|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > elriin | Structured version Visualization version GIF version | ||
| Description: Elementhood in a relative intersection. (Contributed by Mario Carneiro, 30-Dec-2016.) | 
| Ref | Expression | 
|---|---|
| elriin | ⊢ (𝐵 ∈ (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) ↔ (𝐵 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑆)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elin 3966 | . 2 ⊢ (𝐵 ∈ (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ∈ ∩ 𝑥 ∈ 𝑋 𝑆)) | |
| 2 | eliin 4995 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (𝐵 ∈ ∩ 𝑥 ∈ 𝑋 𝑆 ↔ ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑆)) | |
| 3 | 2 | pm5.32i 574 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐵 ∈ ∩ 𝑥 ∈ 𝑋 𝑆) ↔ (𝐵 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑆)) | 
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝐵 ∈ (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) ↔ (𝐵 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑆)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2107 ∀wral 3060 ∩ cin 3949 ∩ ciin 4991 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-v 3481 df-in 3957 df-iin 4993 | 
| This theorem is referenced by: limciun 25930 limcun 25931 | 
| Copyright terms: Public domain | W3C validator |