![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpwd | Structured version Visualization version GIF version |
Description: Membership in a power class. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
elpwd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
elpwd.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
elpwd | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwd.2 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | elpwd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | elpwg 4467 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
5 | 1, 4 | mpbird 258 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∈ wcel 2083 ⊆ wss 3865 𝒫 cpw 4459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-ext 2771 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-v 3442 df-in 3872 df-ss 3880 df-pw 4461 |
This theorem is referenced by: sselpwd 5128 pwel 5243 f1opw2 7265 f1opwfi 8681 ackbij1lem6 9500 ackbij1lem11 9505 mreacs 16762 sylow3lem3 18488 sylow3lem6 18491 cmpcov 21685 tgqtop 22008 filss 22149 fnpreimac 30102 pcmplfin 30737 indval 30885 reprval 31494 scutval 32876 bj-discrmoore 34024 dmvolss 41834 sge0xaddlem1 42279 meadjuni 42303 ovnval2b 42398 ovnsubadd2lem 42491 vonvolmbllem 42506 vonvolmbl 42507 smfresal 42627 smfpimbor1lem1 42637 sprsymrelfvlem 43156 lindslinindsimp1 44014 lindslinindimp2lem4 44018 lincresunit3 44038 |
Copyright terms: Public domain | W3C validator |