| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpwd | Structured version Visualization version GIF version | ||
| Description: Membership in a power class. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| elpwd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| elpwd.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| elpwd | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwd.2 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | elpwd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | elpwg 4562 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| 5 | 1, 4 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ⊆ wss 3911 𝒫 cpw 4559 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3928 df-pw 4561 |
| This theorem is referenced by: sselpwd 5278 pwel 5331 frd 5588 f1opw2 7624 pwuncl 7726 naddunif 8634 f1opwfi 9283 ackbij1lem6 10153 ackbij1lem11 10158 mreacs 17595 sylow3lem3 19535 sylow3lem6 19538 cmpcov 23252 tgqtop 23575 filss 23716 scutval 27688 madecut 27770 cofcut1 27804 cutlt 27816 elons2d 28136 onscutlt 28141 bdayon 28149 fnpreimac 32568 indval 32749 exsslsb 33565 pcmplfin 33823 rspectopn 33830 zarclsint 33835 zarcmplem 33844 reprval 34574 bj-sselpwuni 37011 bj-discrmoore 37072 dmvolss 45956 sge0xaddlem1 46404 meadjuni 46428 ovnval2b 46523 ovnsubadd2lem 46616 vonvolmbllem 46631 vonvolmbl 46632 smfresal 46759 smfpimbor1lem1 46769 sprsymrelfvlem 47464 isubgruhgr 47841 grimuhgr 47860 gpgiedgdmellem 48010 lindslinindsimp1 48419 lindslinindimp2lem4 48423 lincresunit3 48443 iscnrm3llem1 48910 |
| Copyright terms: Public domain | W3C validator |