MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riin0 Structured version   Visualization version   GIF version

Theorem riin0 5085
Description: Relative intersection of an empty family. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
riin0 (𝑋 = ∅ → (𝐴 𝑥𝑋 𝑆) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem riin0
StepHypRef Expression
1 iineq1 5014 . . 3 (𝑋 = ∅ → 𝑥𝑋 𝑆 = 𝑥 ∈ ∅ 𝑆)
21ineq2d 4212 . 2 (𝑋 = ∅ → (𝐴 𝑥𝑋 𝑆) = (𝐴 𝑥 ∈ ∅ 𝑆))
3 0iin 5067 . . . 4 𝑥 ∈ ∅ 𝑆 = V
43ineq2i 4209 . . 3 (𝐴 𝑥 ∈ ∅ 𝑆) = (𝐴 ∩ V)
5 inv1 4394 . . 3 (𝐴 ∩ V) = 𝐴
64, 5eqtri 2759 . 2 (𝐴 𝑥 ∈ ∅ 𝑆) = 𝐴
72, 6eqtrdi 2787 1 (𝑋 = ∅ → (𝐴 𝑥𝑋 𝑆) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  Vcvv 3473  cin 3947  c0 4322   ciin 4998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-in 3955  df-ss 3965  df-nul 4323  df-iin 5000
This theorem is referenced by:  riinrab  5087  riiner  8790  mreriincl  17549  riinopn  22730  riincld  22868  fnemeet2  35716  pmapglb2N  39106  pmapglb2xN  39107
  Copyright terms: Public domain W3C validator