MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limciun Structured version   Visualization version   GIF version

Theorem limciun 25402
Description: A point is a limit of 𝐹 on the finite union βˆͺ π‘₯ ∈ 𝐴𝐡(π‘₯) iff it is the limit of the restriction of 𝐹 to each 𝐡(π‘₯). (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypotheses
Ref Expression
limciun.1 (πœ‘ β†’ 𝐴 ∈ Fin)
limciun.2 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝐴 𝐡 βŠ† β„‚)
limciun.3 (πœ‘ β†’ 𝐹:βˆͺ π‘₯ ∈ 𝐴 π΅βŸΆβ„‚)
limciun.4 (πœ‘ β†’ 𝐢 ∈ β„‚)
Assertion
Ref Expression
limciun (πœ‘ β†’ (𝐹 limβ„‚ 𝐢) = (β„‚ ∩ ∩ π‘₯ ∈ 𝐴 ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢)))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝐢   π‘₯,𝐹
Allowed substitution hints:   πœ‘(π‘₯)   𝐡(π‘₯)

Proof of Theorem limciun
Dummy variables 𝑔 π‘Ž π‘˜ 𝑒 𝑣 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 25383 . . . 4 (𝐹 limβ„‚ 𝐢) βŠ† β„‚
2 limcresi 25393 . . . . . 6 (𝐹 limβ„‚ 𝐢) βŠ† ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢)
32rgenw 3065 . . . . 5 βˆ€π‘₯ ∈ 𝐴 (𝐹 limβ„‚ 𝐢) βŠ† ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢)
4 ssiin 5057 . . . . 5 ((𝐹 limβ„‚ 𝐢) βŠ† ∩ π‘₯ ∈ 𝐴 ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢) ↔ βˆ€π‘₯ ∈ 𝐴 (𝐹 limβ„‚ 𝐢) βŠ† ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))
53, 4mpbir 230 . . . 4 (𝐹 limβ„‚ 𝐢) βŠ† ∩ π‘₯ ∈ 𝐴 ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢)
61, 5ssini 4230 . . 3 (𝐹 limβ„‚ 𝐢) βŠ† (β„‚ ∩ ∩ π‘₯ ∈ 𝐴 ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))
76a1i 11 . 2 (πœ‘ β†’ (𝐹 limβ„‚ 𝐢) βŠ† (β„‚ ∩ ∩ π‘₯ ∈ 𝐴 ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢)))
8 elriin 5083 . . . 4 (𝑦 ∈ (β„‚ ∩ ∩ π‘₯ ∈ 𝐴 ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢)) ↔ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢)))
9 simprl 769 . . . . . 6 ((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) β†’ 𝑦 ∈ β„‚)
10 limciun.1 . . . . . . . . . . 11 (πœ‘ β†’ 𝐴 ∈ Fin)
1110ad2antrr 724 . . . . . . . . . 10 (((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) ∧ (𝑒 ∈ (TopOpenβ€˜β„‚fld) ∧ 𝑦 ∈ 𝑒)) β†’ 𝐴 ∈ Fin)
12 simplrr 776 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) ∧ (𝑒 ∈ (TopOpenβ€˜β„‚fld) ∧ 𝑦 ∈ 𝑒)) β†’ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))
13 nfcv 2903 . . . . . . . . . . . . . . . . . . . 20 β„²π‘₯𝐹
14 nfcsb1v 3917 . . . . . . . . . . . . . . . . . . . 20 β„²π‘₯β¦‹π‘Ž / π‘₯⦌𝐡
1513, 14nfres 5981 . . . . . . . . . . . . . . . . . . 19 β„²π‘₯(𝐹 β†Ύ β¦‹π‘Ž / π‘₯⦌𝐡)
16 nfcv 2903 . . . . . . . . . . . . . . . . . . 19 β„²π‘₯ limβ„‚
17 nfcv 2903 . . . . . . . . . . . . . . . . . . 19 β„²π‘₯𝐢
1815, 16, 17nfov 7435 . . . . . . . . . . . . . . . . . 18 β„²π‘₯((𝐹 β†Ύ β¦‹π‘Ž / π‘₯⦌𝐡) limβ„‚ 𝐢)
1918nfcri 2890 . . . . . . . . . . . . . . . . 17 β„²π‘₯ 𝑦 ∈ ((𝐹 β†Ύ β¦‹π‘Ž / π‘₯⦌𝐡) limβ„‚ 𝐢)
20 csbeq1a 3906 . . . . . . . . . . . . . . . . . . . 20 (π‘₯ = π‘Ž β†’ 𝐡 = β¦‹π‘Ž / π‘₯⦌𝐡)
2120reseq2d 5979 . . . . . . . . . . . . . . . . . . 19 (π‘₯ = π‘Ž β†’ (𝐹 β†Ύ 𝐡) = (𝐹 β†Ύ β¦‹π‘Ž / π‘₯⦌𝐡))
2221oveq1d 7420 . . . . . . . . . . . . . . . . . 18 (π‘₯ = π‘Ž β†’ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢) = ((𝐹 β†Ύ β¦‹π‘Ž / π‘₯⦌𝐡) limβ„‚ 𝐢))
