![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpwgded | Structured version Visualization version GIF version |
Description: elpwgdedVD 43668 in conventional notation. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elpwgded.1 | ⊢ (𝜑 → 𝐴 ∈ V) |
elpwgded.2 | ⊢ (𝜓 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
elpwgded | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwgded.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) | |
2 | elpwgded.2 | . 2 ⊢ (𝜓 → 𝐴 ⊆ 𝐵) | |
3 | elpwg 4605 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
4 | 3 | biimpar 478 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐴 ⊆ 𝐵) → 𝐴 ∈ 𝒫 𝐵) |
5 | 1, 2, 4 | syl2an 596 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 Vcvv 3474 ⊆ wss 3948 𝒫 cpw 4602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-in 3955 df-ss 3965 df-pw 4604 |
This theorem is referenced by: sspwimp 43669 sspwimpALT 43676 |
Copyright terms: Public domain | W3C validator |