MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limciun Structured version   Visualization version   GIF version

Theorem limciun 25795
Description: A point is a limit of 𝐹 on the finite union 𝑥𝐴𝐵(𝑥) iff it is the limit of the restriction of 𝐹 to each 𝐵(𝑥). (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypotheses
Ref Expression
limciun.1 (𝜑𝐴 ∈ Fin)
limciun.2 (𝜑 → ∀𝑥𝐴 𝐵 ⊆ ℂ)
limciun.3 (𝜑𝐹: 𝑥𝐴 𝐵⟶ℂ)
limciun.4 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
limciun (𝜑 → (𝐹 lim 𝐶) = (ℂ ∩ 𝑥𝐴 ((𝐹𝐵) lim 𝐶)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐹
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem limciun
Dummy variables 𝑔 𝑎 𝑘 𝑢 𝑣 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 25776 . . . 4 (𝐹 lim 𝐶) ⊆ ℂ
2 limcresi 25786 . . . . . 6 (𝐹 lim 𝐶) ⊆ ((𝐹𝐵) lim 𝐶)
32rgenw 3048 . . . . 5 𝑥𝐴 (𝐹 lim 𝐶) ⊆ ((𝐹𝐵) lim 𝐶)
4 ssiin 5019 . . . . 5 ((𝐹 lim 𝐶) ⊆ 𝑥𝐴 ((𝐹𝐵) lim 𝐶) ↔ ∀𝑥𝐴 (𝐹 lim 𝐶) ⊆ ((𝐹𝐵) lim 𝐶))
53, 4mpbir 231 . . . 4 (𝐹 lim 𝐶) ⊆ 𝑥𝐴 ((𝐹𝐵) lim 𝐶)
61, 5ssini 4203 . . 3 (𝐹 lim 𝐶) ⊆ (ℂ ∩ 𝑥𝐴 ((𝐹𝐵) lim 𝐶))
76a1i 11 . 2 (𝜑 → (𝐹 lim 𝐶) ⊆ (ℂ ∩ 𝑥𝐴 ((𝐹𝐵) lim 𝐶)))
8 elriin 5045 . . . 4 (𝑦 ∈ (ℂ ∩ 𝑥𝐴 ((𝐹𝐵) lim 𝐶)) ↔ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶)))
9 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) → 𝑦 ∈ ℂ)
10 limciun.1 . . . . . . . . . . 11 (𝜑𝐴 ∈ Fin)
1110ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) → 𝐴 ∈ Fin)
12 simplrr 777 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) → ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))
13 nfcv 2891 . . . . . . . . . . . . . . . . . . . 20 𝑥𝐹
14 nfcsb1v 3886 . . . . . . . . . . . . . . . . . . . 20 𝑥𝑎 / 𝑥𝐵
1513, 14nfres 5952 . . . . . . . . . . . . . . . . . . 19 𝑥(𝐹𝑎 / 𝑥𝐵)
16 nfcv 2891 . . . . . . . . . . . . . . . . . . 19 𝑥 lim
17 nfcv 2891 . . . . . . . . . . . . . . . . . . 19 𝑥𝐶
1815, 16, 17nfov 7417 . . . . . . . . . . . . . . . . . 18 𝑥((𝐹𝑎 / 𝑥𝐵) lim 𝐶)
1918nfcri 2883 . . . . . . . . . . . . . . . . 17 𝑥 𝑦 ∈ ((𝐹𝑎 / 𝑥𝐵) lim 𝐶)
20 csbeq1a 3876 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑎𝐵 = 𝑎 / 𝑥𝐵)
2120reseq2d 5950 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → (𝐹𝐵) = (𝐹𝑎 / 𝑥𝐵))
2221oveq1d 7402 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → ((𝐹𝐵) lim 𝐶) = ((𝐹𝑎 / 𝑥𝐵) lim 𝐶))
2322eleq2d 2814 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → (𝑦 ∈ ((𝐹𝐵) lim 𝐶) ↔ 𝑦 ∈ ((𝐹𝑎 / 𝑥𝐵) lim 𝐶)))
2419, 23rspc 3576 . . . . . . . . . . . . . . . 16 (𝑎𝐴 → (∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶) → 𝑦 ∈ ((𝐹𝑎 / 𝑥𝐵) lim 𝐶)))
2512, 24mpan9 506 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ 𝑎𝐴) → 𝑦 ∈ ((𝐹𝑎 / 𝑥𝐵) lim 𝐶))
26 limciun.3 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹: 𝑥𝐴 𝐵⟶ℂ)
2726ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ 𝑎𝐴) → 𝐹: 𝑥𝐴 𝐵⟶ℂ)
28 ssiun2 5011 . . . . . . . . . . . . . . . . . . . 20 (𝑎𝐴𝑎 / 𝑥𝐵 𝑎𝐴 𝑎 / 𝑥𝐵)
29 nfcv 2891 . . . . . . . . . . . . . . . . . . . . 21 𝑎𝐵
3029, 14, 20cbviun 5000 . . . . . . . . . . . . . . . . . . . 20 𝑥𝐴 𝐵 = 𝑎𝐴 𝑎 / 𝑥𝐵
3128, 30sseqtrrdi 3988 . . . . . . . . . . . . . . . . . . 19 (𝑎𝐴𝑎 / 𝑥𝐵 𝑥𝐴 𝐵)
3231adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ 𝑎𝐴) → 𝑎 / 𝑥𝐵 𝑥𝐴 𝐵)
3327, 32fssresd 6727 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ 𝑎𝐴) → (𝐹𝑎 / 𝑥𝐵):𝑎 / 𝑥𝐵⟶ℂ)
34 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ 𝑎𝐴) → 𝑎𝐴)
35 limciun.2 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑥𝐴 𝐵 ⊆ ℂ)
