MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elriin Structured version   Visualization version   GIF version

Theorem elriin 5104
Description: Elementhood in a relative intersection. (Contributed by Mario Carneiro, 30-Dec-2016.)
Assertion
Ref Expression
elriin (𝐵 ∈ (𝐴 𝑥𝑋 𝑆) ↔ (𝐵𝐴 ∧ ∀𝑥𝑋 𝐵𝑆))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋   𝑥,𝐵
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem elriin
StepHypRef Expression
1 elin 3992 . 2 (𝐵 ∈ (𝐴 𝑥𝑋 𝑆) ↔ (𝐵𝐴𝐵 𝑥𝑋 𝑆))
2 eliin 5020 . . 3 (𝐵𝐴 → (𝐵 𝑥𝑋 𝑆 ↔ ∀𝑥𝑋 𝐵𝑆))
32pm5.32i 574 . 2 ((𝐵𝐴𝐵 𝑥𝑋 𝑆) ↔ (𝐵𝐴 ∧ ∀𝑥𝑋 𝐵𝑆))
41, 3bitri 275 1 (𝐵 ∈ (𝐴 𝑥𝑋 𝑆) ↔ (𝐵𝐴 ∧ ∀𝑥𝑋 𝐵𝑆))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2108  wral 3067  cin 3975   ciin 5016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-v 3490  df-in 3983  df-iin 5018
This theorem is referenced by:  limciun  25949  limcun  25950
  Copyright terms: Public domain W3C validator