MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riin0 Structured version   Visualization version   GIF version

Theorem riin0 5081
Description: Relative intersection of an empty family. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
riin0 (𝑋 = ∅ → (𝐴 𝑥𝑋 𝑆) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem riin0
StepHypRef Expression
1 iineq1 5008 . . 3 (𝑋 = ∅ → 𝑥𝑋 𝑆 = 𝑥 ∈ ∅ 𝑆)
21ineq2d 4219 . 2 (𝑋 = ∅ → (𝐴 𝑥𝑋 𝑆) = (𝐴 𝑥 ∈ ∅ 𝑆))
3 0iin 5063 . . . 4 𝑥 ∈ ∅ 𝑆 = V
43ineq2i 4216 . . 3 (𝐴 𝑥 ∈ ∅ 𝑆) = (𝐴 ∩ V)
5 inv1 4397 . . 3 (𝐴 ∩ V) = 𝐴
64, 5eqtri 2764 . 2 (𝐴 𝑥 ∈ ∅ 𝑆) = 𝐴
72, 6eqtrdi 2792 1 (𝑋 = ∅ → (𝐴 𝑥𝑋 𝑆) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  Vcvv 3479  cin 3949  c0 4332   ciin 4991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-in 3957  df-ss 3967  df-nul 4333  df-iin 4993
This theorem is referenced by:  riinrab  5083  riiner  8831  mreriincl  17642  riinopn  22915  riincld  23053  fnemeet2  36369  pmapglb2N  39774  pmapglb2xN  39775
  Copyright terms: Public domain W3C validator