3635ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ 𝑎𝐴) → ∀𝑥𝐴 𝐵 ⊆ ℂ)
37 nfcv 2891 . . . . . . . . . . . . . . . . . . . 20 𝑥
3814, 37nfss 3939 . . . . . . . . . . . . . . . . . . 19 𝑥𝑎 / 𝑥𝐵 ⊆ ℂ
3920sseq1d 3978 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → (𝐵 ⊆ ℂ ↔ 𝑎 / 𝑥𝐵 ⊆ ℂ))
4038, 39rspc 3576 . . . . . . . . . . . . . . . . . 18 (𝑎𝐴 → (∀𝑥𝐴 𝐵 ⊆ ℂ → 𝑎 / 𝑥𝐵 ⊆ ℂ))
4134, 36, 40sylc 65 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ 𝑎𝐴) → 𝑎 / 𝑥𝐵 ⊆ ℂ)
42 limciun.4 . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 ∈ ℂ)
4342ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ 𝑎𝐴) → 𝐶 ∈ ℂ)
44 eqid 2729 . . . . . . . . . . . . . . . . 17 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4533, 41, 43, 44ellimc2 25778 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ 𝑎𝐴) → (𝑦 ∈ ((𝐹𝑎 / 𝑥𝐵) lim 𝐶) ↔ (𝑦 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑦𝑢 → ∃𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢)))))
4645adantlr 715 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ 𝑎𝐴) → (𝑦 ∈ ((𝐹𝑎 / 𝑥𝐵) lim 𝐶) ↔ (𝑦 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑦𝑢 → ∃𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢)))))
4725, 46mpbid 232 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ 𝑎𝐴) → (𝑦 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑦𝑢 → ∃𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢))))
4847simprd 495 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ 𝑎𝐴) → ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑦𝑢 → ∃𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢)))
49 simplrl 776 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ 𝑎𝐴) → 𝑢 ∈ (TopOpen‘ℂfld))
50 simplrr 777 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ 𝑎𝐴) → 𝑦𝑢)
51 rsp 3225 . . . . . . . . . . . . 13 (∀𝑢 ∈ (TopOpen‘ℂfld)(𝑦𝑢 → ∃𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢)) → (𝑢 ∈ (TopOpen‘ℂfld) → (𝑦𝑢 → ∃𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢))))
5248, 49, 50, 51syl3c 66 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ 𝑎𝐴) → ∃𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢))
5352ralrimiva 3125 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) → ∀𝑎𝐴𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢))
54 nfv 1914 . . . . . . . . . . . 12 𝑎𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢)
55 nfcv 2891 . . . . . . . . . . . . 13 𝑥(TopOpen‘ℂfld)
56 nfv 1914 . . . . . . . . . . . . . 14 𝑥 𝐶𝑘
57 nfcv 2891 . . . . . . . . . . . . . . . . 17 𝑥𝑘
58 nfcv 2891 . . . . . . . . . . . . . . . . . 18 𝑥{𝐶}
5914, 58nfdif 4092 . . . . . . . . . . . . . . . . 17 𝑥(𝑎 / 𝑥𝐵 ∖ {𝐶})
6057, 59nfin 4187 . . . . . . . . . . . . . . . 16 𝑥(𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))
6115, 60nfima 6039 . . . . . . . . . . . . . . 15 𝑥((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶})))
62 nfcv 2891 . . . . . . . . . . . . . . 15 𝑥𝑢
6361, 62nfss 3939 . . . . . . . . . . . . . 14 𝑥((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢
6456, 63nfan 1899 . . . . . . . . . . . . 13 𝑥(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢)
6555, 64nfrexw 3287 . . . . . . . . . . . 12 𝑥𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢)
6620difeq1d 4088 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → (𝐵 ∖ {𝐶}) = (𝑎 / 𝑥𝐵 ∖ {𝐶}))
