| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpwd | Structured version Visualization version GIF version | ||
| Description: Membership in a power class. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| elpwd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| elpwd.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| elpwd | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwd.2 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | elpwd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | elpwg 4569 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| 5 | 1, 4 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ⊆ wss 3917 𝒫 cpw 4566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ss 3934 df-pw 4568 |
| This theorem is referenced by: sselpwd 5286 pwel 5339 frd 5598 f1opw2 7647 pwuncl 7749 naddunif 8660 f1opwfi 9314 ackbij1lem6 10184 ackbij1lem11 10189 mreacs 17626 sylow3lem3 19566 sylow3lem6 19569 cmpcov 23283 tgqtop 23606 filss 23747 scutval 27719 madecut 27801 cofcut1 27835 cutlt 27847 elons2d 28167 onscutlt 28172 bdayon 28180 fnpreimac 32602 indval 32783 exsslsb 33599 pcmplfin 33857 rspectopn 33864 zarclsint 33869 zarcmplem 33878 reprval 34608 bj-sselpwuni 37045 bj-discrmoore 37106 dmvolss 45990 sge0xaddlem1 46438 meadjuni 46462 ovnval2b 46557 ovnsubadd2lem 46650 vonvolmbllem 46665 vonvolmbl 46666 smfresal 46793 smfpimbor1lem1 46803 sprsymrelfvlem 47495 isubgruhgr 47872 grimuhgr 47891 gpgiedgdmellem 48041 lindslinindsimp1 48450 lindslinindimp2lem4 48454 lincresunit3 48474 iscnrm3llem1 48941 |
| Copyright terms: Public domain | W3C validator |