| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riin0 | Structured version Visualization version GIF version | ||
| Description: Relative intersection of an empty family. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| riin0 | ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iineq1 4957 | . . 3 ⊢ (𝑋 = ∅ → ∩ 𝑥 ∈ 𝑋 𝑆 = ∩ 𝑥 ∈ ∅ 𝑆) | |
| 2 | 1 | ineq2d 4167 | . 2 ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) = (𝐴 ∩ ∩ 𝑥 ∈ ∅ 𝑆)) |
| 3 | 0iin 5010 | . . . 4 ⊢ ∩ 𝑥 ∈ ∅ 𝑆 = V | |
| 4 | 3 | ineq2i 4164 | . . 3 ⊢ (𝐴 ∩ ∩ 𝑥 ∈ ∅ 𝑆) = (𝐴 ∩ V) |
| 5 | inv1 4345 | . . 3 ⊢ (𝐴 ∩ V) = 𝐴 | |
| 6 | 4, 5 | eqtri 2754 | . 2 ⊢ (𝐴 ∩ ∩ 𝑥 ∈ ∅ 𝑆) = 𝐴 |
| 7 | 2, 6 | eqtrdi 2782 | 1 ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 Vcvv 3436 ∩ cin 3896 ∅c0 4280 ∩ ciin 4940 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-in 3904 df-ss 3914 df-nul 4281 df-iin 4942 |
| This theorem is referenced by: riinrab 5030 riiner 8714 mreriincl 17500 riinopn 22823 riincld 22959 fnemeet2 36411 pmapglb2N 39869 pmapglb2xN 39870 |
| Copyright terms: Public domain | W3C validator |