6766ineq2d 4183 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → (𝑘 ∩ (𝐵 ∖ {𝐶})) = (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶})))
6821, 67imaeq12d 6032 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → ((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) = ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))))
6968sseq1d 3978 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → (((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢 ↔ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢))
7069anbi2d 630 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → ((𝐶𝑘 ∧ ((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢) ↔ (𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢)))
7170rexbidv 3157 . . . . . . . . . . . 12 (𝑥 = 𝑎 → (∃𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢) ↔ ∃𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢)))
7254, 65, 71cbvralw 3280 . . . . . . . . . . 11 (∀𝑥𝐴𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢) ↔ ∀𝑎𝐴𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢))
7353, 72sylibr 234 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) → ∀𝑥𝐴𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))
74 eleq2 2817 . . . . . . . . . . . 12 (𝑘 = (𝑔𝑥) → (𝐶𝑘𝐶 ∈ (𝑔𝑥)))
75 ineq1 4176 . . . . . . . . . . . . . 14 (𝑘 = (𝑔𝑥) → (𝑘 ∩ (𝐵 ∖ {𝐶})) = ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶})))
7675imaeq2d 6031 . . . . . . . . . . . . 13 (𝑘 = (𝑔𝑥) → ((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) = ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))))
7776sseq1d 3978 . . . . . . . . . . . 12 (𝑘 = (𝑔𝑥) → (((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢 ↔ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))
7874, 77anbi12d 632 . . . . . . . . . . 11 (𝑘 = (𝑔𝑥) → ((𝐶𝑘 ∧ ((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢) ↔ (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢)))
7978ac6sfi 9231 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢)) → ∃𝑔(𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢)))
8011, 73, 79syl2anc 584 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) → ∃𝑔(𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢)))
8144cnfldtop 24671 . . . . . . . . . . 11 (TopOpen‘ℂfld) ∈ Top
82 frn 6695 . . . . . . . . . . . 12 (𝑔:𝐴⟶(TopOpen‘ℂfld) → ran 𝑔 ⊆ (TopOpen‘ℂfld))
8382ad2antrl 728 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → ran 𝑔 ⊆ (TopOpen‘ℂfld))
8411adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → 𝐴 ∈ Fin)
85 ffn 6688 . . . . . . . . . . . . . 14 (𝑔:𝐴⟶(TopOpen‘ℂfld) → 𝑔 Fn 𝐴)
8685ad2antrl 728 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → 𝑔 Fn 𝐴)
87 dffn4 6778 . . . . . . . . . . . . 13 (𝑔 Fn 𝐴𝑔:𝐴onto→ran 𝑔)
8886, 87sylib 218 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → 𝑔:𝐴onto→ran 𝑔)
89 fofi 9262 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝑔:𝐴onto→ran 𝑔) → ran 𝑔 ∈ Fin)
9084, 88, 89syl2anc 584 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → ran 𝑔 ∈ Fin)
91 unicntop 24673 . . . . . . . . . . . 12 ℂ = (TopOpen‘ℂfld)
9291rintopn 22796 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ∈ Top ∧ ran 𝑔 ⊆ (TopOpen‘ℂfld) ∧ ran 𝑔 ∈ Fin) → (ℂ ∩ ran 𝑔) ∈ (TopOpen‘ℂfld))
9381, 83, 90, 92mp3an2i 1468 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → (ℂ ∩ ran 𝑔) ∈ (TopOpen‘ℂfld))
9442adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) → 𝐶 ∈ ℂ)
