneqlem 37279 topdifinfeq 37289 pibt2 37356 heibor1lem 37754 psubspset 39684 psubclsetN 39876 lcdlss 41559 ismrcd1 42646 pw2f1ocnv 42986 filnm 43039 hbtlem6 43078 dfno2 43377 elmapintrab 43525 clcnvlem 43572 psshepw 43737 ssclaxsep 44934 pwclaxpow 44936 sprsymrelfo 47429 uspgrsprfo 48009 setrec2fun 49276 setrecsres 49286 |
| Copyright terms: Public domain | W3C validator |