MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riin0 Structured version   Visualization version   GIF version

Theorem riin0 5028
Description: Relative intersection of an empty family. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
riin0 (𝑋 = ∅ → (𝐴 𝑥𝑋 𝑆) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem riin0
StepHypRef Expression
1 iineq1 4957 . . 3 (𝑋 = ∅ → 𝑥𝑋 𝑆 = 𝑥 ∈ ∅ 𝑆)
21ineq2d 4167 . 2 (𝑋 = ∅ → (𝐴 𝑥𝑋 𝑆) = (𝐴 𝑥 ∈ ∅ 𝑆))
3 0iin 5010 . . . 4 𝑥 ∈ ∅ 𝑆 = V
43ineq2i 4164 . . 3 (𝐴 𝑥 ∈ ∅ 𝑆) = (𝐴 ∩ V)
5 inv1 4345 . . 3 (𝐴 ∩ V) = 𝐴
64, 5eqtri 2754 . 2 (𝐴 𝑥 ∈ ∅ 𝑆) = 𝐴
72, 6eqtrdi 2782 1 (𝑋 = ∅ → (𝐴 𝑥𝑋 𝑆) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  Vcvv 3436  cin 3896  c0 4280   ciin 4940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-in 3904  df-ss 3914  df-nul 4281  df-iin 4942
This theorem is referenced by:  riinrab  5030  riiner  8714  mreriincl  17500  riinopn  22823  riincld  22959  fnemeet2  36411  pmapglb2N  39869  pmapglb2xN  39870
  Copyright terms: Public domain W3C validator