| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpwd | Structured version Visualization version GIF version | ||
| Description: Membership in a power class. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| elpwd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| elpwd.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| elpwd | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwd.2 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | elpwd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | elpwg 4554 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| 5 | 1, 4 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ⊆ wss 3903 𝒫 cpw 4551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3920 df-pw 4553 |
| This theorem is referenced by: sselpwd 5267 pwel 5320 frd 5576 f1opw2 7604 pwuncl 7706 naddunif 8611 f1opwfi 9246 ackbij1lem6 10118 ackbij1lem11 10123 mreacs 17564 sylow3lem3 19508 sylow3lem6 19511 cmpcov 23274 tgqtop 23597 filss 23738 scutval 27711 madecut 27797 cofcut1 27833 cutlt 27845 elons2d 28165 onscutlt 28170 bdayon 28178 fnpreimac 32614 indval 32796 exsslsb 33563 pcmplfin 33827 rspectopn 33834 zarclsint 33839 zarcmplem 33848 reprval 34578 bj-sselpwuni 37024 bj-discrmoore 37085 dmvolss 45966 sge0xaddlem1 46414 meadjuni 46438 ovnval2b 46533 ovnsubadd2lem 46626 vonvolmbllem 46641 vonvolmbl 46642 smfresal 46769 smfpimbor1lem1 46779 sprsymrelfvlem 47474 isubgruhgr 47852 grimuhgr 47871 gpgiedgdmellem 48030 lindslinindsimp1 48442 lindslinindimp2lem4 48446 lincresunit3 48466 iscnrm3llem1 48933 |
| Copyright terms: Public domain | W3C validator |