Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpwgded Structured version   Visualization version   GIF version

Theorem elpwgded 44681
Description: elpwgdedVD 45033 in conventional notation. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
elpwgded.1 (𝜑𝐴 ∈ V)
elpwgded.2 (𝜓𝐴𝐵)
Assertion
Ref Expression
elpwgded ((𝜑𝜓) → 𝐴 ∈ 𝒫 𝐵)

Proof of Theorem elpwgded
StepHypRef Expression
1 elpwgded.1 . 2 (𝜑𝐴 ∈ V)
2 elpwgded.2 . 2 (𝜓𝐴𝐵)
3 elpwg 4552 . . 3 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
43biimpar 477 . 2 ((𝐴 ∈ V ∧ 𝐴𝐵) → 𝐴 ∈ 𝒫 𝐵)
51, 2, 4syl2an 596 1 ((𝜑𝜓) → 𝐴 ∈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2113  Vcvv 3437  wss 3898  𝒫 cpw 4549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ss 3915  df-pw 4551
This theorem is referenced by:  sspwimp  45034  sspwimpALT  45041
  Copyright terms: Public domain W3C validator