MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limciun Structured version   Visualization version   GIF version

Theorem limciun 24963
Description: A point is a limit of 𝐹 on the finite union 𝑥𝐴𝐵(𝑥) iff it is the limit of the restriction of 𝐹 to each 𝐵(𝑥). (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypotheses
Ref Expression
limciun.1 (𝜑𝐴 ∈ Fin)
limciun.2 (𝜑 → ∀𝑥𝐴 𝐵 ⊆ ℂ)
limciun.3 (𝜑𝐹: 𝑥𝐴 𝐵⟶ℂ)
limciun.4 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
limciun (𝜑 → (𝐹 lim 𝐶) = (ℂ ∩ 𝑥𝐴 ((𝐹𝐵) lim 𝐶)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐹
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem limciun
Dummy variables 𝑔 𝑎 𝑘 𝑢 𝑣 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 24944 . . . 4 (𝐹 lim 𝐶) ⊆ ℂ
2 limcresi 24954 . . . . . 6 (𝐹 lim 𝐶) ⊆ ((𝐹𝐵) lim 𝐶)
32rgenw 3075 . . . . 5 𝑥𝐴 (𝐹 lim 𝐶) ⊆ ((𝐹𝐵) lim 𝐶)
4 ssiin 4981 . . . . 5 ((𝐹 lim 𝐶) ⊆ 𝑥𝐴 ((𝐹𝐵) lim 𝐶) ↔ ∀𝑥𝐴 (𝐹 lim 𝐶) ⊆ ((𝐹𝐵) lim 𝐶))
53, 4mpbir 230 . . . 4 (𝐹 lim 𝐶) ⊆ 𝑥𝐴 ((𝐹𝐵) lim 𝐶)
61, 5ssini 4162 . . 3 (𝐹 lim 𝐶) ⊆ (ℂ ∩ 𝑥𝐴 ((𝐹𝐵) lim 𝐶))
76a1i 11 . 2 (𝜑 → (𝐹 lim 𝐶) ⊆ (ℂ ∩ 𝑥𝐴 ((𝐹𝐵) lim 𝐶)))
8 elriin 5006 . . . 4 (𝑦 ∈ (ℂ ∩ 𝑥𝐴 ((𝐹𝐵) lim 𝐶)) ↔ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶)))
9 simprl 767 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) → 𝑦 ∈ ℂ)
10 limciun.1 . . . . . . . . . . 11 (𝜑𝐴 ∈ Fin)
1110ad2antrr 722 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) → 𝐴 ∈ Fin)
12 simplrr 774 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) → ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))
13 nfcv 2906 . . . . . . . . . . . . . . . . . . . 20 𝑥𝐹
14 nfcsb1v 3853 . . . . . . . . . . . . . . . . . . . 20 𝑥𝑎 / 𝑥𝐵
1513, 14nfres 5882 . . . . . . . . . . . . . . . . . . 19 𝑥(𝐹𝑎 / 𝑥𝐵)
16 nfcv 2906 . . . . . . . . . . . . . . . . . . 19 𝑥 lim
17 nfcv 2906 . . . . . . . . . . . . . . . . . . 19 𝑥𝐶
1815, 16, 17nfov 7285 . . . . . . . . . . . . . . . . . 18 𝑥((𝐹𝑎 / 𝑥𝐵) lim 𝐶)
1918nfcri 2893 . . . . . . . . . . . . . . . . 17 𝑥 𝑦 ∈ ((𝐹𝑎 / 𝑥𝐵) lim 𝐶)
20 csbeq1a 3842 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑎𝐵 = 𝑎 / 𝑥𝐵)
2120reseq2d 5880 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → (𝐹𝐵) = (𝐹𝑎 / 𝑥𝐵))
2221oveq1d 7270 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → ((𝐹𝐵) lim 𝐶) = ((𝐹𝑎 / 𝑥𝐵) lim 𝐶))
2322eleq2d 2824 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → (𝑦 ∈ ((𝐹𝐵) lim 𝐶) ↔ 𝑦 ∈ ((𝐹𝑎 / 𝑥𝐵) lim 𝐶)))
2419, 23rspc 3539 . . . . . . . . . . . . . . . 16 (𝑎𝐴 → (∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶) → 𝑦 ∈ ((𝐹𝑎 / 𝑥𝐵) lim 𝐶)))
2512, 24mpan9 506 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ 𝑎𝐴) → 𝑦 ∈ ((𝐹𝑎 / 𝑥𝐵) lim 𝐶))
26 limciun.3 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹: 𝑥𝐴 𝐵⟶ℂ)
2726ad2antrr 722 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ 𝑎𝐴) → 𝐹: 𝑥𝐴 𝐵⟶ℂ)
28 ssiun2 4973 . . . . . . . . . . . . . . . . . . . 20 (𝑎𝐴𝑎 / 𝑥𝐵 𝑎𝐴 𝑎 / 𝑥𝐵)
29 nfcv 2906 . . . . . . . . . . . . . . . . . . . . 21 𝑎𝐵
3029, 14, 20cbviun 4962 . . . . . . . . . . . . . . . . . . . 20 𝑥𝐴 𝐵 = 𝑎𝐴 𝑎 / 𝑥𝐵
3128, 30sseqtrrdi 3968 . . . . . . . . . . . . . . . . . . 19 (𝑎𝐴𝑎 / 𝑥𝐵 𝑥𝐴 𝐵)
3231adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ 𝑎𝐴) → 𝑎 / 𝑥𝐵 𝑥𝐴 𝐵)
3327, 32fssresd 6625 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ 𝑎𝐴) → (𝐹𝑎 / 𝑥𝐵):𝑎 / 𝑥𝐵⟶ℂ)
34 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ 𝑎𝐴) → 𝑎𝐴)
