| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpwd | Structured version Visualization version GIF version | ||
| Description: Membership in a power class. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| elpwd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| elpwd.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| elpwd | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwd.2 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | elpwd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | elpwg 4566 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| 5 | 1, 4 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ⊆ wss 3914 𝒫 cpw 4563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3931 df-pw 4565 |
| This theorem is referenced by: sselpwd 5283 pwel 5336 frd 5595 f1opw2 7644 pwuncl 7746 naddunif 8657 f1opwfi 9307 ackbij1lem6 10177 ackbij1lem11 10182 mreacs 17619 sylow3lem3 19559 sylow3lem6 19562 cmpcov 23276 tgqtop 23599 filss 23740 scutval 27712 madecut 27794 cofcut1 27828 cutlt 27840 elons2d 28160 onscutlt 28165 bdayon 28173 fnpreimac 32595 indval 32776 exsslsb 33592 pcmplfin 33850 rspectopn 33857 zarclsint 33862 zarcmplem 33871 reprval 34601 bj-sselpwuni 37038 bj-discrmoore 37099 dmvolss 45983 sge0xaddlem1 46431 meadjuni 46455 ovnval2b 46550 ovnsubadd2lem 46643 vonvolmbllem 46658 vonvolmbl 46659 smfresal 46786 smfpimbor1lem1 46796 sprsymrelfvlem 47491 isubgruhgr 47868 grimuhgr 47887 gpgiedgdmellem 48037 lindslinindsimp1 48446 lindslinindimp2lem4 48450 lincresunit3 48470 iscnrm3llem1 48937 |
| Copyright terms: Public domain | W3C validator |