| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpwd | Structured version Visualization version GIF version | ||
| Description: Membership in a power class. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| elpwd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| elpwd.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| elpwd | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwd.2 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | elpwd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | elpwg 4550 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| 5 | 1, 4 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2111 ⊆ wss 3897 𝒫 cpw 4547 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ss 3914 df-pw 4549 |
| This theorem is referenced by: sselpwd 5264 pwel 5317 frd 5571 f1opw2 7601 pwuncl 7703 naddunif 8608 f1opwfi 9240 ackbij1lem6 10115 ackbij1lem11 10120 mreacs 17564 sylow3lem3 19541 sylow3lem6 19544 cmpcov 23304 tgqtop 23627 filss 23768 scutval 27741 madecut 27828 cofcut1 27864 cutlt 27876 elons2d 28196 onscutlt 28201 bdayon 28209 fnpreimac 32653 indval 32834 exsslsb 33609 pcmplfin 33873 rspectopn 33880 zarclsint 33885 zarcmplem 33894 reprval 34623 bj-sselpwuni 37092 bj-discrmoore 37153 dmvolss 46031 sge0xaddlem1 46479 meadjuni 46503 ovnval2b 46598 ovnsubadd2lem 46691 vonvolmbllem 46706 vonvolmbl 46707 smfresal 46834 smfpimbor1lem1 46844 sprsymrelfvlem 47529 isubgruhgr 47907 grimuhgr 47926 gpgiedgdmellem 48085 lindslinindsimp1 48497 lindslinindimp2lem4 48501 lincresunit3 48521 iscnrm3llem1 48988 |
| Copyright terms: Public domain | W3C validator |