35 limciun.2 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑥𝐴 𝐵 ⊆ ℂ)
3635ad2antrr 722 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ 𝑎𝐴) → ∀𝑥𝐴 𝐵 ⊆ ℂ)
37 nfcv 2906 . . . . . . . . . . . . . . . . . . . 20 𝑥
3814, 37nfss 3909 . . . . . . . . . . . . . . . . . . 19 𝑥𝑎 / 𝑥𝐵 ⊆ ℂ
3920sseq1d 3948 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → (𝐵 ⊆ ℂ ↔ 𝑎 / 𝑥𝐵 ⊆ ℂ))
4038, 39rspc 3539 . . . . . . . . . . . . . . . . . 18 (𝑎𝐴 → (∀𝑥𝐴 𝐵 ⊆ ℂ → 𝑎 / 𝑥𝐵 ⊆ ℂ))
4134, 36, 40sylc 65 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ 𝑎𝐴) → 𝑎 / 𝑥𝐵 ⊆ ℂ)
42 limciun.4 . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 ∈ ℂ)
4342ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ 𝑎𝐴) → 𝐶 ∈ ℂ)
44 eqid 2738 . . . . . . . . . . . . . . . . 17 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4533, 41, 43, 44ellimc2 24946 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ 𝑎𝐴) → (𝑦 ∈ ((𝐹𝑎 / 𝑥𝐵) lim 𝐶) ↔ (𝑦 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑦𝑢 → ∃𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢)))))
4645adantlr 711 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ 𝑎𝐴) → (𝑦 ∈ ((𝐹𝑎 / 𝑥𝐵) lim 𝐶) ↔ (𝑦 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑦𝑢 → ∃𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢)))))
4725, 46mpbid 231 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ 𝑎𝐴) → (𝑦 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑦𝑢 → ∃𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢))))
4847simprd 495 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ 𝑎𝐴) → ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑦𝑢 → ∃𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢)))
49 simplrl 773 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ 𝑎𝐴) → 𝑢 ∈ (TopOpen‘ℂfld))
50 simplrr 774 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ 𝑎𝐴) → 𝑦𝑢)
51 rsp 3129 . . . . . . . . . . . . 13 (∀𝑢 ∈ (TopOpen‘ℂfld)(𝑦𝑢 → ∃𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢)) → (𝑢 ∈ (TopOpen‘ℂfld) → (𝑦𝑢 → ∃𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢))))
5248, 49, 50, 51syl3c 66 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ 𝑎𝐴) → ∃𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢))
5352ralrimiva 3107 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) → ∀𝑎𝐴𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢))
54 nfv 1918 . . . . . . . . . . . 12 𝑎𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢)
55 nfcv 2906 . . . . . . . . . . . . 13 𝑥(TopOpen‘ℂfld)
56 nfv 1918 . . . . . . . . . . . . . 14 𝑥 𝐶𝑘
57 nfcv 2906 . . . . . . . . . . . . . . . . 17 𝑥𝑘
58 nfcv 2906 . . . . . . . . . . . . . . . . . 18 𝑥{𝐶}
5914, 58nfdif 4056 . . . . . . . . . . . . . . . . 17 𝑥(𝑎 / 𝑥𝐵 ∖ {𝐶})
6057, 59nfin 4147 . . . . . . . . . . . . . . . 16 𝑥(𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))
6115, 60nfima 5966 . . . . . . . . . . . . . . 15 𝑥((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶})))
62 nfcv 2906 . . . . . . . . . . . . . . 15 𝑥𝑢
6361, 62nfss 3909 . . . . . . . . . . . . . 14 𝑥((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢
6456, 63nfan 1903 . . . . . . . . . . . . 13 𝑥(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢)
6555, 64nfrex 3237 . . . . . . . . . . . 12 𝑥𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢)
6620difeq1d 4052 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → (𝐵 ∖ {𝐶}) = (𝑎 / 𝑥𝐵 ∖ {𝐶}))
