![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpwd | Structured version Visualization version GIF version |
Description: Membership in a power class. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
elpwd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
elpwd.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
elpwd | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwd.2 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | elpwd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | elpwg 4608 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
5 | 1, 4 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2106 ⊆ wss 3963 𝒫 cpw 4605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ss 3980 df-pw 4607 |
This theorem is referenced by: sselpwd 5334 pwel 5387 frd 5645 f1opw2 7688 pwuncl 7789 naddunif 8730 f1opwfi 9394 ackbij1lem6 10262 ackbij1lem11 10267 mreacs 17703 sylow3lem3 19662 sylow3lem6 19665 cmpcov 23413 tgqtop 23736 filss 23877 scutval 27860 madecut 27936 cofcut1 27969 cutlt 27981 elons2d 28297 fnpreimac 32688 pcmplfin 33821 rspectopn 33828 zarclsint 33833 zarcmplem 33842 indval 33994 reprval 34604 bj-sselpwuni 37033 bj-discrmoore 37094 dmvolss 45941 sge0xaddlem1 46389 meadjuni 46413 ovnval2b 46508 ovnsubadd2lem 46601 vonvolmbllem 46616 vonvolmbl 46617 smfresal 46744 smfpimbor1lem1 46754 sprsymrelfvlem 47415 isubgruhgr 47792 grimuhgr 47816 gpgedgel 47943 lindslinindsimp1 48303 lindslinindimp2lem4 48307 lincresunit3 48327 iscnrm3llem1 48746 |
Copyright terms: Public domain | W3C validator |