![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > riin0 | Structured version Visualization version GIF version |
Description: Relative intersection of an empty family. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
Ref | Expression |
---|---|
riin0 | ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iineq1 5014 | . . 3 ⊢ (𝑋 = ∅ → ∩ 𝑥 ∈ 𝑋 𝑆 = ∩ 𝑥 ∈ ∅ 𝑆) | |
2 | 1 | ineq2d 4228 | . 2 ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) = (𝐴 ∩ ∩ 𝑥 ∈ ∅ 𝑆)) |
3 | 0iin 5069 | . . . 4 ⊢ ∩ 𝑥 ∈ ∅ 𝑆 = V | |
4 | 3 | ineq2i 4225 | . . 3 ⊢ (𝐴 ∩ ∩ 𝑥 ∈ ∅ 𝑆) = (𝐴 ∩ V) |
5 | inv1 4404 | . . 3 ⊢ (𝐴 ∩ V) = 𝐴 | |
6 | 4, 5 | eqtri 2763 | . 2 ⊢ (𝐴 ∩ ∩ 𝑥 ∈ ∅ 𝑆) = 𝐴 |
7 | 2, 6 | eqtrdi 2791 | 1 ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 Vcvv 3478 ∩ cin 3962 ∅c0 4339 ∩ ciin 4997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-in 3970 df-ss 3980 df-nul 4340 df-iin 4999 |
This theorem is referenced by: riinrab 5089 riiner 8829 mreriincl 17643 riinopn 22930 riincld 23068 fnemeet2 36350 pmapglb2N 39754 pmapglb2xN 39755 |
Copyright terms: Public domain | W3C validator |