MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpwd Structured version   Visualization version   GIF version

Theorem elpwd 4468
Description: Membership in a power class. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
elpwd.1 (𝜑𝐴𝑉)
elpwd.2 (𝜑𝐴𝐵)
Assertion
Ref Expression
elpwd (𝜑𝐴 ∈ 𝒫 𝐵)

Proof of Theorem elpwd
StepHypRef Expression
1 elpwd.2 . 2 (𝜑𝐴𝐵)
2 elpwd.1 . . 3 (𝜑𝐴𝑉)
3 elpwg 4467 . . 3 (𝐴𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
42, 3syl 17 . 2 (𝜑 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
51, 4mpbird 258 1 (𝜑𝐴 ∈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wcel 2083  wss 3865  𝒫 cpw 4459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-ext 2771
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-v 3442  df-in 3872  df-ss 3880  df-pw 4461
This theorem is referenced by:  sselpwd  5128  pwel  5243  f1opw2  7265  f1opwfi  8681  ackbij1lem6  9500  ackbij1lem11  9505  mreacs  16762  sylow3lem3  18488  sylow3lem6  18491  cmpcov  21685  tgqtop  22008  filss  22149  fnpreimac  30102  pcmplfin  30737  indval  30885  reprval  31494  scutval  32876  bj-discrmoore  34024  dmvolss  41834  sge0xaddlem1  42279  meadjuni  42303  ovnval2b  42398  ovnsubadd2lem  42491  vonvolmbllem  42506  vonvolmbl  42507  smfresal  42627  smfpimbor1lem1  42637  sprsymrelfvlem  43156  lindslinindsimp1  44014  lindslinindimp2lem4  44018  lincresunit3  44038
  Copyright terms: Public domain W3C validator