2322eleq2d 2819 . . . . . . . . . . . . . . . . 17 (π‘₯ = π‘Ž β†’ (𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢) ↔ 𝑦 ∈ ((𝐹 β†Ύ β¦‹π‘Ž / π‘₯⦌𝐡) limβ„‚ 𝐢)))
2419, 23rspc 3600 . . . . . . . . . . . . . . . 16 (π‘Ž ∈ 𝐴 β†’ (βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢) β†’ 𝑦 ∈ ((𝐹 β†Ύ β¦‹π‘Ž / π‘₯⦌𝐡) limβ„‚ 𝐢)))
2512, 24mpan9 507 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) ∧ (𝑒 ∈ (TopOpenβ€˜β„‚fld) ∧ 𝑦 ∈ 𝑒)) ∧ π‘Ž ∈ 𝐴) β†’ 𝑦 ∈ ((𝐹 β†Ύ β¦‹π‘Ž / π‘₯⦌𝐡) limβ„‚ 𝐢))
26 limciun.3 . . . . . . . . . . . . . . . . . . 19 (πœ‘ β†’ 𝐹:βˆͺ π‘₯ ∈ 𝐴 π΅βŸΆβ„‚)
2726ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) ∧ π‘Ž ∈ 𝐴) β†’ 𝐹:βˆͺ π‘₯ ∈ 𝐴 π΅βŸΆβ„‚)
28 ssiun2 5049 . . . . . . . . . . . . . . . . . . . 20 (π‘Ž ∈ 𝐴 β†’ β¦‹π‘Ž / π‘₯⦌𝐡 βŠ† βˆͺ π‘Ž ∈ 𝐴 β¦‹π‘Ž / π‘₯⦌𝐡)
29 nfcv 2903 . . . . . . . . . . . . . . . . . . . . 21 β„²π‘Žπ΅
3029, 14, 20cbviun 5038 . . . . . . . . . . . . . . . . . . . 20 βˆͺ π‘₯ ∈ 𝐴 𝐡 = βˆͺ π‘Ž ∈ 𝐴 β¦‹π‘Ž / π‘₯⦌𝐡
3128, 30sseqtrrdi 4032 . . . . . . . . . . . . . . . . . . 19 (π‘Ž ∈ 𝐴 β†’ β¦‹π‘Ž / π‘₯⦌𝐡 βŠ† βˆͺ π‘₯ ∈ 𝐴 𝐡)
3231adantl 482 . . . . . . . . . . . . . . . . . 18 (((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) ∧ π‘Ž ∈ 𝐴) β†’ β¦‹π‘Ž / π‘₯⦌𝐡 βŠ† βˆͺ π‘₯ ∈ 𝐴 𝐡)
3327, 32fssresd 6755 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) ∧ π‘Ž ∈ 𝐴) β†’ (𝐹 β†Ύ β¦‹π‘Ž / π‘₯⦌𝐡):β¦‹π‘Ž / π‘₯β¦Œπ΅βŸΆβ„‚)
34 simpr 485 . . . . . . . . . . . . . . . . . 18 (((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) ∧ π‘Ž ∈ 𝐴) β†’ π‘Ž ∈ 𝐴)
35 limciun.2 . . . . . . . . . . . . . . . . . . 19 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝐴 𝐡 βŠ† β„‚)
3635ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) ∧ π‘Ž ∈ 𝐴) β†’ βˆ€π‘₯ ∈ 𝐴 𝐡 βŠ† β„‚)
37 nfcv 2903 . . . . . . . . . . . . . . . . . . . 20 β„²π‘₯β„‚
3814, 37nfss 3973 . . . . . . . . . . . . . . . . . . 19 β„²π‘₯β¦‹π‘Ž / π‘₯⦌𝐡 βŠ† β„‚
3920sseq1d 4012 . . . . . . . . . . . . . . . . . . 19 (π‘₯ = π‘Ž β†’ (𝐡 βŠ† β„‚ ↔ β¦‹π‘Ž / π‘₯⦌𝐡 βŠ† β„‚))
4038, 39rspc 3600 . . . . . . . . . . . . . . . . . 18 (π‘Ž ∈ 𝐴 β†’ (βˆ€π‘₯ ∈ 𝐴 𝐡 βŠ† β„‚ β†’ β¦‹π‘Ž / π‘₯⦌𝐡 βŠ† β„‚))
4134, 36, 40sylc 65 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) ∧ π‘Ž ∈ 𝐴) β†’ β¦‹π‘Ž / π‘₯⦌𝐡 βŠ† β„‚)
42 limciun.4 . . . . . . . . . . . . . . . . . 18 (πœ‘ β†’ 𝐢 ∈ β„‚)
4342ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) ∧ π‘Ž ∈ 𝐴) β†’ 𝐢 ∈ β„‚)
44 eqid 2732 . . . . . . . . . . . . . . . . 17 (TopOpenβ€˜β„‚fld) = (TopOpenβ€˜β„‚fld)
4533, 41, 43, 44ellimc2 25385 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) ∧ π‘Ž ∈ 𝐴) β†’ (𝑦 ∈ ((𝐹 β†Ύ β¦‹π‘Ž / π‘₯⦌𝐡) limβ„‚ 𝐢) ↔ (𝑦 ∈ β„‚ ∧ βˆ€π‘’ ∈ (TopOpenβ€˜β„‚fld)(𝑦 ∈ 𝑒 β†’ βˆƒπ‘˜ ∈ (TopOpenβ€˜β„‚fld)(𝐢 ∈ π‘˜ ∧ ((𝐹 β†Ύ β¦‹π‘Ž / π‘₯⦌𝐡) β€œ (π‘˜ ∩ (β¦‹π‘Ž / π‘₯⦌𝐡 βˆ– {𝐢}))) βŠ† 𝑒)))))
4645adantlr 713 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) ∧ (𝑒 ∈ (TopOpenβ€˜β„‚fld) ∧ 𝑦 ∈ 𝑒)) ∧ π‘Ž ∈ 𝐴) β†’ (𝑦 ∈ ((𝐹 β†Ύ β¦‹π‘Ž / π‘₯⦌𝐡) limβ„‚ 𝐢) ↔ (𝑦 ∈ β„‚ ∧ βˆ€π‘’ ∈ (TopOpenβ€˜β„‚fld)(𝑦 ∈ 𝑒 β†’ βˆƒπ‘˜ ∈ (TopOpenβ€˜β„‚fld)(𝐢 ∈ π‘˜ ∧ ((𝐹 β†Ύ β¦‹π‘Ž / π‘₯⦌𝐡) β€œ (π‘˜ ∩ (β¦‹π‘Ž / π‘₯⦌𝐡 βˆ– {𝐢}))) βŠ† 𝑒)))))
4725, 46mpbid 231 . . . . . . . . . . . . . 14 ((((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) ∧ (𝑒 ∈ (TopOpenβ€˜β„‚fld) ∧ 𝑦 ∈ 𝑒)) ∧ π‘Ž ∈ 𝐴) β†’ (𝑦 ∈ β„‚ ∧ βˆ€π‘’ ∈ (TopOpenβ€˜β„‚fld)(𝑦 ∈ 𝑒 β†’ βˆƒπ‘˜ ∈ (TopOpenβ€˜β„‚fld)(𝐢 ∈ π‘˜ ∧ ((𝐹 β†Ύ β¦‹π‘Ž / π‘₯⦌𝐡) β€œ (π‘˜ ∩ (β¦‹π‘Ž / π‘₯⦌𝐡 βˆ– {𝐢}))) βŠ† 𝑒))))
