Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iinvdif | Structured version Visualization version GIF version |
Description: The indexed intersection of a complement. (Contributed by Gérard Lang, 5-Aug-2018.) |
Ref | Expression |
---|---|
iinvdif | ⊢ ∩ 𝑥 ∈ 𝐴 (V ∖ 𝐵) = (V ∖ ∪ 𝑥 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dif0 4303 | . . . 4 ⊢ (V ∖ ∅) = V | |
2 | 0iun 4988 | . . . . 5 ⊢ ∪ 𝑥 ∈ ∅ 𝐵 = ∅ | |
3 | 2 | difeq2i 4050 | . . . 4 ⊢ (V ∖ ∪ 𝑥 ∈ ∅ 𝐵) = (V ∖ ∅) |
4 | 0iin 4989 | . . . 4 ⊢ ∩ 𝑥 ∈ ∅ (V ∖ 𝐵) = V | |
5 | 1, 3, 4 | 3eqtr4ri 2777 | . . 3 ⊢ ∩ 𝑥 ∈ ∅ (V ∖ 𝐵) = (V ∖ ∪ 𝑥 ∈ ∅ 𝐵) |
6 | iineq1 4938 | . . 3 ⊢ (𝐴 = ∅ → ∩ 𝑥 ∈ 𝐴 (V ∖ 𝐵) = ∩ 𝑥 ∈ ∅ (V ∖ 𝐵)) | |
7 | iuneq1 4937 | . . . 4 ⊢ (𝐴 = ∅ → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ ∅ 𝐵) | |
8 | 7 | difeq2d 4053 | . . 3 ⊢ (𝐴 = ∅ → (V ∖ ∪ 𝑥 ∈ 𝐴 𝐵) = (V ∖ ∪ 𝑥 ∈ ∅ 𝐵)) |
9 | 5, 6, 8 | 3eqtr4a 2805 | . 2 ⊢ (𝐴 = ∅ → ∩ 𝑥 ∈ 𝐴 (V ∖ 𝐵) = (V ∖ ∪ 𝑥 ∈ 𝐴 𝐵)) |
10 | iindif2 5002 | . 2 ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 (V ∖ 𝐵) = (V ∖ ∪ 𝑥 ∈ 𝐴 𝐵)) | |
11 | 9, 10 | pm2.61ine 3027 | 1 ⊢ ∩ 𝑥 ∈ 𝐴 (V ∖ 𝐵) = (V ∖ ∪ 𝑥 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Vcvv 3422 ∖ cdif 3880 ∅c0 4253 ∪ ciun 4921 ∩ ciin 4922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-nul 4254 df-iun 4923 df-iin 4924 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |