| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > velpw | Structured version Visualization version GIF version | ||
| Description: Setvar variable membership in a power class. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| velpw | ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3463 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | 1 | elpw 4579 | 1 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2108 ⊆ wss 3926 𝒫 cpw 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-ss 3943 df-pw 4577 |
| This theorem is referenced by: sspw 4586 pwss 4598 snsspw 4820 pwpr 4877 pwtp 4878 pwv 4880 pwuni 4921 sspwuni 5076 iinpw 5082 iunpwss 5083 ssextss 5428 pwin 5544 dffr6 5609 sorpsscmpl 7726 iunpw 7763 ordpwsuc 7807 fabexd 7931 fabexgOLD 7933 abexssex 7967 qsss 8790 fsetsspwxp 8865 mapval2 8884 pmsspw 8889 uniixp 8933 fineqvlem 9268 fival 9422 hartogslem1 9554 tskwe 9962 cfval2 10272 cflim3 10274 cflim2 10275 cfslb 10278 compsscnvlem 10382 fin1a2lem13 10424 axdc3lem 10462 fpwwe2lem1 10643 fpwwe2lem10 10652 fpwwe2lem11 10653 fpwwe 10658 canthwe 10663 axgroth5 10836 axgroth6 10840 wuncn 11182 ishashinf 14479 vdwmc 16996 ramub2 17032 ram0 17040 restsspw 17443 ismred 17612 mremre 17614 acsfn 17669 submgmacs 18693 submacs 18803 subgacs 19142 nsgacs 19143 sylow2alem2 19597 sylow2a 19598 dprdres 20009 subgdmdprd 20015 pgpfac1lem5 20060 subrngmre 20520 subsubrng2 20522 subrgmre 20555 subsubrg2 20557 sdrgacs 20759 lssintcl 20919 lssmre 20921 lssacs 20922 cssmre 21651 istopon 22848 isbasis2g 22884 tgval2 22892 unitg 22903 distop 22931 cldss2 22966 ntreq0 23013 discld 23025 neisspw 23043 restdis 23114 cnntr 23211 isnrm2 23294 cmpcovf 23327 fincmp 23329 cmpsublem 23335 cmpsub 23336 cmpcld 23338 cmpfi 23344 is1stc2 23378 2ndcdisj 23392 llyi 23410 nllyi 23411 nlly2i 23412 llynlly 23413 subislly 23417 restnlly 23418 llyrest 23421 llyidm 23424 nllyidm 23425 islocfin 23453 ptuni2 23512 prdstopn 23564 qtoptop2 23635 qtopuni 23638 tgqtop 23648 isfbas2 23771 isfild 23794 elfg 23807 cfinfil 23829 csdfil 23830 supfil 23831 isufil2 23844 filssufilg 23847 uffix 23857 ufildr 23867 fin1aufil 23868 alexsubb 23982 alexsubALTlem1 23983 alexsubALTlem2 23984 alexsubALT 23987 ptcmplem5 23992 cldsubg 24047 ustfn 24138 ustfilxp 24149 ustn0 24157 dscopn 24510 voliunlem2 25502 vitali 25564 dmscut 27773 madef 27812 nbuhgr 29268 nbuhgr2vtx1edgblem 29276 shex 31139 dfch2 31334 fpwrelmap 32656 xrsclat 32949 cmpcref 33827 sigaex 34087 sigaval 34088 insiga 34114 sigapisys 34132 sigaldsys 34136 measdivcst 34201 ballotlem2 34467 erdszelem7 35165 erdsze2lem2 35172 rellysconn 35219 dffr5 35717 neibastop2lem 36324 neibastop3 36326 topmeet 36328 topjoin 36329 neifg 36335 bj-snglss 36934 bj-pw0ALT 37013 bj-restpw 37056 bj-imdirval2lem 37146 bj-imdiridlem 37149 dissneqlem 37304 topdifinfeq 37314 pibt2 37381 heibor1lem 37779 psubspset 39709 psubclsetN 39901 lcdlss 41584 ismrcd1 42668 pw2f1ocnv 43008 filnm 43061 hbtlem6 43100 dfno2 43399 elmapintrab 43547 clcnvlem 43594 psshepw 43759 ssclaxsep 44955 pwclaxpow 44957 sprsymrelfo 47459 uspgrsprfo 48071 setrec2fun 49504 setrecsres 49514 |
| Copyright terms: Public domain | W3C validator |