9594ad2antrr 726 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → 𝐶 ∈ ℂ)
96 simpl 482 . . . . . . . . . . . . . 14 ((𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢) → 𝐶 ∈ (𝑔𝑥))
9796ralimi 3066 . . . . . . . . . . . . 13 (∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢) → ∀𝑥𝐴 𝐶 ∈ (𝑔𝑥))
9897ad2antll 729 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → ∀𝑥𝐴 𝐶 ∈ (𝑔𝑥))
99 eleq2 2817 . . . . . . . . . . . . . 14 (𝑧 = (𝑔𝑥) → (𝐶𝑧𝐶 ∈ (𝑔𝑥)))
10099ralrn 7060 . . . . . . . . . . . . 13 (𝑔 Fn 𝐴 → (∀𝑧 ∈ ran 𝑔 𝐶𝑧 ↔ ∀𝑥𝐴 𝐶 ∈ (𝑔𝑥)))
10186, 100syl 17 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → (∀𝑧 ∈ ran 𝑔 𝐶𝑧 ↔ ∀𝑥𝐴 𝐶 ∈ (𝑔𝑥)))
10298, 101mpbird 257 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → ∀𝑧 ∈ ran 𝑔 𝐶𝑧)
103 elrint 4953 . . . . . . . . . . 11 (𝐶 ∈ (ℂ ∩ ran 𝑔) ↔ (𝐶 ∈ ℂ ∧ ∀𝑧 ∈ ran 𝑔 𝐶𝑧))
10495, 102, 103sylanbrc 583 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → 𝐶 ∈ (ℂ ∩ ran 𝑔))
105 indifcom 4246 . . . . . . . . . . . . . 14 ((ℂ ∩ ran 𝑔) ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶})) = ( 𝑥𝐴 𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))
106 iunin1 5036 . . . . . . . . . . . . . 14 𝑥𝐴 (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶})) = ( 𝑥𝐴 𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))
107105, 106eqtr4i 2755 . . . . . . . . . . . . 13 ((ℂ ∩ ran 𝑔) ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶})) = 𝑥𝐴 (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))
108107imaeq2i 6029 . . . . . . . . . . . 12 (𝐹 “ ((ℂ ∩ ran 𝑔) ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) = (𝐹 𝑥𝐴 (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶})))
109 imaiun 7219 . . . . . . . . . . . 12 (𝐹 𝑥𝐴 (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) = 𝑥𝐴 (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶})))
110108, 109eqtri 2752 . . . . . . . . . . 11 (𝐹 “ ((ℂ ∩ ran 𝑔) ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) = 𝑥𝐴 (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶})))
111 inss2 4201 . . . . . . . . . . . . . . . . . . . . 21 (ℂ ∩ ran 𝑔) ⊆ ran 𝑔
112 fnfvelrn 7052 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔 Fn 𝐴𝑥𝐴) → (𝑔𝑥) ∈ ran 𝑔)
11385, 112sylan 580 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ 𝑥𝐴) → (𝑔𝑥) ∈ ran 𝑔)
114 intss1 4927 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑔𝑥) ∈ ran 𝑔 ran 𝑔 ⊆ (𝑔𝑥))
115113, 114syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ 𝑥𝐴) → ran 𝑔 ⊆ (𝑔𝑥))
116111, 115sstrid 3958 . . . . . . . . . . . . . . . . . . . 20 ((𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ 𝑥𝐴) → (ℂ ∩ ran 𝑔) ⊆ (𝑔𝑥))
117116ssdifd 4108 . . . . . . . . . . . . . . . . . . 19 ((𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ 𝑥𝐴) → ((ℂ ∩ ran 𝑔) ∖ {𝐶}) ⊆ ((𝑔𝑥) ∖ {𝐶}))
118 sslin 4206 . . . . . . . . . . . . . . . . . . 19 (((ℂ ∩ ran 𝑔) ∖ {𝐶}) ⊆ ((𝑔𝑥) ∖ {𝐶}) → (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶})) ⊆ (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶})))
119 imass2 6073 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶})) ⊆ (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶})) → (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ (𝐹 “ (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶}))))
