![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > velpw | Structured version Visualization version GIF version |
Description: Setvar variable membership in a power class. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
velpw | ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3481 | . 2 ⊢ 𝑥 ∈ V | |
2 | 1 | elpw 4608 | 1 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2105 ⊆ wss 3962 𝒫 cpw 4604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-ss 3979 df-pw 4606 |
This theorem is referenced by: sspw 4615 pwss 4627 snsspw 4848 pwpr 4905 pwtp 4906 pwv 4908 pwuni 4949 sspwuni 5104 iinpw 5110 iunpwss 5111 ssextss 5463 pwin 5578 dffr6 5643 sorpsscmpl 7752 iunpw 7789 ordpwsuc 7834 fabexd 7957 fabexgOLD 7959 abexssex 7993 qsss 8816 fsetsspwxp 8891 mapval2 8910 pmsspw 8915 uniixp 8959 fineqvlem 9295 fival 9449 hartogslem1 9579 tskwe 9987 cfval2 10297 cflim3 10299 cflim2 10300 cfslb 10303 compsscnvlem 10407 fin1a2lem13 10449 axdc3lem 10487 fpwwe2lem1 10668 fpwwe2lem10 10677 fpwwe2lem11 10678 fpwwe 10683 canthwe 10688 axgroth5 10861 axgroth6 10865 wuncn 11207 ishashinf 14498 vdwmc 17011 ramub2 17047 ram0 17055 restsspw 17477 ismred 17646 mremre 17648 acsfn 17703 submgmacs 18742 submacs 18852 subgacs 19191 nsgacs 19192 sylow2alem2 19650 sylow2a 19651 dprdres 20062 subgdmdprd 20068 pgpfac1lem5 20113 subrngmre 20578 subsubrng2 20580 subrgmre 20613 subsubrg2 20615 sdrgacs 20818 lssintcl 20979 lssmre 20981 lssacs 20982 cssmre 21728 istopon 22933 isbasis2g 22970 tgval2 22978 unitg 22989 distop 23017 cldss2 23053 ntreq0 23100 discld 23112 neisspw 23130 restdis 23201 cnntr 23298 isnrm2 23381 cmpcovf 23414 fincmp 23416 cmpsublem 23422 cmpsub 23423 cmpcld 23425 cmpfi 23431 is1stc2 23465 2ndcdisj 23479 llyi 23497 nllyi 23498 nlly2i 23499 llynlly 23500 subislly 23504 restnlly 23505 llyrest 23508 llyidm 23511 nllyidm 23512 islocfin 23540 ptuni2 23599 prdstopn 23651 qtoptop2 23722 qtopuni 23725 tgqtop 23735 isfbas2 23858 isfild 23881 elfg 23894 cfinfil 23916 csdfil 23917 supfil 23918 isufil2 23931 filssufilg 23934 uffix 23944 ufildr 23954 fin1aufil 23955 alexsubb 24069 alexsubALTlem1 24070 alexsubALTlem2 24071 alexsubALT 24074 ptcmplem5 24079 cldsubg 24134 ustfn 24225 ustfilxp 24236 ustn0 24244 dscopn 24601 voliunlem2 25599 vitali 25661 dmscut 27870 madef 27909 nbuhgr 29374 nbuhgr2vtx1edgblem 29382 shex 31240 dfch2 31435 fpwrelmap 32750 xrsclat 32995 cmpcref 33810 sigaex 34090 sigaval 34091 insiga 34117 sigapisys 34135 sigaldsys 34139 measdivcst 34204 ballotlem2 34469 erdszelem7 35181 erdsze2lem2 35188 rellysconn 35235 dffr5 35733 neibastop2lem 36342 neibastop3 36344 topmeet 36346 topjoin 36347 neifg 36353 bj-snglss 36952 bj-pw0ALT 37031 bj-restpw 37074 bj-imdirval2lem 37164 bj-imdiridlem 37167 dissneqlem 37322 topdifinfeq 37332 pibt2 37399 heibor1lem 37795 psubspset 39726 psubclsetN 39918 lcdlss 41601 ismrcd1 42685 pw2f1ocnv 43025 filnm 43078 hbtlem6 43117 dfno2 43417 elmapintrab 43565 clcnvlem 43612 psshepw 43777 ssclaxsep 44946 sprsymrelfo 47421 uspgrsprfo 47991 setrec2fun 48922 setrecsres 48932 |
Copyright terms: Public domain | W3C validator |