MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinvdif Structured version   Visualization version   GIF version

Theorem iinvdif 5023
Description: The indexed intersection of a complement. (Contributed by Gérard Lang, 5-Aug-2018.)
Assertion
Ref Expression
iinvdif 𝑥𝐴 (V ∖ 𝐵) = (V ∖ 𝑥𝐴 𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iinvdif
StepHypRef Expression
1 dif0 4323 . . . 4 (V ∖ ∅) = V
2 0iun 5006 . . . . 5 𝑥 ∈ ∅ 𝐵 = ∅
32difeq2i 4068 . . . 4 (V ∖ 𝑥 ∈ ∅ 𝐵) = (V ∖ ∅)
4 0iin 5007 . . . 4 𝑥 ∈ ∅ (V ∖ 𝐵) = V
51, 3, 43eqtr4ri 2765 . . 3 𝑥 ∈ ∅ (V ∖ 𝐵) = (V ∖ 𝑥 ∈ ∅ 𝐵)
6 iineq1 4954 . . 3 (𝐴 = ∅ → 𝑥𝐴 (V ∖ 𝐵) = 𝑥 ∈ ∅ (V ∖ 𝐵))
7 iuneq1 4953 . . . 4 (𝐴 = ∅ → 𝑥𝐴 𝐵 = 𝑥 ∈ ∅ 𝐵)
87difeq2d 4071 . . 3 (𝐴 = ∅ → (V ∖ 𝑥𝐴 𝐵) = (V ∖ 𝑥 ∈ ∅ 𝐵))
95, 6, 83eqtr4a 2792 . 2 (𝐴 = ∅ → 𝑥𝐴 (V ∖ 𝐵) = (V ∖ 𝑥𝐴 𝐵))
10 iindif2 5020 . 2 (𝐴 ≠ ∅ → 𝑥𝐴 (V ∖ 𝐵) = (V ∖ 𝑥𝐴 𝐵))
119, 10pm2.61ine 3011 1 𝑥𝐴 (V ∖ 𝐵) = (V ∖ 𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  Vcvv 3436  cdif 3894  c0 4278   ciun 4936   ciin 4937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-ss 3914  df-nul 4279  df-iun 4938  df-iin 4939
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator