![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpwgded | Structured version Visualization version GIF version |
Description: elpwgdedVD 44888 in conventional notation. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elpwgded.1 | ⊢ (𝜑 → 𝐴 ∈ V) |
elpwgded.2 | ⊢ (𝜓 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
elpwgded | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwgded.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) | |
2 | elpwgded.2 | . 2 ⊢ (𝜓 → 𝐴 ⊆ 𝐵) | |
3 | elpwg 4625 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
4 | 3 | biimpar 477 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐴 ⊆ 𝐵) → 𝐴 ∈ 𝒫 𝐵) |
5 | 1, 2, 4 | syl2an 595 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 𝒫 cpw 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ss 3993 df-pw 4624 |
This theorem is referenced by: sspwimp 44889 sspwimpALT 44896 |
Copyright terms: Public domain | W3C validator |