MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limciun Structured version   Visualization version   GIF version

Theorem limciun 25820
Description: A point is a limit of 𝐹 on the finite union 𝑥𝐴𝐵(𝑥) iff it is the limit of the restriction of 𝐹 to each 𝐵(𝑥). (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypotheses
Ref Expression
limciun.1 (𝜑𝐴 ∈ Fin)
limciun.2 (𝜑 → ∀𝑥𝐴 𝐵 ⊆ ℂ)
limciun.3 (𝜑𝐹: 𝑥𝐴 𝐵⟶ℂ)
limciun.4 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
limciun (𝜑 → (𝐹 lim 𝐶) = (ℂ ∩ 𝑥𝐴 ((𝐹𝐵) lim 𝐶)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐹
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem limciun
Dummy variables 𝑔 𝑎 𝑘 𝑢 𝑣 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 25801 . . . 4 (𝐹 lim 𝐶) ⊆ ℂ
2 limcresi 25811 . . . . . 6 (𝐹 lim 𝐶) ⊆ ((𝐹𝐵) lim 𝐶)
32rgenw 3051 . . . . 5 𝑥𝐴 (𝐹 lim 𝐶) ⊆ ((𝐹𝐵) lim 𝐶)
4 ssiin 5004 . . . . 5 ((𝐹 lim 𝐶) ⊆ 𝑥𝐴 ((𝐹𝐵) lim 𝐶) ↔ ∀𝑥𝐴 (𝐹 lim 𝐶) ⊆ ((𝐹𝐵) lim 𝐶))
53, 4mpbir 231 . . . 4 (𝐹 lim 𝐶) ⊆ 𝑥𝐴 ((𝐹𝐵) lim 𝐶)
61, 5ssini 4190 . . 3 (𝐹 lim 𝐶) ⊆ (ℂ ∩ 𝑥𝐴 ((𝐹𝐵) lim 𝐶))
76a1i 11 . 2 (𝜑 → (𝐹 lim 𝐶) ⊆ (ℂ ∩ 𝑥𝐴 ((𝐹𝐵) lim 𝐶)))
8 elriin 5029 . . . 4 (𝑦 ∈ (ℂ ∩ 𝑥𝐴 ((𝐹𝐵) lim 𝐶)) ↔ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶)))
9 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) → 𝑦 ∈ ℂ)
10 limciun.1 . . . . . . . . . . 11 (𝜑𝐴 ∈ Fin)
1110ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) → 𝐴 ∈ Fin)
12 simplrr 777 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) → ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))
13 nfcv 2894 . . . . . . . . . . . . . . . . . . . 20 𝑥𝐹
14 nfcsb1v 3874 . . . . . . . . . . . . . . . . . . . 20 𝑥𝑎 / 𝑥𝐵
1513, 14nfres 5930 . . . . . . . . . . . . . . . . . . 19 𝑥(𝐹𝑎 / 𝑥𝐵)
16 nfcv 2894 . . . . . . . . . . . . . . . . . . 19 𝑥 lim
17 nfcv 2894 . . . . . . . . . . . . . . . . . . 19 𝑥𝐶
1815, 16, 17nfov 7376 . . . . . . . . . . . . . . . . . 18 𝑥((𝐹𝑎 / 𝑥𝐵) lim 𝐶)
1918nfcri 2886 . . . . . . . . . . . . . . . . 17 𝑥 𝑦 ∈ ((𝐹𝑎 / 𝑥𝐵) lim 𝐶)
20 csbeq1a 3864 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑎𝐵 = 𝑎 / 𝑥𝐵)
2120reseq2d 5928 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → (𝐹𝐵) = (𝐹𝑎 / 𝑥𝐵))
2221oveq1d 7361 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → ((𝐹𝐵) lim 𝐶) = ((𝐹𝑎 / 𝑥𝐵) lim 𝐶))
2322eleq2d 2817 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → (𝑦 ∈ ((𝐹𝐵) lim 𝐶) ↔ 𝑦 ∈ ((𝐹𝑎 / 𝑥𝐵) lim 𝐶)))
2419, 23rspc 3565 . . . . . . . . . . . . . . . 16 (𝑎𝐴 → (∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶) → 𝑦 ∈ ((𝐹𝑎 / 𝑥𝐵) lim 𝐶)))
2512, 24mpan9 506 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ 𝑎𝐴) → 𝑦 ∈ ((𝐹𝑎 / 𝑥𝐵) lim 𝐶))
26 limciun.3 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹: 𝑥𝐴 𝐵⟶ℂ)
2726ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ 𝑎𝐴) → 𝐹: 𝑥𝐴 𝐵⟶ℂ)
28 ssiun2 4996 . . . . . . . . . . . . . . . . . . . 20 (𝑎𝐴𝑎 / 𝑥𝐵 𝑎𝐴 𝑎 / 𝑥𝐵)
29 nfcv 2894 . . . . . . . . . . . . . . . . . . . . 21 𝑎𝐵
3029, 14, 20cbviun 4985 . . . . . . . . . . . . . . . . . . . 20 𝑥𝐴 𝐵 = 𝑎𝐴 𝑎 / 𝑥𝐵
3128, 30sseqtrrdi 3976 . . . . . . . . . . . . . . . . . . 19 (𝑎𝐴𝑎 / 𝑥𝐵 𝑥𝐴 𝐵)
3231adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ 𝑎𝐴) → 𝑎 / 𝑥𝐵 𝑥𝐴 𝐵)
3327, 32fssresd 6690 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ 𝑎𝐴) → (𝐹𝑎 / 𝑥𝐵):𝑎 / 𝑥𝐵⟶ℂ)
34 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ 𝑎𝐴) → 𝑎𝐴)
35 limciun.2 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑥𝐴 𝐵 ⊆ ℂ)
3635ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ 𝑎𝐴) → ∀𝑥𝐴 𝐵 ⊆ ℂ)
