| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > velpw | Structured version Visualization version GIF version | ||
| Description: Setvar variable membership in a power class. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| velpw | ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3454 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | 1 | elpw 4570 | 1 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 ⊆ wss 3917 𝒫 cpw 4566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-pw 4568 |
| This theorem is referenced by: sspw 4577 pwss 4589 snsspw 4811 pwpr 4868 pwtp 4869 pwv 4871 pwuni 4912 sspwuni 5067 iinpw 5073 iunpwss 5074 ssextss 5416 pwin 5532 dffr6 5597 sorpsscmpl 7713 iunpw 7750 ordpwsuc 7793 fabexd 7916 fabexgOLD 7918 abexssex 7952 qsss 8752 fsetsspwxp 8829 mapval2 8848 pmsspw 8853 uniixp 8897 fineqvlem 9216 fival 9370 hartogslem1 9502 tskwe 9910 cfval2 10220 cflim3 10222 cflim2 10223 cfslb 10226 compsscnvlem 10330 fin1a2lem13 10372 axdc3lem 10410 fpwwe2lem1 10591 fpwwe2lem10 10600 fpwwe2lem11 10601 fpwwe 10606 canthwe 10611 axgroth5 10784 axgroth6 10788 wuncn 11130 ishashinf 14435 vdwmc 16956 ramub2 16992 ram0 17000 restsspw 17401 ismred 17570 mremre 17572 acsfn 17627 submgmacs 18651 submacs 18761 subgacs 19100 nsgacs 19101 sylow2alem2 19555 sylow2a 19556 dprdres 19967 subgdmdprd 19973 pgpfac1lem5 20018 subrngmre 20478 subsubrng2 20480 subrgmre 20513 subsubrg2 20515 sdrgacs 20717 lssintcl 20877 lssmre 20879 lssacs 20880 cssmre 21609 istopon 22806 isbasis2g 22842 tgval2 22850 unitg 22861 distop 22889 cldss2 22924 ntreq0 22971 discld 22983 neisspw 23001 restdis 23072 cnntr 23169 isnrm2 23252 cmpcovf 23285 fincmp 23287 cmpsublem 23293 cmpsub 23294 cmpcld 23296 cmpfi 23302 is1stc2 23336 2ndcdisj 23350 llyi 23368 nllyi 23369 nlly2i 23370 llynlly 23371 subislly 23375 restnlly 23376 llyrest 23379 llyidm 23382 nllyidm 23383 islocfin 23411 ptuni2 23470 prdstopn 23522 qtoptop2 23593 qtopuni 23596 tgqtop 23606 isfbas2 23729 isfild 23752 elfg 23765 cfinfil 23787 csdfil 23788 supfil 23789 isufil2 23802 filssufilg 23805 uffix 23815 ufildr 23825 fin1aufil 23826 alexsubb 23940 alexsubALTlem1 23941 alexsubALTlem2 23942 alexsubALT 23945 ptcmplem5 23950 cldsubg 24005 ustfn 24096 ustfilxp 24107 ustn0 24115 dscopn 24468 voliunlem2 25459 vitali 25521 dmscut 27730 madef 27771 nbuhgr 29277 nbuhgr2vtx1edgblem 29285 shex 31148 dfch2 31343 fpwrelmap 32663 xrsclat 32956 cmpcref 33847 sigaex 34107 sigaval 34108 insiga 34134 sigapisys 34152 sigaldsys 34156 measdivcst 34221 ballotlem2 34487 erdszelem7 35191 erdsze2lem2 35198 rellysconn 35245 dffr5 35748 neibastop2lem 36355 neibastop3 36357 topmeet 36359 topjoin 36360 neifg 36366 bj-snglss 36965 bj-pw0ALT 37044 bj-restpw 37087 bj-imdirval2lem 37177 bj-imdiridlem 37180 dissneqlem 37335 topdifinfeq 37345 pibt2 37412 heibor1lem 37810 psubspset 39745 psubclsetN 39937 lcdlss 41620 ismrcd1 42693 pw2f1ocnv 43033 filnm 43086 hbtlem6 43125 dfno2 43424 elmapintrab 43572 clcnvlem 43619 psshepw 43784 ssclaxsep 44979 pwclaxpow 44981 sprsymrelfo 47502 uspgrsprfo 48140 setrec2fun 49685 setrecsres 49695 |
| Copyright terms: Public domain | W3C validator |