6766ineq2d 4143 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → (𝑘 ∩ (𝐵 ∖ {𝐶})) = (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶})))
6821, 67imaeq12d 5959 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → ((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) = ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))))
6968sseq1d 3948 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → (((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢 ↔ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢))
7069anbi2d 628 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → ((𝐶𝑘 ∧ ((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢) ↔ (𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢)))
7170rexbidv 3225 . . . . . . . . . . . 12 (𝑥 = 𝑎 → (∃𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢) ↔ ∃𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢)))
7254, 65, 71cbvralw 3363 . . . . . . . . . . 11 (∀𝑥𝐴𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢) ↔ ∀𝑎𝐴𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢))
7353, 72sylibr 233 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) → ∀𝑥𝐴𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))
74 eleq2 2827 . . . . . . . . . . . 12 (𝑘 = (𝑔𝑥) → (𝐶𝑘𝐶 ∈ (𝑔𝑥)))
75 ineq1 4136 . . . . . . . . . . . . . 14 (𝑘 = (𝑔𝑥) → (𝑘 ∩ (𝐵 ∖ {𝐶})) = ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶})))
7675imaeq2d 5958 . . . . . . . . . . . . 13 (𝑘 = (𝑔𝑥) → ((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) = ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))))
7776sseq1d 3948 . . . . . . . . . . . 12 (𝑘 = (𝑔𝑥) → (((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢 ↔ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))
7874, 77anbi12d 630 . . . . . . . . . . 11 (𝑘 = (𝑔𝑥) → ((𝐶𝑘 ∧ ((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢) ↔ (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢)))
7978ac6sfi 8988 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢)) → ∃𝑔(𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢)))
8011, 73, 79syl2anc 583 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) → ∃𝑔(𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢)))
8144cnfldtop 23853 . . . . . . . . . . 11 (TopOpen‘ℂfld) ∈ Top
82 frn 6591 . . . . . . . . . . . 12 (𝑔:𝐴⟶(TopOpen‘ℂfld) → ran 𝑔 ⊆ (TopOpen‘ℂfld))
8382ad2antrl 724 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → ran 𝑔 ⊆ (TopOpen‘ℂfld))
8411adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → 𝐴 ∈ Fin)
85 ffn 6584 . . . . . . . . . . . . . 14 (𝑔:𝐴⟶(TopOpen‘ℂfld) → 𝑔 Fn 𝐴)
8685ad2antrl 724 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → 𝑔 Fn 𝐴)
87 dffn4 6678 . . . . . . . . . . . . 13 (𝑔 Fn 𝐴𝑔:𝐴onto→ran 𝑔)
8886, 87sylib 217 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → 𝑔:𝐴onto→ran 𝑔)
89 fofi 9035 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝑔:𝐴onto→ran 𝑔) → ran 𝑔 ∈ Fin)
9084, 88, 89syl2anc 583 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → ran 𝑔 ∈ Fin)
91 unicntop 23855 . . . . . . . . . . . 12 ℂ = (TopOpen‘ℂfld)
9291rintopn 21966 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ∈ Top ∧ ran 𝑔 ⊆ (TopOpen‘ℂfld) ∧ ran 𝑔 ∈ Fin) → (ℂ ∩ ran 𝑔) ∈ (TopOpen‘ℂfld))
9381, 83, 90, 92mp3an2i 1464 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → (ℂ ∩ ran 𝑔) ∈ (TopOpen‘ℂfld))