37 nfcv 2894 . . . . . . . . . . . . . . . . . . . 20 𝑥
3814, 37nfss 3927 . . . . . . . . . . . . . . . . . . 19 𝑥𝑎 / 𝑥𝐵 ⊆ ℂ
3920sseq1d 3966 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → (𝐵 ⊆ ℂ ↔ 𝑎 / 𝑥𝐵 ⊆ ℂ))
4038, 39rspc 3565 . . . . . . . . . . . . . . . . . 18 (𝑎𝐴 → (∀𝑥𝐴 𝐵 ⊆ ℂ → 𝑎 / 𝑥𝐵 ⊆ ℂ))
4134, 36, 40sylc 65 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ 𝑎𝐴) → 𝑎 / 𝑥𝐵 ⊆ ℂ)
42 limciun.4 . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 ∈ ℂ)
4342ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ 𝑎𝐴) → 𝐶 ∈ ℂ)
44 eqid 2731 . . . . . . . . . . . . . . . . 17 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4533, 41, 43, 44ellimc2 25803 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ 𝑎𝐴) → (𝑦 ∈ ((𝐹𝑎 / 𝑥𝐵) lim 𝐶) ↔ (𝑦 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑦𝑢 → ∃𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢)))))
4645adantlr 715 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ 𝑎𝐴) → (𝑦 ∈ ((𝐹𝑎 / 𝑥𝐵) lim 𝐶) ↔ (𝑦 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑦𝑢 → ∃𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢)))))
4725, 46mpbid 232 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ 𝑎𝐴) → (𝑦 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑦𝑢 → ∃𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢))))
4847simprd 495 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ 𝑎𝐴) → ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑦𝑢 → ∃𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢)))
49 simplrl 776 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ 𝑎𝐴) → 𝑢 ∈ (TopOpen‘ℂfld))
50 simplrr 777 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ 𝑎𝐴) → 𝑦𝑢)
51 rsp 3220 . . . . . . . . . . . . 13 (∀𝑢 ∈ (TopOpen‘ℂfld)(𝑦𝑢 → ∃𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢)) → (𝑢 ∈ (TopOpen‘ℂfld) → (𝑦𝑢 → ∃𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢))))
5248, 49, 50, 51syl3c 66 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ 𝑎𝐴) → ∃𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢))
5352ralrimiva 3124 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) → ∀𝑎𝐴𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢))
54 nfv 1915 . . . . . . . . . . . 12 𝑎𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢)
55 nfcv 2894 . . . . . . . . . . . . 13 𝑥(TopOpen‘ℂfld)
56 nfv 1915 . . . . . . . . . . . . . 14 𝑥 𝐶𝑘
57 nfcv 2894 . . . . . . . . . . . . . . . . 17 𝑥𝑘
58 nfcv 2894 . . . . . . . . . . . . . . . . . 18 𝑥{𝐶}
5914, 58nfdif 4079 . . . . . . . . . . . . . . . . 17 𝑥(𝑎 / 𝑥𝐵 ∖ {𝐶})
6057, 59nfin 4174 . . . . . . . . . . . . . . . 16 𝑥(𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))
6115, 60nfima 6017 . . . . . . . . . . . . . . 15 𝑥((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶})))
62 nfcv 2894 . . . . . . . . . . . . . . 15 𝑥𝑢
6361, 62nfss 3927 . . . . . . . . . . . . . 14 𝑥((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢
6456, 63nfan 1900 . . . . . . . . . . . . 13 𝑥(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢)
6555, 64nfrexw 3280 . . . . . . . . . . . 12 𝑥𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢)
6620difeq1d 4075 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → (𝐵 ∖ {𝐶}) = (𝑎 / 𝑥𝐵 ∖ {𝐶}))
6766ineq2d 4170 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → (𝑘 ∩ (𝐵 ∖ {𝐶})) = (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶})))