4847simprd 496 . . . . . . . . . . . . 13 ((((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) ∧ (𝑒 ∈ (TopOpenβ€˜β„‚fld) ∧ 𝑦 ∈ 𝑒)) ∧ π‘Ž ∈ 𝐴) β†’ βˆ€π‘’ ∈ (TopOpenβ€˜β„‚fld)(𝑦 ∈ 𝑒 β†’ βˆƒπ‘˜ ∈ (TopOpenβ€˜β„‚fld)(𝐢 ∈ π‘˜ ∧ ((𝐹 β†Ύ β¦‹π‘Ž / π‘₯⦌𝐡) β€œ (π‘˜ ∩ (β¦‹π‘Ž / π‘₯⦌𝐡 βˆ– {𝐢}))) βŠ† 𝑒)))
49 simplrl 775 . . . . . . . . . . . . 13 ((((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) ∧ (𝑒 ∈ (TopOpenβ€˜β„‚fld) ∧ 𝑦 ∈ 𝑒)) ∧ π‘Ž ∈ 𝐴) β†’ 𝑒 ∈ (TopOpenβ€˜β„‚fld))
50 simplrr 776 . . . . . . . . . . . . 13 ((((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) ∧ (𝑒 ∈ (TopOpenβ€˜β„‚fld) ∧ 𝑦 ∈ 𝑒)) ∧ π‘Ž ∈ 𝐴) β†’ 𝑦 ∈ 𝑒)
51 rsp 3244 . . . . . . . . . . . . 13 (βˆ€π‘’ ∈ (TopOpenβ€˜β„‚fld)(𝑦 ∈ 𝑒 β†’ βˆƒπ‘˜ ∈ (TopOpenβ€˜β„‚fld)(𝐢 ∈ π‘˜ ∧ ((𝐹 β†Ύ β¦‹π‘Ž / π‘₯⦌𝐡) β€œ (π‘˜ ∩ (β¦‹π‘Ž / π‘₯⦌𝐡 βˆ– {𝐢}))) βŠ† 𝑒)) β†’ (𝑒 ∈ (TopOpenβ€˜β„‚fld) β†’ (𝑦 ∈ 𝑒 β†’ βˆƒπ‘˜ ∈ (TopOpenβ€˜β„‚fld)(𝐢 ∈ π‘˜ ∧ ((𝐹 β†Ύ β¦‹π‘Ž / π‘₯⦌𝐡) β€œ (π‘˜ ∩ (β¦‹π‘Ž / π‘₯⦌𝐡 βˆ– {𝐢}))) βŠ† 𝑒))))
5248, 49, 50, 51syl3c 66 . . . . . . . . . . . 12 ((((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) ∧ (𝑒 ∈ (TopOpenβ€˜β„‚fld) ∧ 𝑦 ∈ 𝑒)) ∧ π‘Ž ∈ 𝐴) β†’ βˆƒπ‘˜ ∈ (TopOpenβ€˜β„‚fld)(𝐢 ∈ π‘˜ ∧ ((𝐹 β†Ύ β¦‹π‘Ž / π‘₯⦌𝐡) β€œ (π‘˜ ∩ (β¦‹π‘Ž / π‘₯⦌𝐡 βˆ– {𝐢}))) βŠ† 𝑒))
5352ralrimiva 3146 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) ∧ (𝑒 ∈ (TopOpenβ€˜β„‚fld) ∧ 𝑦 ∈ 𝑒)) β†’ βˆ€π‘Ž ∈ 𝐴 βˆƒπ‘˜ ∈ (TopOpenβ€˜β„‚fld)(𝐢 ∈ π‘˜ ∧ ((𝐹 β†Ύ β¦‹π‘Ž / π‘₯⦌𝐡) β€œ (π‘˜ ∩ (β¦‹π‘Ž / π‘₯⦌𝐡 βˆ– {𝐢}))) βŠ† 𝑒))
54 nfv 1917 . . . . . . . . . . . 12 β„²π‘Žβˆƒπ‘˜ ∈ (TopOpenβ€˜β„‚fld)(𝐢 ∈ π‘˜ ∧ ((𝐹 β†Ύ 𝐡) β€œ (π‘˜ ∩ (𝐡 βˆ– {𝐢}))) βŠ† 𝑒)
55 nfcv 2903 . . . . . . . . . . . . 13 β„²π‘₯(TopOpenβ€˜β„‚fld)
56 nfv 1917 . . . . . . . . . . . . . 14 β„²π‘₯ 𝐢 ∈ π‘˜
57 nfcv 2903 . . . . . . . . . . . . . . . . 17 β„²π‘₯π‘˜
58 nfcv 2903 . . . . . . . . . . . . . . . . . 18 β„²π‘₯{𝐢}
5914, 58nfdif 4124 . . . . . . . . . . . . . . . . 17 β„²π‘₯(β¦‹π‘Ž / π‘₯⦌𝐡 βˆ– {𝐢})
6057, 59nfin 4215 . . . . . . . . . . . . . . . 16 β„²π‘₯(π‘˜ ∩ (β¦‹π‘Ž / π‘₯⦌𝐡 βˆ– {𝐢}))
6115, 60nfima 6065 . . . . . . . . . . . . . . 15 β„²π‘₯((𝐹 β†Ύ β¦‹π‘Ž / π‘₯⦌𝐡) β€œ (π‘˜ ∩ (β¦‹π‘Ž / π‘₯⦌𝐡 βˆ– {𝐢})))
62 nfcv 2903 . . . . . . . . . . . . . . 15 β„²π‘₯𝑒
6361, 62nfss 3973 . . . . . . . . . . . . . 14 β„²π‘₯((𝐹 β†Ύ β¦‹π‘Ž / π‘₯⦌𝐡) β€œ (π‘˜ ∩ (β¦‹π‘Ž / π‘₯⦌𝐡 βˆ– {𝐢}))) βŠ† 𝑒
6456, 63nfan 1902 . . . . . . . . . . . . 13 β„²π‘₯(𝐢 ∈ π‘˜ ∧ ((𝐹 β†Ύ β¦‹π‘Ž / π‘₯⦌𝐡) β€œ (π‘˜ ∩ (β¦‹π‘Ž / π‘₯⦌𝐡 βˆ– {𝐢}))) βŠ† 𝑒)
6555, 64nfrexw 3310 . . . . . . . . . . . 12 β„²π‘₯βˆƒπ‘˜ ∈ (TopOpenβ€˜β„‚fld)(𝐢 ∈ π‘˜ ∧ ((𝐹 β†Ύ β¦‹π‘Ž / π‘₯⦌𝐡) β€œ (π‘˜ ∩ (β¦‹π‘Ž / π‘₯⦌𝐡 βˆ– {𝐢}))) βŠ† 𝑒)
6620difeq1d 4120 . . . . . . . . . . . . . . . . 17 (π‘₯ = π‘Ž β†’ (𝐡 βˆ– {𝐢}) = (β¦‹π‘Ž / π‘₯⦌𝐡 βˆ– {𝐢}))
6766ineq2d 4211 . . . . . . . . . . . . . . . 16 (π‘₯ = π‘Ž β†’ (π‘˜ ∩ (𝐡 βˆ– {𝐢})) = (π‘˜ ∩ (β¦‹π‘Ž / π‘₯⦌𝐡 βˆ– {𝐢})))
6821, 67imaeq12d 6058 . . . . . . . . . . . . . . 15 (π‘₯ = π‘Ž β†’ ((𝐹 β†Ύ 𝐡) β€œ (π‘˜ ∩ (𝐡 βˆ– {𝐢}))) = ((𝐹 β†Ύ β¦‹π‘Ž / π‘₯⦌𝐡) β€œ (π‘˜ ∩ (β¦‹π‘Ž / π‘₯⦌𝐡 βˆ– {𝐢}))))
6968sseq1d 4012 . . . . . . . . . . . . . 14 (π‘₯ = π‘Ž β†’ (((𝐹 β†Ύ 𝐡) β€œ (π‘˜ ∩ (𝐡 βˆ– {𝐢}))) βŠ† 𝑒 ↔ ((𝐹 β†Ύ β¦‹π‘Ž / π‘₯⦌𝐡) β€œ (π‘˜ ∩ (β¦‹π‘Ž / π‘₯⦌𝐡 βˆ– {𝐢}))) βŠ† 𝑒))
