![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > velpw | Structured version Visualization version GIF version |
Description: Setvar variable membership in a power class. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
velpw | ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3477 | . 2 ⊢ 𝑥 ∈ V | |
2 | 1 | elpw 4606 | 1 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2105 ⊆ wss 3948 𝒫 cpw 4602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-in 3955 df-ss 3965 df-pw 4604 |
This theorem is referenced by: sspw 4613 pwss 4625 snsspw 4845 pwpr 4902 pwtp 4903 pwv 4905 pwuni 4949 sspwuni 5103 iinpw 5109 iunpwss 5110 ssextss 5453 pwin 5570 dffr6 5634 sorpsscmpl 7728 iunpw 7762 ordpwsuc 7807 fabexg 7929 abexssex 7961 qsss 8778 fsetsspwxp 8853 mapval2 8872 pmsspw 8877 uniixp 8921 fineqvlem 9268 fival 9413 hartogslem1 9543 tskwe 9951 cfval2 10261 cflim3 10263 cflim2 10264 cfslb 10267 compsscnvlem 10371 fin1a2lem13 10413 axdc3lem 10451 fpwwe2lem1 10632 fpwwe2lem10 10641 fpwwe2lem11 10642 fpwwe 10647 canthwe 10652 axgroth5 10825 axgroth6 10829 wuncn 11171 ishashinf 14431 vdwmc 16918 ramub2 16954 ram0 16962 restsspw 17384 ismred 17553 mremre 17555 acsfn 17610 submgmacs 18648 submacs 18750 subgacs 19084 nsgacs 19085 sylow2alem2 19534 sylow2a 19535 dprdres 19946 subgdmdprd 19952 pgpfac1lem5 19997 subrngmre 20458 subsubrng2 20460 subrgmre 20495 subsubrg2 20497 sdrgacs 20648 lssintcl 20807 lssmre 20809 lssacs 20810 cssmre 21556 istopon 22734 isbasis2g 22771 tgval2 22779 unitg 22790 distop 22818 cldss2 22854 ntreq0 22901 discld 22913 neisspw 22931 restdis 23002 cnntr 23099 isnrm2 23182 cmpcovf 23215 fincmp 23217 cmpsublem 23223 cmpsub 23224 cmpcld 23226 cmpfi 23232 is1stc2 23266 2ndcdisj 23280 llyi 23298 nllyi 23299 nlly2i 23300 llynlly 23301 subislly 23305 restnlly 23306 llyrest 23309 llyidm 23312 nllyidm 23313 islocfin 23341 ptuni2 23400 prdstopn 23452 qtoptop2 23523 qtopuni 23526 tgqtop 23536 isfbas2 23659 isfild 23682 elfg 23695 cfinfil 23717 csdfil 23718 supfil 23719 isufil2 23732 filssufilg 23735 uffix 23745 ufildr 23755 fin1aufil 23756 alexsubb 23870 alexsubALTlem1 23871 alexsubALTlem2 23872 alexsubALT 23875 ptcmplem5 23880 cldsubg 23935 ustfn 24026 ustfilxp 24037 ustn0 24045 dscopn 24402 voliunlem2 25400 vitali 25462 dmscut 27657 madef 27696 nbuhgr 29033 nbuhgr2vtx1edgblem 29041 shex 30898 dfch2 31093 fpwrelmap 32391 xrsclat 32614 cmpcref 33294 sigaex 33572 sigaval 33573 insiga 33599 sigapisys 33617 sigaldsys 33621 measdivcst 33686 ballotlem2 33951 erdszelem7 34652 erdsze2lem2 34659 rellysconn 34706 dffr5 35194 neibastop2lem 35709 neibastop3 35711 topmeet 35713 topjoin 35714 neifg 35720 bj-snglss 36315 bj-pw0ALT 36394 bj-restpw 36437 bj-imdirval2lem 36527 bj-imdiridlem 36530 dissneqlem 36685 topdifinfeq 36695 pibt2 36762 heibor1lem 37141 psubspset 39079 psubclsetN 39271 lcdlss 40954 ismrcd1 41899 pw2f1ocnv 42239 filnm 42295 hbtlem6 42334 dfno2 42642 elmapintrab 42790 clcnvlem 42837 psshepw 43002 sprsymrelfo 46624 uspgrsprfo 46985 setrec2fun 47899 setrecsres 47909 |
Copyright terms: Public domain | W3C validator |