Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elriin Structured version   Visualization version   GIF version

Theorem elriin 4966
 Description: Elementhood in a relative intersection. (Contributed by Mario Carneiro, 30-Dec-2016.)
Assertion
Ref Expression
elriin (𝐵 ∈ (𝐴 𝑥𝑋 𝑆) ↔ (𝐵𝐴 ∧ ∀𝑥𝑋 𝐵𝑆))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋   𝑥,𝐵
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem elriin
StepHypRef Expression
1 elin 3897 . 2 (𝐵 ∈ (𝐴 𝑥𝑋 𝑆) ↔ (𝐵𝐴𝐵 𝑥𝑋 𝑆))
2 eliin 4886 . . 3 (𝐵𝐴 → (𝐵 𝑥𝑋 𝑆 ↔ ∀𝑥𝑋 𝐵𝑆))
32pm5.32i 578 . 2 ((𝐵𝐴𝐵 𝑥𝑋 𝑆) ↔ (𝐵𝐴 ∧ ∀𝑥𝑋 𝐵𝑆))
41, 3bitri 278 1 (𝐵 ∈ (𝐴 𝑥𝑋 𝑆) ↔ (𝐵𝐴 ∧ ∀𝑥𝑋 𝐵𝑆))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399   ∈ wcel 2111  ∀wral 3106   ∩ cin 3880  ∩ ciin 4882 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-v 3443  df-in 3888  df-iin 4884 This theorem is referenced by:  limciun  24497  limcun  24498
 Copyright terms: Public domain W3C validator