6821, 67imaeq12d 6010 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → ((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) = ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))))
6968sseq1d 3966 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → (((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢 ↔ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢))
7069anbi2d 630 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → ((𝐶𝑘 ∧ ((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢) ↔ (𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢)))
7170rexbidv 3156 . . . . . . . . . . . 12 (𝑥 = 𝑎 → (∃𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢) ↔ ∃𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢)))
7254, 65, 71cbvralw 3274 . . . . . . . . . . 11 (∀𝑥𝐴𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢) ↔ ∀𝑎𝐴𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢))
7353, 72sylibr 234 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) → ∀𝑥𝐴𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))
74 eleq2 2820 . . . . . . . . . . . 12 (𝑘 = (𝑔𝑥) → (𝐶𝑘𝐶 ∈ (𝑔𝑥)))
75 ineq1 4163 . . . . . . . . . . . . . 14 (𝑘 = (𝑔𝑥) → (𝑘 ∩ (𝐵 ∖ {𝐶})) = ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶})))
7675imaeq2d 6009 . . . . . . . . . . . . 13 (𝑘 = (𝑔𝑥) → ((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) = ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))))
7776sseq1d 3966 . . . . . . . . . . . 12 (𝑘 = (𝑔𝑥) → (((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢 ↔ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))
7874, 77anbi12d 632 . . . . . . . . . . 11 (𝑘 = (𝑔𝑥) → ((𝐶𝑘 ∧ ((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢) ↔ (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢)))
7978ac6sfi 9168 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢)) → ∃𝑔(𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢)))
8011, 73, 79syl2anc 584 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) → ∃𝑔(𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢)))
8144cnfldtop 24696 . . . . . . . . . . 11 (TopOpen‘ℂfld) ∈ Top
82 frn 6658 . . . . . . . . . . . 12 (𝑔:𝐴⟶(TopOpen‘ℂfld) → ran 𝑔 ⊆ (TopOpen‘ℂfld))
8382ad2antrl 728 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → ran 𝑔 ⊆ (TopOpen‘ℂfld))
8411adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → 𝐴 ∈ Fin)
85 ffn 6651 . . . . . . . . . . . . . 14 (𝑔:𝐴⟶(TopOpen‘ℂfld) → 𝑔 Fn 𝐴)
8685ad2antrl 728 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → 𝑔 Fn 𝐴)
87 dffn4 6741 . . . . . . . . . . . . 13 (𝑔 Fn 𝐴𝑔:𝐴onto→ran 𝑔)
8886, 87sylib 218 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → 𝑔:𝐴onto→ran 𝑔)
89 fofi 9197 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝑔:𝐴onto→ran 𝑔) → ran 𝑔 ∈ Fin)
9084, 88, 89syl2anc 584 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → ran 𝑔 ∈ Fin)
91 unicntop 24698 . . . . . . . . . . . 12 ℂ = (TopOpen‘ℂfld)
9291rintopn 22822 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ∈ Top ∧ ran 𝑔 ⊆ (TopOpen‘ℂfld) ∧ ran 𝑔 ∈ Fin) → (ℂ ∩ ran 𝑔) ∈ (TopOpen‘ℂfld))
9381, 83, 90, 92mp3an2i 1468 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → (ℂ ∩ ran 𝑔) ∈ (TopOpen‘ℂfld))
9442adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) → 𝐶 ∈ ℂ)
9594ad2antrr 726 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → 𝐶 ∈ ℂ)
96 simpl 482 . . . . . . . . . . . . . 14 ((𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢) → 𝐶 ∈ (𝑔𝑥))
