Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpwgded Structured version   Visualization version   GIF version

Theorem elpwgded 39303
Description: elpwgdedVD 39673 in conventional notation. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
elpwgded.1 (𝜑𝐴 ∈ V)
elpwgded.2 (𝜓𝐴𝐵)
Assertion
Ref Expression
elpwgded ((𝜑𝜓) → 𝐴 ∈ 𝒫 𝐵)

Proof of Theorem elpwgded
StepHypRef Expression
1 elpwgded.1 . 2 (𝜑𝐴 ∈ V)
2 elpwgded.2 . 2 (𝜓𝐴𝐵)
3 elpwg 4306 . . 3 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
43biimpar 463 . 2 ((𝐴 ∈ V ∧ 𝐴𝐵) → 𝐴 ∈ 𝒫 𝐵)
51, 2, 4syl2an 583 1 ((𝜑𝜓) → 𝐴 ∈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wcel 2145  Vcvv 3351  wss 3723  𝒫 cpw 4298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-v 3353  df-in 3730  df-ss 3737  df-pw 4300
This theorem is referenced by:  sspwimp  39674  sspwimpALT  39681
  Copyright terms: Public domain W3C validator