![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpwgded | Structured version Visualization version GIF version |
Description: elpwgdedVD 43291 in conventional notation. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elpwgded.1 | ⊢ (𝜑 → 𝐴 ∈ V) |
elpwgded.2 | ⊢ (𝜓 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
elpwgded | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwgded.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) | |
2 | elpwgded.2 | . 2 ⊢ (𝜓 → 𝐴 ⊆ 𝐵) | |
3 | elpwg 4567 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
4 | 3 | biimpar 479 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐴 ⊆ 𝐵) → 𝐴 ∈ 𝒫 𝐵) |
5 | 1, 2, 4 | syl2an 597 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 Vcvv 3447 ⊆ wss 3914 𝒫 cpw 4564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3449 df-in 3921 df-ss 3931 df-pw 4566 |
This theorem is referenced by: sspwimp 43292 sspwimpALT 43299 |
Copyright terms: Public domain | W3C validator |