Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elpwd | Structured version Visualization version GIF version |
Description: Membership in a power class. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
elpwd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
elpwd.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
elpwd | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwd.2 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | elpwd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | elpwg 4533 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
5 | 1, 4 | mpbird 256 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2108 ⊆ wss 3883 𝒫 cpw 4530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 |
This theorem is referenced by: sselpwd 5245 pwel 5299 frd 5539 f1opw2 7502 pwuncl 7598 f1opwfi 9053 ackbij1lem6 9912 ackbij1lem11 9917 mreacs 17284 sylow3lem3 19149 sylow3lem6 19152 cmpcov 22448 tgqtop 22771 filss 22912 fnpreimac 30910 pcmplfin 31712 rspectopn 31719 zarclsint 31724 zarcmplem 31733 indval 31881 reprval 32490 scutval 33921 madecut 33992 cofcut1 34017 bj-sselpwuni 35150 bj-discrmoore 35209 dmvolss 43416 sge0xaddlem1 43861 meadjuni 43885 ovnval2b 43980 ovnsubadd2lem 44073 vonvolmbllem 44088 vonvolmbl 44089 smfresal 44209 smfpimbor1lem1 44219 sprsymrelfvlem 44830 lindslinindsimp1 45686 lindslinindimp2lem4 45690 lincresunit3 45710 iscnrm3llem1 46131 |
Copyright terms: Public domain | W3C validator |