MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinvdif Structured version   Visualization version   GIF version

Theorem iinvdif 4869
Description: The indexed intersection of a complement. (Contributed by Gérard Lang, 5-Aug-2018.)
Assertion
Ref Expression
iinvdif 𝑥𝐴 (V ∖ 𝐵) = (V ∖ 𝑥𝐴 𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iinvdif
StepHypRef Expression
1 dif0 4220 . . . 4 (V ∖ ∅) = V
2 0iun 4853 . . . . 5 𝑥 ∈ ∅ 𝐵 = ∅
32difeq2i 3988 . . . 4 (V ∖ 𝑥 ∈ ∅ 𝐵) = (V ∖ ∅)
4 0iin 4854 . . . 4 𝑥 ∈ ∅ (V ∖ 𝐵) = V
51, 3, 43eqtr4ri 2813 . . 3 𝑥 ∈ ∅ (V ∖ 𝐵) = (V ∖ 𝑥 ∈ ∅ 𝐵)
6 iineq1 4809 . . 3 (𝐴 = ∅ → 𝑥𝐴 (V ∖ 𝐵) = 𝑥 ∈ ∅ (V ∖ 𝐵))
7 iuneq1 4808 . . . 4 (𝐴 = ∅ → 𝑥𝐴 𝐵 = 𝑥 ∈ ∅ 𝐵)
87difeq2d 3991 . . 3 (𝐴 = ∅ → (V ∖ 𝑥𝐴 𝐵) = (V ∖ 𝑥 ∈ ∅ 𝐵))
95, 6, 83eqtr4a 2840 . 2 (𝐴 = ∅ → 𝑥𝐴 (V ∖ 𝐵) = (V ∖ 𝑥𝐴 𝐵))
10 iindif2 4866 . 2 (𝐴 ≠ ∅ → 𝑥𝐴 (V ∖ 𝐵) = (V ∖ 𝑥𝐴 𝐵))
119, 10pm2.61ine 3051 1 𝑥𝐴 (V ∖ 𝐵) = (V ∖ 𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1507  Vcvv 3415  cdif 3828  c0 4180   ciun 4793   ciin 4794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-ext 2750
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3417  df-dif 3834  df-in 3838  df-ss 3845  df-nul 4181  df-iun 4795  df-iin 4796
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator