![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpwd | Structured version Visualization version GIF version |
Description: Membership in a power class. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
elpwd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
elpwd.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
elpwd | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwd.2 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | elpwd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | elpwg 4625 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
5 | 1, 4 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 ⊆ wss 3976 𝒫 cpw 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ss 3993 df-pw 4624 |
This theorem is referenced by: sselpwd 5346 pwel 5399 frd 5656 f1opw2 7705 pwuncl 7805 naddunif 8749 f1opwfi 9426 ackbij1lem6 10293 ackbij1lem11 10298 mreacs 17716 sylow3lem3 19671 sylow3lem6 19674 cmpcov 23418 tgqtop 23741 filss 23882 scutval 27863 madecut 27939 cofcut1 27972 cutlt 27984 elons2d 28300 fnpreimac 32689 pcmplfin 33806 rspectopn 33813 zarclsint 33818 zarcmplem 33827 indval 33977 reprval 34587 bj-sselpwuni 37016 bj-discrmoore 37077 dmvolss 45906 sge0xaddlem1 46354 meadjuni 46378 ovnval2b 46473 ovnsubadd2lem 46566 vonvolmbllem 46581 vonvolmbl 46582 smfresal 46709 smfpimbor1lem1 46719 sprsymrelfvlem 47364 isubgruhgr 47738 grimuhgr 47762 lindslinindsimp1 48186 lindslinindimp2lem4 48190 lincresunit3 48210 iscnrm3llem1 48629 |
Copyright terms: Public domain | W3C validator |