120117, 118, 1193syl 18 . . . . . . . . . . . . . . . . . 18 ((𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ 𝑥𝐴) → (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ (𝐹 “ (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶}))))
121 indifcom 4246 . . . . . . . . . . . . . . . . . . . 20 ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶})) = (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶}))
122121imaeq2i 6029 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) = ((𝐹𝐵) “ (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶})))
123 inss1 4200 . . . . . . . . . . . . . . . . . . . 20 (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶})) ⊆ 𝐵
124 resima2 5987 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∩ ((𝑔𝑥) ∖ {𝐶})) ⊆ 𝐵 → ((𝐹𝐵) “ (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶}))) = (𝐹 “ (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶}))))
125123, 124ax-mp 5 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝐵) “ (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶}))) = (𝐹 “ (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶})))
126122, 125eqtri 2752 . . . . . . . . . . . . . . . . . 18 ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) = (𝐹 “ (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶})))
127120, 126sseqtrrdi 3988 . . . . . . . . . . . . . . . . 17 ((𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ 𝑥𝐴) → (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))))
128 sstr2 3953 . . . . . . . . . . . . . . . . 17 ((𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) → (((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢 → (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ 𝑢))
129127, 128syl 17 . . . . . . . . . . . . . . . 16 ((𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ 𝑥𝐴) → (((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢 → (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ 𝑢))
130129adantld 490 . . . . . . . . . . . . . . 15 ((𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ 𝑥𝐴) → ((𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢) → (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ 𝑢))
131130ralimdva 3145 . . . . . . . . . . . . . 14 (𝑔:𝐴⟶(TopOpen‘ℂfld) → (∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢) → ∀𝑥𝐴 (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ 𝑢))
132131imp 406 . . . . . . . . . . . . 13 ((𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢)) → ∀𝑥𝐴 (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ 𝑢)
133132adantl 481 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → ∀𝑥𝐴 (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ 𝑢)
134 iunss 5009 . . . . . . . . . . . 12 ( 𝑥𝐴 (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ 𝑢 ↔ ∀𝑥𝐴 (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ 𝑢)
135133, 134sylibr 234 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → 𝑥𝐴 (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ 𝑢)
136110, 135eqsstrid 3985 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → (𝐹 “ ((ℂ ∩ ran 𝑔) ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢)
137 eleq2 2817 . . . . . . . . . . . 12 (𝑣 = (ℂ ∩ ran 𝑔) → (𝐶𝑣𝐶 ∈ (ℂ ∩ ran 𝑔)))
138 ineq1 4176 . . . . . . . . . . . . . 14 (𝑣 = (ℂ ∩ ran 𝑔) → (𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶})) = ((ℂ ∩ ran 𝑔) ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶})))