9442adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) → 𝐶 ∈ ℂ)
9594ad2antrr 722 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → 𝐶 ∈ ℂ)
96 simpl 482 . . . . . . . . . . . . . 14 ((𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢) → 𝐶 ∈ (𝑔𝑥))
9796ralimi 3086 . . . . . . . . . . . . 13 (∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢) → ∀𝑥𝐴 𝐶 ∈ (𝑔𝑥))
9897ad2antll 725 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → ∀𝑥𝐴 𝐶 ∈ (𝑔𝑥))
99 eleq2 2827 . . . . . . . . . . . . . 14 (𝑧 = (𝑔𝑥) → (𝐶𝑧𝐶 ∈ (𝑔𝑥)))
10099ralrn 6946 . . . . . . . . . . . . 13 (𝑔 Fn 𝐴 → (∀𝑧 ∈ ran 𝑔 𝐶𝑧 ↔ ∀𝑥𝐴 𝐶 ∈ (𝑔𝑥)))
10186, 100syl 17 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → (∀𝑧 ∈ ran 𝑔 𝐶𝑧 ↔ ∀𝑥𝐴 𝐶 ∈ (𝑔𝑥)))
10298, 101mpbird 256 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → ∀𝑧 ∈ ran 𝑔 𝐶𝑧)
103 elrint 4919 . . . . . . . . . . 11 (𝐶 ∈ (ℂ ∩ ran 𝑔) ↔ (𝐶 ∈ ℂ ∧ ∀𝑧 ∈ ran 𝑔 𝐶𝑧))
10495, 102, 103sylanbrc 582 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → 𝐶 ∈ (ℂ ∩ ran 𝑔))
105 indifcom 4203 . . . . . . . . . . . . . 14 ((ℂ ∩ ran 𝑔) ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶})) = ( 𝑥𝐴 𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))
106 iunin1 4997 . . . . . . . . . . . . . 14 𝑥𝐴 (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶})) = ( 𝑥𝐴 𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))
107105, 106eqtr4i 2769 . . . . . . . . . . . . 13 ((ℂ ∩ ran 𝑔) ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶})) = 𝑥𝐴 (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))
108107imaeq2i 5956 . . . . . . . . . . . 12 (𝐹 “ ((ℂ ∩ ran 𝑔) ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) = (𝐹 𝑥𝐴 (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶})))
109 imaiun 7100 . . . . . . . . . . . 12 (𝐹 𝑥𝐴 (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) = 𝑥𝐴 (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶})))
110108, 109eqtri 2766 . . . . . . . . . . 11 (𝐹 “ ((ℂ ∩ ran 𝑔) ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) = 𝑥𝐴 (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶})))
111 inss2 4160 . . . . . . . . . . . . . . . . . . . . 21 (ℂ ∩ ran 𝑔) ⊆ ran 𝑔
112 fnfvelrn 6940 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔 Fn 𝐴𝑥𝐴) → (𝑔𝑥) ∈ ran 𝑔)
11385, 112sylan 579 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ 𝑥𝐴) → (𝑔𝑥) ∈ ran 𝑔)
114 intss1 4891 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑔𝑥) ∈ ran 𝑔 ran 𝑔 ⊆ (𝑔𝑥))
115113, 114syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ 𝑥𝐴) → ran 𝑔 ⊆ (𝑔𝑥))
116111, 115sstrid 3928 . . . . . . . . . . . . . . . . . . . 20 ((𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ 𝑥𝐴) → (ℂ ∩ ran 𝑔) ⊆ (𝑔𝑥))
117116ssdifd 4071 . . . . . . . . . . . . . . . . . . 19 ((𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ 𝑥𝐴) → ((ℂ ∩ ran 𝑔) ∖ {𝐶}) ⊆ ((𝑔𝑥) ∖ {𝐶}))
118 sslin 4165 . . . . . . . . . . . . . . . . . . 19 (((ℂ ∩ ran 𝑔) ∖ {𝐶}) ⊆ ((𝑔𝑥) ∖ {𝐶}) → (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶})) ⊆ (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶})))
119 imass2 5999 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶})) ⊆ (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶})) → (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ (𝐹 “ (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶}))))