9796ralimi 3069 . . . . . . . . . . . . 13 (∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢) → ∀𝑥𝐴 𝐶 ∈ (𝑔𝑥))
9897ad2antll 729 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → ∀𝑥𝐴 𝐶 ∈ (𝑔𝑥))
99 eleq2 2820 . . . . . . . . . . . . . 14 (𝑧 = (𝑔𝑥) → (𝐶𝑧𝐶 ∈ (𝑔𝑥)))
10099ralrn 7021 . . . . . . . . . . . . 13 (𝑔 Fn 𝐴 → (∀𝑧 ∈ ran 𝑔 𝐶𝑧 ↔ ∀𝑥𝐴 𝐶 ∈ (𝑔𝑥)))
10186, 100syl 17 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → (∀𝑧 ∈ ran 𝑔 𝐶𝑧 ↔ ∀𝑥𝐴 𝐶 ∈ (𝑔𝑥)))
10298, 101mpbird 257 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → ∀𝑧 ∈ ran 𝑔 𝐶𝑧)
103 elrint 4939 . . . . . . . . . . 11 (𝐶 ∈ (ℂ ∩ ran 𝑔) ↔ (𝐶 ∈ ℂ ∧ ∀𝑧 ∈ ran 𝑔 𝐶𝑧))
10495, 102, 103sylanbrc 583 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → 𝐶 ∈ (ℂ ∩ ran 𝑔))
105 indifcom 4233 . . . . . . . . . . . . . 14 ((ℂ ∩ ran 𝑔) ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶})) = ( 𝑥𝐴 𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))
106 iunin1 5020 . . . . . . . . . . . . . 14 𝑥𝐴 (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶})) = ( 𝑥𝐴 𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))
107105, 106eqtr4i 2757 . . . . . . . . . . . . 13 ((ℂ ∩ ran 𝑔) ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶})) = 𝑥𝐴 (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))
108107imaeq2i 6007 . . . . . . . . . . . 12 (𝐹 “ ((ℂ ∩ ran 𝑔) ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) = (𝐹 𝑥𝐴 (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶})))
109 imaiun 7179 . . . . . . . . . . . 12 (𝐹 𝑥𝐴 (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) = 𝑥𝐴 (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶})))
110108, 109eqtri 2754 . . . . . . . . . . 11 (𝐹 “ ((ℂ ∩ ran 𝑔) ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) = 𝑥𝐴 (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶})))
111 inss2 4188 . . . . . . . . . . . . . . . . . . . . 21 (ℂ ∩ ran 𝑔) ⊆ ran 𝑔
112 fnfvelrn 7013 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔 Fn 𝐴𝑥𝐴) → (𝑔𝑥) ∈ ran 𝑔)
11385, 112sylan 580 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ 𝑥𝐴) → (𝑔𝑥) ∈ ran 𝑔)
114 intss1 4913 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑔𝑥) ∈ ran 𝑔 ran 𝑔 ⊆ (𝑔𝑥))
115113, 114syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ 𝑥𝐴) → ran 𝑔 ⊆ (𝑔𝑥))
116111, 115sstrid 3946 . . . . . . . . . . . . . . . . . . . 20 ((𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ 𝑥𝐴) → (ℂ ∩ ran 𝑔) ⊆ (𝑔𝑥))
117116ssdifd 4095 . . . . . . . . . . . . . . . . . . 19 ((𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ 𝑥𝐴) → ((ℂ ∩ ran 𝑔) ∖ {𝐶}) ⊆ ((𝑔𝑥) ∖ {𝐶}))
118 sslin 4193 . . . . . . . . . . . . . . . . . . 19 (((ℂ ∩ ran 𝑔) ∖ {𝐶}) ⊆ ((𝑔𝑥) ∖ {𝐶}) → (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶})) ⊆ (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶})))
119 imass2 6051 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶})) ⊆ (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶})) → (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ (𝐹 “ (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶}))))
120117, 118, 1193syl 18 . . . . . . . . . . . . . . . . . 18 ((𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ 𝑥𝐴) → (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ (𝐹 “ (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶}))))
121 indifcom 4233 . . . . . . . . . . . . . . . . . . . 20 ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶})) = (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶}))
