| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elriin | Structured version Visualization version GIF version | ||
| Description: Elementhood in a relative intersection. (Contributed by Mario Carneiro, 30-Dec-2016.) |
| Ref | Expression |
|---|---|
| elriin | ⊢ (𝐵 ∈ (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) ↔ (𝐵 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3947 | . 2 ⊢ (𝐵 ∈ (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ∈ ∩ 𝑥 ∈ 𝑋 𝑆)) | |
| 2 | eliin 4977 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (𝐵 ∈ ∩ 𝑥 ∈ 𝑋 𝑆 ↔ ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑆)) | |
| 3 | 2 | pm5.32i 574 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐵 ∈ ∩ 𝑥 ∈ 𝑋 𝑆) ↔ (𝐵 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑆)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝐵 ∈ (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) ↔ (𝐵 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3052 ∩ cin 3930 ∩ ciin 4973 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-v 3466 df-in 3938 df-iin 4975 |
| This theorem is referenced by: limciun 25852 limcun 25853 |
| Copyright terms: Public domain | W3C validator |