7069anbi2d 629 . . . . . . . . . . . . 13 (π‘₯ = π‘Ž β†’ ((𝐢 ∈ π‘˜ ∧ ((𝐹 β†Ύ 𝐡) β€œ (π‘˜ ∩ (𝐡 βˆ– {𝐢}))) βŠ† 𝑒) ↔ (𝐢 ∈ π‘˜ ∧ ((𝐹 β†Ύ β¦‹π‘Ž / π‘₯⦌𝐡) β€œ (π‘˜ ∩ (β¦‹π‘Ž / π‘₯⦌𝐡 βˆ– {𝐢}))) βŠ† 𝑒)))
7170rexbidv 3178 . . . . . . . . . . . 12 (π‘₯ = π‘Ž β†’ (βˆƒπ‘˜ ∈ (TopOpenβ€˜β„‚fld)(𝐢 ∈ π‘˜ ∧ ((𝐹 β†Ύ 𝐡) β€œ (π‘˜ ∩ (𝐡 βˆ– {𝐢}))) βŠ† 𝑒) ↔ βˆƒπ‘˜ ∈ (TopOpenβ€˜β„‚fld)(𝐢 ∈ π‘˜ ∧ ((𝐹 β†Ύ β¦‹π‘Ž / π‘₯⦌𝐡) β€œ (π‘˜ ∩ (β¦‹π‘Ž / π‘₯⦌𝐡 βˆ– {𝐢}))) βŠ† 𝑒)))
7254, 65, 71cbvralw 3303 . . . . . . . . . . 11 (βˆ€π‘₯ ∈ 𝐴 βˆƒπ‘˜ ∈ (TopOpenβ€˜β„‚fld)(𝐢 ∈ π‘˜ ∧ ((𝐹 β†Ύ 𝐡) β€œ (π‘˜ ∩ (𝐡 βˆ– {𝐢}))) βŠ† 𝑒) ↔ βˆ€π‘Ž ∈ 𝐴 βˆƒπ‘˜ ∈ (TopOpenβ€˜β„‚fld)(𝐢 ∈ π‘˜ ∧ ((𝐹 β†Ύ β¦‹π‘Ž / π‘₯⦌𝐡) β€œ (π‘˜ ∩ (β¦‹π‘Ž / π‘₯⦌𝐡 βˆ– {𝐢}))) βŠ† 𝑒))
7353, 72sylibr 233 . . . . . . . . . 10 (((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) ∧ (𝑒 ∈ (TopOpenβ€˜β„‚fld) ∧ 𝑦 ∈ 𝑒)) β†’ βˆ€π‘₯ ∈ 𝐴 βˆƒπ‘˜ ∈ (TopOpenβ€˜β„‚fld)(𝐢 ∈ π‘˜ ∧ ((𝐹 β†Ύ 𝐡) β€œ (π‘˜ ∩ (𝐡 βˆ– {𝐢}))) βŠ† 𝑒))
74 eleq2 2822 . . . . . . . . . . . 12 (π‘˜ = (π‘”β€˜π‘₯) β†’ (𝐢 ∈ π‘˜ ↔ 𝐢 ∈ (π‘”β€˜π‘₯)))
75 ineq1 4204 . . . . . . . . . . . . . 14 (π‘˜ = (π‘”β€˜π‘₯) β†’ (π‘˜ ∩ (𝐡 βˆ– {𝐢})) = ((π‘”β€˜π‘₯) ∩ (𝐡 βˆ– {𝐢})))
7675imaeq2d 6057 . . . . . . . . . . . . 13 (π‘˜ = (π‘”β€˜π‘₯) β†’ ((𝐹 β†Ύ 𝐡) β€œ (π‘˜ ∩ (𝐡 βˆ– {𝐢}))) = ((𝐹 β†Ύ 𝐡) β€œ ((π‘”β€˜π‘₯) ∩ (𝐡 βˆ– {𝐢}))))
7776sseq1d 4012 . . . . . . . . . . . 12 (π‘˜ = (π‘”β€˜π‘₯) β†’ (((𝐹 β†Ύ 𝐡) β€œ (π‘˜ ∩ (𝐡 βˆ– {𝐢}))) βŠ† 𝑒 ↔ ((𝐹 β†Ύ 𝐡) β€œ ((π‘”β€˜π‘₯) ∩ (𝐡 βˆ– {𝐢}))) βŠ† 𝑒))
7874, 77anbi12d 631 . . . . . . . . . . 11 (π‘˜ = (π‘”β€˜π‘₯) β†’ ((𝐢 ∈ π‘˜ ∧ ((𝐹 β†Ύ 𝐡) β€œ (π‘˜ ∩ (𝐡 βˆ– {𝐢}))) βŠ† 𝑒) ↔ (𝐢 ∈ (π‘”β€˜π‘₯) ∧ ((𝐹 β†Ύ 𝐡) β€œ ((π‘”β€˜π‘₯) ∩ (𝐡 βˆ– {𝐢}))) βŠ† 𝑒)))
7978ac6sfi 9283 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ βˆ€π‘₯ ∈ 𝐴 βˆƒπ‘˜ ∈ (TopOpenβ€˜β„‚fld)(𝐢 ∈ π‘˜ ∧ ((𝐹 β†Ύ 𝐡) β€œ (π‘˜ ∩ (𝐡 βˆ– {𝐢}))) βŠ† 𝑒)) β†’ βˆƒπ‘”(𝑔:𝐴⟢(TopOpenβ€˜β„‚fld) ∧ βˆ€π‘₯ ∈ 𝐴 (𝐢 ∈ (π‘”β€˜π‘₯) ∧ ((𝐹 β†Ύ 𝐡) β€œ ((π‘”β€˜π‘₯) ∩ (𝐡 βˆ– {𝐢}))) βŠ† 𝑒)))
8011, 73, 79syl2anc 584 . . . . . . . . 9 (((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) ∧ (𝑒 ∈ (TopOpenβ€˜β„‚fld) ∧ 𝑦 ∈ 𝑒)) β†’ βˆƒπ‘”(𝑔:𝐴⟢(TopOpenβ€˜β„‚fld) ∧ βˆ€π‘₯ ∈ 𝐴 (𝐢 ∈ (π‘”β€˜π‘₯) ∧ ((𝐹 β†Ύ 𝐡) β€œ ((π‘”β€˜π‘₯) ∩ (𝐡 βˆ– {𝐢}))) βŠ† 𝑒)))
8144cnfldtop 24291 . . . . . . . . . . 11 (TopOpenβ€˜β„‚fld) ∈ Top
82 frn 6721 . . . . . . . . . . . 12 (𝑔:𝐴⟢(TopOpenβ€˜β„‚fld) β†’ ran 𝑔 βŠ† (TopOpenβ€˜β„‚fld))
8382ad2antrl 726 . . . . . . . . . . 11 ((((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) ∧ (𝑒 ∈ (TopOpenβ€˜β„‚fld) ∧ 𝑦 ∈ 𝑒)) ∧ (𝑔:𝐴⟢(TopOpenβ€˜β„‚fld) ∧ βˆ€π‘₯ ∈ 𝐴 (𝐢 ∈ (π‘”β€˜π‘₯) ∧ ((𝐹 β†Ύ 𝐡) β€œ ((π‘”β€˜π‘₯) ∩ (𝐡 βˆ– {𝐢}))) βŠ† 𝑒))) β†’ ran 𝑔 βŠ† (TopOpenβ€˜β„‚fld))
8411adantr 481 . . . . . . . . . . . 12 ((((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) ∧ (𝑒 ∈ (TopOpenβ€˜β„‚fld) ∧ 𝑦 ∈ 𝑒)) ∧ (𝑔:𝐴⟢(TopOpenβ€˜β„‚fld) ∧ βˆ€π‘₯ ∈ 𝐴 (𝐢 ∈ (π‘”β€˜π‘₯) ∧ ((𝐹 β†Ύ 𝐡) β€œ ((π‘”β€˜π‘₯) ∩ (𝐡 βˆ– {𝐢}))) βŠ† 𝑒))) β†’ 𝐴 ∈ Fin)
85 ffn 6714 . . . . . . . . . . . . . 14 (𝑔:𝐴⟢(TopOpenβ€˜β„‚fld) β†’ 𝑔 Fn 𝐴)
8685ad2antrl 726 . . . . . . . . . . . . 13 ((((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) ∧ (𝑒 ∈ (TopOpenβ€˜β„‚fld) ∧ 𝑦 ∈ 𝑒)) ∧ (𝑔:𝐴⟢(TopOpenβ€˜β„‚fld) ∧ βˆ€π‘₯ ∈ 𝐴 (𝐢 ∈ (π‘”β€˜π‘₯) ∧ ((𝐹 β†Ύ 𝐡) β€œ ((π‘”β€˜π‘₯) ∩ (𝐡 βˆ– {𝐢}))) βŠ† 𝑒))) β†’ 𝑔 Fn 𝐴)
87 dffn4 6808 . . . . . . . . . . . . 13 (𝑔 Fn 𝐴 ↔ 𝑔:𝐴–ontoβ†’ran 𝑔)