122121imaeq2i 6007 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) = ((𝐹𝐵) “ (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶})))
123 inss1 4187 . . . . . . . . . . . . . . . . . . . 20 (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶})) ⊆ 𝐵
124 resima2 5965 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∩ ((𝑔𝑥) ∖ {𝐶})) ⊆ 𝐵 → ((𝐹𝐵) “ (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶}))) = (𝐹 “ (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶}))))
125123, 124ax-mp 5 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝐵) “ (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶}))) = (𝐹 “ (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶})))
126122, 125eqtri 2754 . . . . . . . . . . . . . . . . . 18 ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) = (𝐹 “ (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶})))
127120, 126sseqtrrdi 3976 . . . . . . . . . . . . . . . . 17 ((𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ 𝑥𝐴) → (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))))
128 sstr2 3941 . . . . . . . . . . . . . . . . 17 ((𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) → (((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢 → (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ 𝑢))
129127, 128syl 17 . . . . . . . . . . . . . . . 16 ((𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ 𝑥𝐴) → (((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢 → (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ 𝑢))
130129adantld 490 . . . . . . . . . . . . . . 15 ((𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ 𝑥𝐴) → ((𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢) → (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ 𝑢))
131130ralimdva 3144 . . . . . . . . . . . . . 14 (𝑔:𝐴⟶(TopOpen‘ℂfld) → (∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢) → ∀𝑥𝐴 (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ 𝑢))
132131imp 406 . . . . . . . . . . . . 13 ((𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢)) → ∀𝑥𝐴 (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ 𝑢)
133132adantl 481 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → ∀𝑥𝐴 (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ 𝑢)
134 iunss 4994 . . . . . . . . . . . 12 ( 𝑥𝐴 (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ 𝑢 ↔ ∀𝑥𝐴 (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ 𝑢)
135133, 134sylibr 234 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → 𝑥𝐴 (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ 𝑢)
136110, 135eqsstrid 3973 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → (𝐹 “ ((ℂ ∩ ran 𝑔) ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢)
137 eleq2 2820 . . . . . . . . . . . 12 (𝑣 = (ℂ ∩ ran 𝑔) → (𝐶𝑣𝐶 ∈ (ℂ ∩ ran 𝑔)))
138 ineq1 4163 . . . . . . . . . . . . . 14 (𝑣 = (ℂ ∩ ran 𝑔) → (𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶})) = ((ℂ ∩ ran 𝑔) ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶})))
139138imaeq2d 6009 . . . . . . . . . . . . 13 (𝑣 = (ℂ ∩ ran 𝑔) → (𝐹 “ (𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) = (𝐹 “ ((ℂ ∩ ran 𝑔) ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))))
140139sseq1d 3966 . . . . . . . . . . . 12 (𝑣 = (ℂ ∩ ran 𝑔) → ((𝐹 “ (𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢 ↔ (𝐹 “ ((ℂ ∩ ran 𝑔) ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢))
