![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iinvdif | Structured version Visualization version GIF version |
Description: The indexed intersection of a complement. (Contributed by GΓ©rard Lang, 5-Aug-2018.) |
Ref | Expression |
---|---|
iinvdif | β’ β© π₯ β π΄ (V β π΅) = (V β βͺ π₯ β π΄ π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dif0 4372 | . . . 4 β’ (V β β ) = V | |
2 | 0iun 5066 | . . . . 5 β’ βͺ π₯ β β π΅ = β | |
3 | 2 | difeq2i 4119 | . . . 4 β’ (V β βͺ π₯ β β π΅) = (V β β ) |
4 | 0iin 5067 | . . . 4 β’ β© π₯ β β (V β π΅) = V | |
5 | 1, 3, 4 | 3eqtr4ri 2771 | . . 3 β’ β© π₯ β β (V β π΅) = (V β βͺ π₯ β β π΅) |
6 | iineq1 5014 | . . 3 β’ (π΄ = β β β© π₯ β π΄ (V β π΅) = β© π₯ β β (V β π΅)) | |
7 | iuneq1 5013 | . . . 4 β’ (π΄ = β β βͺ π₯ β π΄ π΅ = βͺ π₯ β β π΅) | |
8 | 7 | difeq2d 4122 | . . 3 β’ (π΄ = β β (V β βͺ π₯ β π΄ π΅) = (V β βͺ π₯ β β π΅)) |
9 | 5, 6, 8 | 3eqtr4a 2798 | . 2 β’ (π΄ = β β β© π₯ β π΄ (V β π΅) = (V β βͺ π₯ β π΄ π΅)) |
10 | iindif2 5080 | . 2 β’ (π΄ β β β β© π₯ β π΄ (V β π΅) = (V β βͺ π₯ β π΄ π΅)) | |
11 | 9, 10 | pm2.61ine 3025 | 1 β’ β© π₯ β π΄ (V β π΅) = (V β βͺ π₯ β π΄ π΅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 Vcvv 3474 β cdif 3945 β c0 4322 βͺ ciun 4997 β© ciin 4998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-in 3955 df-ss 3965 df-nul 4323 df-iun 4999 df-iin 5000 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |