| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpwd | Structured version Visualization version GIF version | ||
| Description: Membership in a power class. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| elpwd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| elpwd.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| elpwd | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwd.2 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | elpwd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | elpwg 4562 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| 5 | 1, 4 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ⊆ wss 3911 𝒫 cpw 4559 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3928 df-pw 4561 |
| This theorem is referenced by: sselpwd 5278 pwel 5331 frd 5588 f1opw2 7624 pwuncl 7726 naddunif 8634 f1opwfi 9283 ackbij1lem6 10153 ackbij1lem11 10158 mreacs 17599 sylow3lem3 19543 sylow3lem6 19546 cmpcov 23309 tgqtop 23632 filss 23773 scutval 27746 madecut 27832 cofcut1 27868 cutlt 27880 elons2d 28200 onscutlt 28205 bdayon 28213 fnpreimac 32645 indval 32826 exsslsb 33585 pcmplfin 33843 rspectopn 33850 zarclsint 33855 zarcmplem 33864 reprval 34594 bj-sselpwuni 37031 bj-discrmoore 37092 dmvolss 45976 sge0xaddlem1 46424 meadjuni 46448 ovnval2b 46543 ovnsubadd2lem 46636 vonvolmbllem 46651 vonvolmbl 46652 smfresal 46779 smfpimbor1lem1 46789 sprsymrelfvlem 47484 isubgruhgr 47861 grimuhgr 47880 gpgiedgdmellem 48030 lindslinindsimp1 48439 lindslinindimp2lem4 48443 lincresunit3 48463 iscnrm3llem1 48930 |
| Copyright terms: Public domain | W3C validator |