MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinvdif Structured version   Visualization version   GIF version

Theorem iinvdif 5083
Description: The indexed intersection of a complement. (Contributed by GΓ©rard Lang, 5-Aug-2018.)
Assertion
Ref Expression
iinvdif ∩ π‘₯ ∈ 𝐴 (V βˆ– 𝐡) = (V βˆ– βˆͺ π‘₯ ∈ 𝐴 𝐡)
Distinct variable group:   π‘₯,𝐴
Allowed substitution hint:   𝐡(π‘₯)

Proof of Theorem iinvdif
StepHypRef Expression
1 dif0 4372 . . . 4 (V βˆ– βˆ…) = V
2 0iun 5066 . . . . 5 βˆͺ π‘₯ ∈ βˆ… 𝐡 = βˆ…
32difeq2i 4119 . . . 4 (V βˆ– βˆͺ π‘₯ ∈ βˆ… 𝐡) = (V βˆ– βˆ…)
4 0iin 5067 . . . 4 ∩ π‘₯ ∈ βˆ… (V βˆ– 𝐡) = V
51, 3, 43eqtr4ri 2771 . . 3 ∩ π‘₯ ∈ βˆ… (V βˆ– 𝐡) = (V βˆ– βˆͺ π‘₯ ∈ βˆ… 𝐡)
6 iineq1 5014 . . 3 (𝐴 = βˆ… β†’ ∩ π‘₯ ∈ 𝐴 (V βˆ– 𝐡) = ∩ π‘₯ ∈ βˆ… (V βˆ– 𝐡))
7 iuneq1 5013 . . . 4 (𝐴 = βˆ… β†’ βˆͺ π‘₯ ∈ 𝐴 𝐡 = βˆͺ π‘₯ ∈ βˆ… 𝐡)
87difeq2d 4122 . . 3 (𝐴 = βˆ… β†’ (V βˆ– βˆͺ π‘₯ ∈ 𝐴 𝐡) = (V βˆ– βˆͺ π‘₯ ∈ βˆ… 𝐡))
95, 6, 83eqtr4a 2798 . 2 (𝐴 = βˆ… β†’ ∩ π‘₯ ∈ 𝐴 (V βˆ– 𝐡) = (V βˆ– βˆͺ π‘₯ ∈ 𝐴 𝐡))
10 iindif2 5080 . 2 (𝐴 β‰  βˆ… β†’ ∩ π‘₯ ∈ 𝐴 (V βˆ– 𝐡) = (V βˆ– βˆͺ π‘₯ ∈ 𝐴 𝐡))
119, 10pm2.61ine 3025 1 ∩ π‘₯ ∈ 𝐴 (V βˆ– 𝐡) = (V βˆ– βˆͺ π‘₯ ∈ 𝐴 𝐡)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  Vcvv 3474   βˆ– cdif 3945  βˆ…c0 4322  βˆͺ ciun 4997  βˆ© ciin 4998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-in 3955  df-ss 3965  df-nul 4323  df-iun 4999  df-iin 5000
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator