| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpwd | Structured version Visualization version GIF version | ||
| Description: Membership in a power class. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| elpwd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| elpwd.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| elpwd | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwd.2 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | elpwd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | elpwg 4578 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| 5 | 1, 4 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 ⊆ wss 3926 𝒫 cpw 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ss 3943 df-pw 4577 |
| This theorem is referenced by: sselpwd 5298 pwel 5351 frd 5610 f1opw2 7662 pwuncl 7764 naddunif 8705 f1opwfi 9368 ackbij1lem6 10238 ackbij1lem11 10243 mreacs 17670 sylow3lem3 19610 sylow3lem6 19613 cmpcov 23327 tgqtop 23650 filss 23791 scutval 27764 madecut 27846 cofcut1 27880 cutlt 27892 elons2d 28212 onscutlt 28217 bdayon 28225 fnpreimac 32649 indval 32830 exsslsb 33636 pcmplfin 33891 rspectopn 33898 zarclsint 33903 zarcmplem 33912 reprval 34642 bj-sselpwuni 37068 bj-discrmoore 37129 dmvolss 46014 sge0xaddlem1 46462 meadjuni 46486 ovnval2b 46581 ovnsubadd2lem 46674 vonvolmbllem 46689 vonvolmbl 46690 smfresal 46817 smfpimbor1lem1 46827 sprsymrelfvlem 47504 isubgruhgr 47881 grimuhgr 47900 gpgiedgdmellem 48050 lindslinindsimp1 48433 lindslinindimp2lem4 48437 lincresunit3 48457 iscnrm3llem1 48923 |
| Copyright terms: Public domain | W3C validator |