8886, 87sylib 217 . . . . . . . . . . . 12 ((((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) ∧ (𝑒 ∈ (TopOpenβ€˜β„‚fld) ∧ 𝑦 ∈ 𝑒)) ∧ (𝑔:𝐴⟢(TopOpenβ€˜β„‚fld) ∧ βˆ€π‘₯ ∈ 𝐴 (𝐢 ∈ (π‘”β€˜π‘₯) ∧ ((𝐹 β†Ύ 𝐡) β€œ ((π‘”β€˜π‘₯) ∩ (𝐡 βˆ– {𝐢}))) βŠ† 𝑒))) β†’ 𝑔:𝐴–ontoβ†’ran 𝑔)
89 fofi 9334 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝑔:𝐴–ontoβ†’ran 𝑔) β†’ ran 𝑔 ∈ Fin)
9084, 88, 89syl2anc 584 . . . . . . . . . . 11 ((((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) ∧ (𝑒 ∈ (TopOpenβ€˜β„‚fld) ∧ 𝑦 ∈ 𝑒)) ∧ (𝑔:𝐴⟢(TopOpenβ€˜β„‚fld) ∧ βˆ€π‘₯ ∈ 𝐴 (𝐢 ∈ (π‘”β€˜π‘₯) ∧ ((𝐹 β†Ύ 𝐡) β€œ ((π‘”β€˜π‘₯) ∩ (𝐡 βˆ– {𝐢}))) βŠ† 𝑒))) β†’ ran 𝑔 ∈ Fin)
91 unicntop 24293 . . . . . . . . . . . 12 β„‚ = βˆͺ (TopOpenβ€˜β„‚fld)
9291rintopn 22402 . . . . . . . . . . 11 (((TopOpenβ€˜β„‚fld) ∈ Top ∧ ran 𝑔 βŠ† (TopOpenβ€˜β„‚fld) ∧ ran 𝑔 ∈ Fin) β†’ (β„‚ ∩ ∩ ran 𝑔) ∈ (TopOpenβ€˜β„‚fld))
9381, 83, 90, 92mp3an2i 1466 . . . . . . . . . 10 ((((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) ∧ (𝑒 ∈ (TopOpenβ€˜β„‚fld) ∧ 𝑦 ∈ 𝑒)) ∧ (𝑔:𝐴⟢(TopOpenβ€˜β„‚fld) ∧ βˆ€π‘₯ ∈ 𝐴 (𝐢 ∈ (π‘”β€˜π‘₯) ∧ ((𝐹 β†Ύ 𝐡) β€œ ((π‘”β€˜π‘₯) ∩ (𝐡 βˆ– {𝐢}))) βŠ† 𝑒))) β†’ (β„‚ ∩ ∩ ran 𝑔) ∈ (TopOpenβ€˜β„‚fld))
9442adantr 481 . . . . . . . . . . . 12 ((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) β†’ 𝐢 ∈ β„‚)
9594ad2antrr 724 . . . . . . . . . . 11 ((((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) ∧ (𝑒 ∈ (TopOpenβ€˜β„‚fld) ∧ 𝑦 ∈ 𝑒)) ∧ (𝑔:𝐴⟢(TopOpenβ€˜β„‚fld) ∧ βˆ€π‘₯ ∈ 𝐴 (𝐢 ∈ (π‘”β€˜π‘₯) ∧ ((𝐹 β†Ύ 𝐡) β€œ ((π‘”β€˜π‘₯) ∩ (𝐡 βˆ– {𝐢}))) βŠ† 𝑒))) β†’ 𝐢 ∈ β„‚)
96 simpl 483 . . . . . . . . . . . . . 14 ((𝐢 ∈ (π‘”β€˜π‘₯) ∧ ((𝐹 β†Ύ 𝐡) β€œ ((π‘”β€˜π‘₯) ∩ (𝐡 βˆ– {𝐢}))) βŠ† 𝑒) β†’ 𝐢 ∈ (π‘”β€˜π‘₯))
9796ralimi 3083 . . . . . . . . . . . . 13 (βˆ€π‘₯ ∈ 𝐴 (𝐢 ∈ (π‘”β€˜π‘₯) ∧ ((𝐹 β†Ύ 𝐡) β€œ ((π‘”β€˜π‘₯) ∩ (𝐡 βˆ– {𝐢}))) βŠ† 𝑒) β†’ βˆ€π‘₯ ∈ 𝐴 𝐢 ∈ (π‘”β€˜π‘₯))
9897ad2antll 727 . . . . . . . . . . . 12 ((((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) ∧ (𝑒 ∈ (TopOpenβ€˜β„‚fld) ∧ 𝑦 ∈ 𝑒)) ∧ (𝑔:𝐴⟢(TopOpenβ€˜β„‚fld) ∧ βˆ€π‘₯ ∈ 𝐴 (𝐢 ∈ (π‘”β€˜π‘₯) ∧ ((𝐹 β†Ύ 𝐡) β€œ ((π‘”β€˜π‘₯) ∩ (𝐡 βˆ– {𝐢}))) βŠ† 𝑒))) β†’ βˆ€π‘₯ ∈ 𝐴 𝐢 ∈ (π‘”β€˜π‘₯))
99 eleq2 2822 . . . . . . . . . . . . . 14 (𝑧 = (π‘”β€˜π‘₯) β†’ (𝐢 ∈ 𝑧 ↔ 𝐢 ∈ (π‘”β€˜π‘₯)))
10099ralrn 7086 . . . . . . . . . . . . 13 (𝑔 Fn 𝐴 β†’ (βˆ€π‘§ ∈ ran 𝑔 𝐢 ∈ 𝑧 ↔ βˆ€π‘₯ ∈ 𝐴 𝐢 ∈ (π‘”β€˜π‘₯)))
10186, 100syl 17 . . . . . . . . . . . 12 ((((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) ∧ (𝑒 ∈ (TopOpenβ€˜β„‚fld) ∧ 𝑦 ∈ 𝑒)) ∧ (𝑔:𝐴⟢(TopOpenβ€˜β„‚fld) ∧ βˆ€π‘₯ ∈ 𝐴 (𝐢 ∈ (π‘”β€˜π‘₯) ∧ ((𝐹 β†Ύ 𝐡) β€œ ((π‘”β€˜π‘₯) ∩ (𝐡 βˆ– {𝐢}))) βŠ† 𝑒))) β†’ (βˆ€π‘§ ∈ ran 𝑔 𝐢 ∈ 𝑧 ↔ βˆ€π‘₯ ∈ 𝐴 𝐢 ∈ (π‘”β€˜π‘₯)))
10298, 101mpbird 256 . . . . . . . . . . 11 ((((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) ∧ (𝑒 ∈ (TopOpenβ€˜β„‚fld) ∧ 𝑦 ∈ 𝑒)) ∧ (𝑔:𝐴⟢(TopOpenβ€˜β„‚fld) ∧ βˆ€π‘₯ ∈ 𝐴 (𝐢 ∈ (π‘”β€˜π‘₯) ∧ ((𝐹 β†Ύ 𝐡) β€œ ((π‘”β€˜π‘₯) ∩ (𝐡 βˆ– {𝐢}))) βŠ† 𝑒))) β†’ βˆ€π‘§ ∈ ran 𝑔 𝐢 ∈ 𝑧)
103 elrint 4994 . . . . . . . . . . 11 (𝐢 ∈ (β„‚ ∩ ∩ ran 𝑔) ↔ (𝐢 ∈ β„‚ ∧ βˆ€π‘§ ∈ ran 𝑔 𝐢 ∈ 𝑧))
10495, 102, 103sylanbrc 583 . . . . . . . . . 10 ((((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) ∧ (𝑒 ∈ (TopOpenβ€˜β„‚fld) ∧ 𝑦 ∈ 𝑒)) ∧ (𝑔:𝐴⟢(TopOpenβ€˜β„‚fld) ∧ βˆ€π‘₯ ∈ 𝐴 (𝐢 ∈ (π‘”β€˜π‘₯) ∧ ((𝐹 β†Ύ 𝐡) β€œ ((π‘”β€˜π‘₯) ∩ (𝐡 βˆ– {𝐢}))) βŠ† 𝑒))) β†’ 𝐢 ∈ (β„‚ ∩ ∩ ran 𝑔))