120117, 118, 1193syl 18 . . . . . . . . . . . . . . . . . 18 ((𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ 𝑥𝐴) → (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ (𝐹 “ (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶}))))
121 indifcom 4203 . . . . . . . . . . . . . . . . . . . 20 ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶})) = (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶}))
122121imaeq2i 5956 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) = ((𝐹𝐵) “ (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶})))
123 inss1 4159 . . . . . . . . . . . . . . . . . . . 20 (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶})) ⊆ 𝐵
124 resima2 5915 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∩ ((𝑔𝑥) ∖ {𝐶})) ⊆ 𝐵 → ((𝐹𝐵) “ (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶}))) = (𝐹 “ (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶}))))
125123, 124ax-mp 5 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝐵) “ (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶}))) = (𝐹 “ (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶})))
126122, 125eqtri 2766 . . . . . . . . . . . . . . . . . 18 ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) = (𝐹 “ (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶})))
127120, 126sseqtrrdi 3968 . . . . . . . . . . . . . . . . 17 ((𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ 𝑥𝐴) → (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))))
128 sstr2 3924 . . . . . . . . . . . . . . . . 17 ((𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) → (((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢 → (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ 𝑢))
129127, 128syl 17 . . . . . . . . . . . . . . . 16 ((𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ 𝑥𝐴) → (((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢 → (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ 𝑢))
130129adantld 490 . . . . . . . . . . . . . . 15 ((𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ 𝑥𝐴) → ((𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢) → (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ 𝑢))
131130ralimdva 3102 . . . . . . . . . . . . . 14 (𝑔:𝐴⟶(TopOpen‘ℂfld) → (∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢) → ∀𝑥𝐴 (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ 𝑢))
132131imp 406 . . . . . . . . . . . . 13 ((𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢)) → ∀𝑥𝐴 (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ 𝑢)
133132adantl 481 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → ∀𝑥𝐴 (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ 𝑢)
134 iunss 4971 . . . . . . . . . . . 12 ( 𝑥𝐴 (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ 𝑢 ↔ ∀𝑥𝐴 (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ 𝑢)
135133, 134sylibr 233 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → 𝑥𝐴 (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ 𝑢)
136110, 135eqsstrid 3965 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → (𝐹 “ ((ℂ ∩ ran 𝑔) ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢)
137 eleq2 2827 . . . . . . . . . . . 12 (𝑣 = (ℂ ∩ ran 𝑔) → (𝐶𝑣𝐶 ∈ (ℂ ∩ ran 𝑔)))
138 ineq1 4136 . . . . . . . . . . . . . 14 (𝑣 = (ℂ ∩ ran 𝑔) → (𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶})) = ((ℂ ∩ ran 𝑔) ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶})))