139138imaeq2d 6031 . . . . . . . . . . . . 13 (𝑣 = (ℂ ∩ ran 𝑔) → (𝐹 “ (𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) = (𝐹 “ ((ℂ ∩ ran 𝑔) ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))))
140139sseq1d 3978 . . . . . . . . . . . 12 (𝑣 = (ℂ ∩ ran 𝑔) → ((𝐹 “ (𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢 ↔ (𝐹 “ ((ℂ ∩ ran 𝑔) ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢))
141137, 140anbi12d 632 . . . . . . . . . . 11 (𝑣 = (ℂ ∩ ran 𝑔) → ((𝐶𝑣 ∧ (𝐹 “ (𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢) ↔ (𝐶 ∈ (ℂ ∩ ran 𝑔) ∧ (𝐹 “ ((ℂ ∩ ran 𝑔) ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢)))
142141rspcev 3588 . . . . . . . . . 10 (((ℂ ∩ ran 𝑔) ∈ (TopOpen‘ℂfld) ∧ (𝐶 ∈ (ℂ ∩ ran 𝑔) ∧ (𝐹 “ ((ℂ ∩ ran 𝑔) ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢)) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐶𝑣 ∧ (𝐹 “ (𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢))
14393, 104, 136, 142syl12anc 836 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐶𝑣 ∧ (𝐹 “ (𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢))
14480, 143exlimddv 1935 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐶𝑣 ∧ (𝐹 “ (𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢))
145144expr 456 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ 𝑢 ∈ (TopOpen‘ℂfld)) → (𝑦𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐶𝑣 ∧ (𝐹 “ (𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢)))
146145ralrimiva 3125 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) → ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑦𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐶𝑣 ∧ (𝐹 “ (𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢)))
14726adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) → 𝐹: 𝑥𝐴 𝐵⟶ℂ)
148 iunss 5009 . . . . . . . . 9 ( 𝑥𝐴 𝐵 ⊆ ℂ ↔ ∀𝑥𝐴 𝐵 ⊆ ℂ)
14935, 148sylibr 234 . . . . . . . 8 (𝜑 𝑥𝐴 𝐵 ⊆ ℂ)
150149adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) → 𝑥𝐴 𝐵 ⊆ ℂ)
151147, 150, 94, 44ellimc2 25778 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) → (𝑦 ∈ (𝐹 lim 𝐶) ↔ (𝑦 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑦𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐶𝑣 ∧ (𝐹 “ (𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢)))))
1529, 146, 151mpbir2and 713 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) → 𝑦 ∈ (𝐹 lim 𝐶))
153152ex 412 . . . 4 (𝜑 → ((𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶)) → 𝑦 ∈ (𝐹 lim 𝐶)))
1548, 153biimtrid 242 . . 3 (𝜑 → (𝑦 ∈ (ℂ ∩ 𝑥𝐴 ((𝐹𝐵) lim 𝐶)) → 𝑦 ∈ (𝐹 lim 𝐶)))
155154ssrdv 3952 . 2 (𝜑 → (ℂ ∩ 𝑥𝐴 ((𝐹𝐵) lim 𝐶)) ⊆ (𝐹 lim 𝐶))
1567, 155eqssd 3964 1 (𝜑 → (𝐹 lim 𝐶) = (ℂ ∩ 𝑥𝐴 ((𝐹𝐵) lim 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  csb 3862  cdif 3911  cin 3913  wss 3914  {csn 4589   cint 4910   ciun 4955   ciin 4956  ran crn 5639  cres 5640  cima 5641   Fn wfn 6506  wf 6507  ontowfo 6509  cfv 6511  (class class class)co 7387  Fincfn 8918  cc 11066  TopOpenctopn 17384  fldccnfld 21264  Topctop 22780   lim climc 25763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-fz 13469  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-starv 17235  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-rest 17385  df-topn 17386  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cnp 23115  df-xms 24208  df-ms 24209  df-limc 25767
This theorem is referenced by:  limcun  25796
  Copyright terms: Public domain W3C validator