141137, 140anbi12d 632 . . . . . . . . . . 11 (𝑣 = (ℂ ∩ ran 𝑔) → ((𝐶𝑣 ∧ (𝐹 “ (𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢) ↔ (𝐶 ∈ (ℂ ∩ ran 𝑔) ∧ (𝐹 “ ((ℂ ∩ ran 𝑔) ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢)))
142141rspcev 3577 . . . . . . . . . 10 (((ℂ ∩ ran 𝑔) ∈ (TopOpen‘ℂfld) ∧ (𝐶 ∈ (ℂ ∩ ran 𝑔) ∧ (𝐹 “ ((ℂ ∩ ran 𝑔) ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢)) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐶𝑣 ∧ (𝐹 “ (𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢))
14393, 104, 136, 142syl12anc 836 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐶𝑣 ∧ (𝐹 “ (𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢))
14480, 143exlimddv 1936 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐶𝑣 ∧ (𝐹 “ (𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢))
145144expr 456 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ 𝑢 ∈ (TopOpen‘ℂfld)) → (𝑦𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐶𝑣 ∧ (𝐹 “ (𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢)))
146145ralrimiva 3124 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) → ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑦𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐶𝑣 ∧ (𝐹 “ (𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢)))
14726adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) → 𝐹: 𝑥𝐴 𝐵⟶ℂ)
148 iunss 4994 . . . . . . . . 9 ( 𝑥𝐴 𝐵 ⊆ ℂ ↔ ∀𝑥𝐴 𝐵 ⊆ ℂ)
14935, 148sylibr 234 . . . . . . . 8 (𝜑 𝑥𝐴 𝐵 ⊆ ℂ)
150149adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) → 𝑥𝐴 𝐵 ⊆ ℂ)
151147, 150, 94, 44ellimc2 25803 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) → (𝑦 ∈ (𝐹 lim 𝐶) ↔ (𝑦 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑦𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐶𝑣 ∧ (𝐹 “ (𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢)))))
1529, 146, 151mpbir2and 713 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) → 𝑦 ∈ (𝐹 lim 𝐶))
153152ex 412 . . . 4 (𝜑 → ((𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶)) → 𝑦 ∈ (𝐹 lim 𝐶)))
1548, 153biimtrid 242 . . 3 (𝜑 → (𝑦 ∈ (ℂ ∩ 𝑥𝐴 ((𝐹𝐵) lim 𝐶)) → 𝑦 ∈ (𝐹 lim 𝐶)))
155154ssrdv 3940 . 2 (𝜑 → (ℂ ∩ 𝑥𝐴 ((𝐹𝐵) lim 𝐶)) ⊆ (𝐹 lim 𝐶))
1567, 155eqssd 3952 1 (𝜑 → (𝐹 lim 𝐶) = (ℂ ∩ 𝑥𝐴 ((𝐹𝐵) lim 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wral 3047  wrex 3056  csb 3850  cdif 3899  cin 3901  wss 3902  {csn 4576   cint 4897   ciun 4941   ciin 4942  ran crn 5617  cres 5618  cima 5619   Fn wfn 6476  wf 6477  ontowfo 6479  cfv 6481  (class class class)co 7346  Fincfn 8869  cc 11001  TopOpenctopn 17322  fldccnfld 21289  Topctop 22806   lim climc 25788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fi 9295  df-sup 9326  df-inf 9327  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-q 12844  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-fz 13405  df-seq 13906  df-exp 13966  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-struct 17055  df-slot 17090  df-ndx 17102  df-base 17118  df-plusg 17171  df-mulr 17172  df-starv 17173  df-tset 17177  df-ple 17178  df-ds 17180  df-unif 17181  df-rest 17323  df-topn 17324  df-topgen 17344  df-psmet 21281  df-xmet 21282  df-met 21283  df-bl 21284  df-mopn 21285  df-cnfld 21290  df-top 22807  df-topon 22824  df-topsp 22846  df-bases 22859  df-cnp 23141  df-xms 24233  df-ms 24234  df-limc 25792
This theorem is referenced by:  limcun  25821
  Copyright terms: Public domain W3C validator