139138imaeq2d 5958 . . . . . . . . . . . . 13 (𝑣 = (ℂ ∩ ran 𝑔) → (𝐹 “ (𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) = (𝐹 “ ((ℂ ∩ ran 𝑔) ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))))
140139sseq1d 3948 . . . . . . . . . . . 12 (𝑣 = (ℂ ∩ ran 𝑔) → ((𝐹 “ (𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢 ↔ (𝐹 “ ((ℂ ∩ ran 𝑔) ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢))
141137, 140anbi12d 630 . . . . . . . . . . 11 (𝑣 = (ℂ ∩ ran 𝑔) → ((𝐶𝑣 ∧ (𝐹 “ (𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢) ↔ (𝐶 ∈ (ℂ ∩ ran 𝑔) ∧ (𝐹 “ ((ℂ ∩ ran 𝑔) ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢)))
142141rspcev 3552 . . . . . . . . . 10 (((ℂ ∩ ran 𝑔) ∈ (TopOpen‘ℂfld) ∧ (𝐶 ∈ (ℂ ∩ ran 𝑔) ∧ (𝐹 “ ((ℂ ∩ ran 𝑔) ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢)) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐶𝑣 ∧ (𝐹 “ (𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢))
14393, 104, 136, 142syl12anc 833 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐶𝑣 ∧ (𝐹 “ (𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢))
14480, 143exlimddv 1939 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐶𝑣 ∧ (𝐹 “ (𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢))
145144expr 456 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ 𝑢 ∈ (TopOpen‘ℂfld)) → (𝑦𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐶𝑣 ∧ (𝐹 “ (𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢)))
146145ralrimiva 3107 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) → ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑦𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐶𝑣 ∧ (𝐹 “ (𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢)))
14726adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) → 𝐹: 𝑥𝐴 𝐵⟶ℂ)
148 iunss 4971 . . . . . . . . 9 ( 𝑥𝐴 𝐵 ⊆ ℂ ↔ ∀𝑥𝐴 𝐵 ⊆ ℂ)
14935, 148sylibr 233 . . . . . . . 8 (𝜑 𝑥𝐴 𝐵 ⊆ ℂ)
150149adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) → 𝑥𝐴 𝐵 ⊆ ℂ)
151147, 150, 94, 44ellimc2 24946 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) → (𝑦 ∈ (𝐹 lim 𝐶) ↔ (𝑦 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑦𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐶𝑣 ∧ (𝐹 “ (𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢)))))
1529, 146, 151mpbir2and 709 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) → 𝑦 ∈ (𝐹 lim 𝐶))
153152ex 412 . . . 4 (𝜑 → ((𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶)) → 𝑦 ∈ (𝐹 lim 𝐶)))
1548, 153syl5bi 241 . . 3 (𝜑 → (𝑦 ∈ (ℂ ∩ 𝑥𝐴 ((𝐹𝐵) lim 𝐶)) → 𝑦 ∈ (𝐹 lim 𝐶)))
155154ssrdv 3923 . 2 (𝜑 → (ℂ ∩ 𝑥𝐴 ((𝐹𝐵) lim 𝐶)) ⊆ (𝐹 lim 𝐶))
1567, 155eqssd 3934 1 (𝜑 → (𝐹 lim 𝐶) = (ℂ ∩ 𝑥𝐴 ((𝐹𝐵) lim 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wral 3063  wrex 3064  csb 3828  cdif 3880  cin 3882  wss 3883  {csn 4558   cint 4876   ciun 4921   ciin 4922  ran crn 5581  cres 5582  cima 5583   Fn wfn 6413  wf 6414  ontowfo 6416  cfv 6418  (class class class)co 7255  Fincfn 8691  cc 10800  TopOpenctopn 17049  fldccnfld 20510  Topctop 21950   lim climc 24931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-rest 17050  df-topn 17051  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cnp 22287  df-xms 23381  df-ms 23382  df-limc 24935
This theorem is referenced by:  limcun  24964
  Copyright terms: Public domain W3C validator