105 indifcom 4271 . . . . . . . . . . . . . 14 ((β„‚ ∩ ∩ ran 𝑔) ∩ (βˆͺ π‘₯ ∈ 𝐴 𝐡 βˆ– {𝐢})) = (βˆͺ π‘₯ ∈ 𝐴 𝐡 ∩ ((β„‚ ∩ ∩ ran 𝑔) βˆ– {𝐢}))
106 iunin1 5074 . . . . . . . . . . . . . 14 βˆͺ π‘₯ ∈ 𝐴 (𝐡 ∩ ((β„‚ ∩ ∩ ran 𝑔) βˆ– {𝐢})) = (βˆͺ π‘₯ ∈ 𝐴 𝐡 ∩ ((β„‚ ∩ ∩ ran 𝑔) βˆ– {𝐢}))
107105, 106eqtr4i 2763 . . . . . . . . . . . . 13 ((β„‚ ∩ ∩ ran 𝑔) ∩ (βˆͺ π‘₯ ∈ 𝐴 𝐡 βˆ– {𝐢})) = βˆͺ π‘₯ ∈ 𝐴 (𝐡 ∩ ((β„‚ ∩ ∩ ran 𝑔) βˆ– {𝐢}))
108107imaeq2i 6055 . . . . . . . . . . . 12 (𝐹 β€œ ((β„‚ ∩ ∩ ran 𝑔) ∩ (βˆͺ π‘₯ ∈ 𝐴 𝐡 βˆ– {𝐢}))) = (𝐹 β€œ βˆͺ π‘₯ ∈ 𝐴 (𝐡 ∩ ((β„‚ ∩ ∩ ran 𝑔) βˆ– {𝐢})))
109 imaiun 7240 . . . . . . . . . . . 12 (𝐹 β€œ βˆͺ π‘₯ ∈ 𝐴 (𝐡 ∩ ((β„‚ ∩ ∩ ran 𝑔) βˆ– {𝐢}))) = βˆͺ π‘₯ ∈ 𝐴 (𝐹 β€œ (𝐡 ∩ ((β„‚ ∩ ∩ ran 𝑔) βˆ– {𝐢})))
110108, 109eqtri 2760 . . . . . . . . . . 11 (𝐹 β€œ ((β„‚ ∩ ∩ ran 𝑔) ∩ (βˆͺ π‘₯ ∈ 𝐴 𝐡 βˆ– {𝐢}))) = βˆͺ π‘₯ ∈ 𝐴 (𝐹 β€œ (𝐡 ∩ ((β„‚ ∩ ∩ ran 𝑔) βˆ– {𝐢})))
111 inss2 4228 . . . . . . . . . . . . . . . . . . . . 21 (β„‚ ∩ ∩ ran 𝑔) βŠ† ∩ ran 𝑔
112 fnfvelrn 7079 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔 Fn 𝐴 ∧ π‘₯ ∈ 𝐴) β†’ (π‘”β€˜π‘₯) ∈ ran 𝑔)
11385, 112sylan 580 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑔:𝐴⟢(TopOpenβ€˜β„‚fld) ∧ π‘₯ ∈ 𝐴) β†’ (π‘”β€˜π‘₯) ∈ ran 𝑔)
114 intss1 4966 . . . . . . . . . . . . . . . . . . . . . 22 ((π‘”β€˜π‘₯) ∈ ran 𝑔 β†’ ∩ ran 𝑔 βŠ† (π‘”β€˜π‘₯))
115113, 114syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑔:𝐴⟢(TopOpenβ€˜β„‚fld) ∧ π‘₯ ∈ 𝐴) β†’ ∩ ran 𝑔 βŠ† (π‘”β€˜π‘₯))
116111, 115sstrid 3992 . . . . . . . . . . . . . . . . . . . 20 ((𝑔:𝐴⟢(TopOpenβ€˜β„‚fld) ∧ π‘₯ ∈ 𝐴) β†’ (β„‚ ∩ ∩ ran 𝑔) βŠ† (π‘”β€˜π‘₯))
117116ssdifd 4139 . . . . . . . . . . . . . . . . . . 19 ((𝑔:𝐴⟢(TopOpenβ€˜β„‚fld) ∧ π‘₯ ∈ 𝐴) β†’ ((β„‚ ∩ ∩ ran 𝑔) βˆ– {𝐢}) βŠ† ((π‘”β€˜π‘₯) βˆ– {𝐢}))
118 sslin 4233 . . . . . . . . . . . . . . . . . . 19 (((β„‚ ∩ ∩ ran 𝑔) βˆ– {𝐢}) βŠ† ((π‘”β€˜π‘₯) βˆ– {𝐢}) β†’ (𝐡 ∩ ((β„‚ ∩ ∩ ran 𝑔) βˆ– {𝐢})) βŠ† (𝐡 ∩ ((π‘”β€˜π‘₯) βˆ– {𝐢})))
119 imass2 6098 . . . . . . . . . . . . . . . . . . 19 ((𝐡 ∩ ((β„‚ ∩ ∩ ran 𝑔) βˆ– {𝐢})) βŠ† (𝐡 ∩ ((π‘”β€˜π‘₯) βˆ– {𝐢})) β†’ (𝐹 β€œ (𝐡 ∩ ((β„‚ ∩ ∩ ran 𝑔) βˆ– {𝐢}))) βŠ† (𝐹 β€œ (𝐡 ∩ ((π‘”β€˜π‘₯) βˆ– {𝐢}))))
120117, 118, 1193syl 18 . . . . . . . . . . . . . . . . . 18 ((𝑔:𝐴⟢(TopOpenβ€˜β„‚fld) ∧ π‘₯ ∈ 𝐴) β†’ (𝐹 β€œ (𝐡 ∩ ((β„‚ ∩ ∩ ran 𝑔) βˆ– {𝐢}))) βŠ† (𝐹 β€œ (𝐡 ∩ ((π‘”β€˜π‘₯) βˆ– {𝐢}))))
121 indifcom 4271 . . . . . . . . . . . . . . . . . . . 20 ((π‘”β€˜π‘₯) ∩ (𝐡 βˆ– {𝐢})) = (𝐡 ∩ ((π‘”β€˜π‘₯) βˆ– {𝐢}))
122121imaeq2i 6055 . . . . . . . . . . . . . . . . . . 19 ((𝐹 β†Ύ 𝐡) β€œ ((π‘”β€˜π‘₯) ∩ (𝐡 βˆ– {𝐢}))) = ((𝐹 β†Ύ 𝐡) β€œ (𝐡 ∩ ((π‘”β€˜π‘₯) βˆ– {𝐢})))
123 inss1 4227 . . . . . . . . . . . . . . . . . . . 20 (𝐡 ∩ ((π‘”β€˜π‘₯) βˆ– {𝐢})) βŠ† 𝐡
124 resima2 6014 . . . . . . . . . . . . . . . . . . . 20 ((𝐡 ∩ ((π‘”β€˜π‘₯) βˆ– {𝐢})) βŠ† 𝐡 β†’ ((𝐹 β†Ύ 𝐡) β€œ (𝐡 ∩ ((π‘”β€˜π‘₯) βˆ– {𝐢}))) = (𝐹 β€œ (𝐡 ∩ ((π‘”β€˜π‘₯) βˆ– {𝐢}))))
125123, 124ax-mp 5 . . . . . . . . . . . . . . . . . . 19 ((𝐹 β†Ύ 𝐡) β€œ (𝐡 ∩ ((π‘”β€˜π‘₯) βˆ– {𝐢}))) = (𝐹 β€œ (𝐡 ∩ ((π‘”β€˜π‘₯) βˆ– {𝐢})))
126122, 125eqtri 2760 . . . . . . . . . . . . . . . . . 18 ((𝐹 β†Ύ 𝐡) β€œ ((π‘”β€˜π‘₯) ∩ (𝐡 βˆ– {𝐢}))) = (𝐹 β€œ (𝐡 ∩ ((π‘”β€˜π‘₯) βˆ– {𝐢})))
127120, 126sseqtrrdi 4032 . . . . . . . . . . . . . . . . 17 ((𝑔:𝐴⟢(TopOpenβ€˜β„‚fld) ∧ π‘₯ ∈ 𝐴) β†’ (𝐹 β€œ (𝐡 ∩ ((β„‚ ∩ ∩ ran 𝑔) βˆ– {𝐢}))) βŠ† ((𝐹 β†Ύ 𝐡) β€œ ((π‘”β€˜π‘₯) ∩ (𝐡 βˆ– {𝐢}))))
