Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elpwd | Structured version Visualization version GIF version |
Description: Membership in a power class. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
elpwd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
elpwd.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
elpwd | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwd.2 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | elpwd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | elpwg 4536 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
5 | 1, 4 | mpbird 256 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2106 ⊆ wss 3887 𝒫 cpw 4533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-pw 4535 |
This theorem is referenced by: sselpwd 5250 pwel 5304 frd 5548 f1opw2 7524 pwuncl 7620 f1opwfi 9123 ackbij1lem6 9981 ackbij1lem11 9986 mreacs 17367 sylow3lem3 19234 sylow3lem6 19237 cmpcov 22540 tgqtop 22863 filss 23004 fnpreimac 31008 pcmplfin 31810 rspectopn 31817 zarclsint 31822 zarcmplem 31831 indval 31981 reprval 32590 scutval 33994 madecut 34065 cofcut1 34090 bj-sselpwuni 35223 bj-discrmoore 35282 dmvolss 43526 sge0xaddlem1 43971 meadjuni 43995 ovnval2b 44090 ovnsubadd2lem 44183 vonvolmbllem 44198 vonvolmbl 44199 smfresal 44322 smfpimbor1lem1 44332 sprsymrelfvlem 44942 lindslinindsimp1 45798 lindslinindimp2lem4 45802 lincresunit3 45822 iscnrm3llem1 46243 |
Copyright terms: Public domain | W3C validator |