Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpwgded Structured version   Visualization version   GIF version

Theorem elpwgded 39539
Description: elpwgdedVD 39902 in conventional notation. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
elpwgded.1 (𝜑𝐴 ∈ V)
elpwgded.2 (𝜓𝐴𝐵)
Assertion
Ref Expression
elpwgded ((𝜑𝜓) → 𝐴 ∈ 𝒫 𝐵)

Proof of Theorem elpwgded
StepHypRef Expression
1 elpwgded.1 . 2 (𝜑𝐴 ∈ V)
2 elpwgded.2 . 2 (𝜓𝐴𝐵)
3 elpwg 4356 . . 3 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
43biimpar 470 . 2 ((𝐴 ∈ V ∧ 𝐴𝐵) → 𝐴 ∈ 𝒫 𝐵)
51, 2, 4syl2an 590 1 ((𝜑𝜓) → 𝐴 ∈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  wcel 2157  Vcvv 3384  wss 3768  𝒫 cpw 4348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-ext 2776
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2785  df-cleq 2791  df-clel 2794  df-nfc 2929  df-v 3386  df-in 3775  df-ss 3782  df-pw 4350
This theorem is referenced by:  sspwimp  39903  sspwimpALT  39910
  Copyright terms: Public domain W3C validator