128 sstr2 3988 . . . . . . . . . . . . . . . . 17 ((𝐹 β€œ (𝐡 ∩ ((β„‚ ∩ ∩ ran 𝑔) βˆ– {𝐢}))) βŠ† ((𝐹 β†Ύ 𝐡) β€œ ((π‘”β€˜π‘₯) ∩ (𝐡 βˆ– {𝐢}))) β†’ (((𝐹 β†Ύ 𝐡) β€œ ((π‘”β€˜π‘₯) ∩ (𝐡 βˆ– {𝐢}))) βŠ† 𝑒 β†’ (𝐹 β€œ (𝐡 ∩ ((β„‚ ∩ ∩ ran 𝑔) βˆ– {𝐢}))) βŠ† 𝑒))
129127, 128syl 17 . . . . . . . . . . . . . . . 16 ((𝑔:𝐴⟢(TopOpenβ€˜β„‚fld) ∧ π‘₯ ∈ 𝐴) β†’ (((𝐹 β†Ύ 𝐡) β€œ ((π‘”β€˜π‘₯) ∩ (𝐡 βˆ– {𝐢}))) βŠ† 𝑒 β†’ (𝐹 β€œ (𝐡 ∩ ((β„‚ ∩ ∩ ran 𝑔) βˆ– {𝐢}))) βŠ† 𝑒))
130129adantld 491 . . . . . . . . . . . . . . 15 ((𝑔:𝐴⟢(TopOpenβ€˜β„‚fld) ∧ π‘₯ ∈ 𝐴) β†’ ((𝐢 ∈ (π‘”β€˜π‘₯) ∧ ((𝐹 β†Ύ 𝐡) β€œ ((π‘”β€˜π‘₯) ∩ (𝐡 βˆ– {𝐢}))) βŠ† 𝑒) β†’ (𝐹 β€œ (𝐡 ∩ ((β„‚ ∩ ∩ ran 𝑔) βˆ– {𝐢}))) βŠ† 𝑒))
131130ralimdva 3167 . . . . . . . . . . . . . 14 (𝑔:𝐴⟢(TopOpenβ€˜β„‚fld) β†’ (βˆ€π‘₯ ∈ 𝐴 (𝐢 ∈ (π‘”β€˜π‘₯) ∧ ((𝐹 β†Ύ 𝐡) β€œ ((π‘”β€˜π‘₯) ∩ (𝐡 βˆ– {𝐢}))) βŠ† 𝑒) β†’ βˆ€π‘₯ ∈ 𝐴 (𝐹 β€œ (𝐡 ∩ ((β„‚ ∩ ∩ ran 𝑔) βˆ– {𝐢}))) βŠ† 𝑒))
132131imp 407 . . . . . . . . . . . . 13 ((𝑔:𝐴⟢(TopOpenβ€˜β„‚fld) ∧ βˆ€π‘₯ ∈ 𝐴 (𝐢 ∈ (π‘”β€˜π‘₯) ∧ ((𝐹 β†Ύ 𝐡) β€œ ((π‘”β€˜π‘₯) ∩ (𝐡 βˆ– {𝐢}))) βŠ† 𝑒)) β†’ βˆ€π‘₯ ∈ 𝐴 (𝐹 β€œ (𝐡 ∩ ((β„‚ ∩ ∩ ran 𝑔) βˆ– {𝐢}))) βŠ† 𝑒)
133132adantl 482 . . . . . . . . . . . 12 ((((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) ∧ (𝑒 ∈ (TopOpenβ€˜β„‚fld) ∧ 𝑦 ∈ 𝑒)) ∧ (𝑔:𝐴⟢(TopOpenβ€˜β„‚fld) ∧ βˆ€π‘₯ ∈ 𝐴 (𝐢 ∈ (π‘”β€˜π‘₯) ∧ ((𝐹 β†Ύ 𝐡) β€œ ((π‘”β€˜π‘₯) ∩ (𝐡 βˆ– {𝐢}))) βŠ† 𝑒))) β†’ βˆ€π‘₯ ∈ 𝐴 (𝐹 β€œ (𝐡 ∩ ((β„‚ ∩ ∩ ran 𝑔) βˆ– {𝐢}))) βŠ† 𝑒)
134 iunss 5047 . . . . . . . . . . . 12 (βˆͺ π‘₯ ∈ 𝐴 (𝐹 β€œ (𝐡 ∩ ((β„‚ ∩ ∩ ran 𝑔) βˆ– {𝐢}))) βŠ† 𝑒 ↔ βˆ€π‘₯ ∈ 𝐴 (𝐹 β€œ (𝐡 ∩ ((β„‚ ∩ ∩ ran 𝑔) βˆ– {𝐢}))) βŠ† 𝑒)
135133, 134sylibr 233 . . . . . . . . . . 11 ((((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) ∧ (𝑒 ∈ (TopOpenβ€˜β„‚fld) ∧ 𝑦 ∈ 𝑒)) ∧ (𝑔:𝐴⟢(TopOpenβ€˜β„‚fld) ∧ βˆ€π‘₯ ∈ 𝐴 (𝐢 ∈ (π‘”β€˜π‘₯) ∧ ((𝐹 β†Ύ 𝐡) β€œ ((π‘”β€˜π‘₯) ∩ (𝐡 βˆ– {𝐢}))) βŠ† 𝑒))) β†’ βˆͺ π‘₯ ∈ 𝐴 (𝐹 β€œ (𝐡 ∩ ((β„‚ ∩ ∩ ran 𝑔) βˆ– {𝐢}))) βŠ† 𝑒)
136110, 135eqsstrid 4029 . . . . . . . . . 10 ((((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) ∧ (𝑒 ∈ (TopOpenβ€˜β„‚fld) ∧ 𝑦 ∈ 𝑒)) ∧ (𝑔:𝐴⟢(TopOpenβ€˜β„‚fld) ∧ βˆ€π‘₯ ∈ 𝐴 (𝐢 ∈ (π‘”β€˜π‘₯) ∧ ((𝐹 β†Ύ 𝐡) β€œ ((π‘”β€˜π‘₯) ∩ (𝐡 βˆ– {𝐢}))) βŠ† 𝑒))) β†’ (𝐹 β€œ ((β„‚ ∩ ∩ ran 𝑔) ∩ (βˆͺ π‘₯ ∈ 𝐴 𝐡 βˆ– {𝐢}))) βŠ† 𝑒)
137 eleq2 2822 . . . . . . . . . . . 12 (𝑣 = (β„‚ ∩ ∩ ran 𝑔) β†’ (𝐢 ∈ 𝑣 ↔ 𝐢 ∈ (β„‚ ∩ ∩ ran 𝑔)))
138 ineq1 4204 . . . . . . . . . . . . . 14 (𝑣 = (β„‚ ∩ ∩ ran 𝑔) β†’ (𝑣 ∩ (βˆͺ π‘₯ ∈ 𝐴 𝐡 βˆ– {𝐢})) = ((β„‚ ∩ ∩ ran 𝑔) ∩ (βˆͺ π‘₯ ∈ 𝐴 𝐡 βˆ– {𝐢})))
139138imaeq2d 6057 . . . . . . . . . . . . 13 (𝑣 = (β„‚ ∩ ∩ ran 𝑔) β†’ (𝐹 β€œ (𝑣 ∩ (βˆͺ π‘₯ ∈ 𝐴 𝐡 βˆ– {𝐢}))) = (𝐹 β€œ ((β„‚ ∩ ∩ ran 𝑔) ∩ (βˆͺ π‘₯ ∈ 𝐴 𝐡 βˆ– {𝐢}))))
140139sseq1d 4012 . . . . . . . . . . . 12 (𝑣 = (β„‚ ∩ ∩ ran 𝑔) β†’ ((𝐹 β€œ (𝑣 ∩ (βˆͺ π‘₯ ∈ 𝐴 𝐡 βˆ– {𝐢}))) βŠ† 𝑒 ↔ (𝐹 β€œ ((β„‚ ∩ ∩ ran 𝑔) ∩ (βˆͺ π‘₯ ∈ 𝐴 𝐡 βˆ– {𝐢}))) βŠ† 𝑒))
141137, 140anbi12d 631 . . . . . . . . . . 11 (𝑣 = (β„‚ ∩ ∩ ran 𝑔) β†’ ((𝐢 ∈ 𝑣 ∧ (𝐹 β€œ (𝑣 ∩ (βˆͺ π‘₯ ∈ 𝐴 𝐡 βˆ– {𝐢}))) βŠ† 𝑒) ↔ (𝐢 ∈ (β„‚ ∩ ∩ ran 𝑔) ∧ (𝐹 β€œ ((β„‚ ∩ ∩ ran 𝑔) ∩ (βˆͺ π‘₯ ∈ 𝐴 𝐡 βˆ– {𝐢}))) βŠ† 𝑒)))
142141rspcev 3612 . . . . . . . . . 10 (((β„‚ ∩ ∩ ran 𝑔) ∈ (TopOpenβ€˜β„‚fld) ∧ (𝐢 ∈ (β„‚ ∩ ∩ ran 𝑔) ∧ (𝐹 β€œ ((β„‚ ∩ ∩ ran 𝑔) ∩ (βˆͺ π‘₯ ∈ 𝐴 𝐡 βˆ– {𝐢}))) βŠ† 𝑒)) β†’ βˆƒπ‘£ ∈ (TopOpenβ€˜β„‚fld)(𝐢 ∈ 𝑣 ∧ (𝐹 β€œ (𝑣 ∩ (βˆͺ π‘₯ ∈ 𝐴 𝐡 βˆ– {𝐢}))) βŠ† 𝑒))
14393, 104, 136, 142syl12anc 835 . . . . . . . . 9 ((((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) ∧ (𝑒 ∈ (TopOpenβ€˜β„‚fld) ∧ 𝑦 ∈ 𝑒)) ∧ (𝑔:𝐴⟢(TopOpenβ€˜β„‚fld) ∧ βˆ€π‘₯ ∈ 𝐴 (𝐢 ∈ (π‘”β€˜π‘₯) ∧ ((𝐹 β†Ύ 𝐡) β€œ ((π‘”β€˜π‘₯) ∩ (𝐡 βˆ– {𝐢}))) βŠ† 𝑒))) β†’ βˆƒπ‘£ ∈ (TopOpenβ€˜β„‚fld)(𝐢 ∈ 𝑣 ∧ (𝐹 β€œ (𝑣 ∩ (βˆͺ π‘₯ ∈ 𝐴 𝐡 βˆ– {𝐢}))) βŠ† 𝑒))
14480, 143exlimddv 1938 . . . . . . . 8 (((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) ∧ (𝑒 ∈ (TopOpenβ€˜β„‚fld) ∧ 𝑦 ∈ 𝑒)) β†’ βˆƒπ‘£ ∈ (TopOpenβ€˜β„‚fld)(𝐢 ∈ 𝑣 ∧ (𝐹 β€œ (𝑣 ∩ (βˆͺ π‘₯ ∈ 𝐴 𝐡 βˆ– {𝐢}))) βŠ† 𝑒))
145144expr 457 . . . . . . 7 (((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) ∧ 𝑒 ∈ (TopOpenβ€˜β„‚fld)) β†’ (𝑦 ∈ 𝑒 β†’ βˆƒπ‘£ ∈ (TopOpenβ€˜β„‚fld)(𝐢 ∈ 𝑣 ∧ (𝐹 β€œ (𝑣 ∩ (βˆͺ π‘₯ ∈ 𝐴 𝐡 βˆ– {𝐢}))) βŠ† 𝑒)))
146145ralrimiva 3146 . . . . . 6 ((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) β†’ βˆ€π‘’ ∈ (TopOpenβ€˜β„‚fld)(𝑦 ∈ 𝑒 β†’ βˆƒπ‘£ ∈ (TopOpenβ€˜β„‚fld)(𝐢 ∈ 𝑣 ∧ (𝐹 β€œ (𝑣 ∩ (βˆͺ π‘₯ ∈ 𝐴 𝐡 βˆ– {𝐢}))) βŠ† 𝑒)))
14726adantr 481 . . . . . . 7 ((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) β†’ 𝐹:βˆͺ π‘₯ ∈ 𝐴 π΅βŸΆβ„‚)
148 iunss 5047 . . . . . . . . 9 (βˆͺ π‘₯ ∈ 𝐴 𝐡 βŠ† β„‚ ↔ βˆ€π‘₯ ∈ 𝐴 𝐡 βŠ† β„‚)
14935, 148sylibr 233 . . . . . . . 8 (πœ‘ β†’ βˆͺ π‘₯ ∈ 𝐴 𝐡 βŠ† β„‚)
150149adantr 481 . . . . . . 7 ((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) β†’ βˆͺ π‘₯ ∈ 𝐴 𝐡 βŠ† β„‚)
151147, 150, 94, 44ellimc2 25385 . . . . . 6 ((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) β†’ (𝑦 ∈ (𝐹 limβ„‚ 𝐢) ↔ (𝑦 ∈ β„‚ ∧ βˆ€π‘’ ∈ (TopOpenβ€˜β„‚fld)(𝑦 ∈ 𝑒 β†’ βˆƒπ‘£ ∈ (TopOpenβ€˜β„‚fld)(𝐢 ∈ 𝑣 ∧ (𝐹 β€œ (𝑣 ∩ (βˆͺ π‘₯ ∈ 𝐴 𝐡 βˆ– {𝐢}))) βŠ† 𝑒)))))
1529, 146, 151mpbir2and 711 . . . . 5 ((πœ‘ ∧ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢))) β†’ 𝑦 ∈ (𝐹 limβ„‚ 𝐢))
153152ex 413 . . . 4 (πœ‘ β†’ ((𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢)) β†’ 𝑦 ∈ (𝐹 limβ„‚ 𝐢)))
1548, 153biimtrid 241 . . 3 (πœ‘ β†’ (𝑦 ∈ (β„‚ ∩ ∩ π‘₯ ∈ 𝐴 ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢)) β†’ 𝑦 ∈ (𝐹 limβ„‚ 𝐢)))
155154ssrdv 3987 . 2 (πœ‘ β†’ (β„‚ ∩ ∩ π‘₯ ∈ 𝐴 ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢)) βŠ† (𝐹 limβ„‚ 𝐢))
1567, 155eqssd 3998 1 (πœ‘ β†’ (𝐹 limβ„‚ 𝐢) = (β„‚ ∩ ∩ π‘₯ ∈ 𝐴 ((𝐹 β†Ύ 𝐡) limβ„‚ 𝐢)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070  β¦‹csb 3892   βˆ– cdif 3944   ∩ cin 3946   βŠ† wss 3947  {csn 4627  βˆ© cint 4949  βˆͺ ciun 4996  βˆ© ciin 4997  ran crn 5676   β†Ύ cres 5677   β€œ cima 5678   Fn wfn 6535  βŸΆwf 6536  β€“ontoβ†’wfo 6538  β€˜cfv 6540  (class class class)co 7405  Fincfn 8935  β„‚cc 11104  TopOpenctopn 17363  β„‚fldccnfld 20936  Topctop 22386   limβ„‚ climc 25370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fi 9402  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-fz 13481  df-seq 13963  df-exp 14024  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17141  df-plusg 17206  df-mulr 17207  df-starv 17208  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-rest 17364  df-topn 17365  df-topgen 17385  df-psmet 20928  df-xmet 20929  df-met 20930  df-bl 20931  df-mopn 20932  df-cnfld 20937  df-top 22387  df-topon 22404  df-topsp 22426  df-bases 22440  df-cnp 22723  df-xms 23817  df-ms 23818  df-limc 25374
This theorem is referenced by:  limcun  25403
  Copyright terms: Public domain W3C validator