MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcun Structured version   Visualization version   GIF version

Theorem limcun 25734
Description: A point is a limit of 𝐹 on 𝐴𝐵 iff it is the limit of the restriction of 𝐹 to 𝐴 and to 𝐵. (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypotheses
Ref Expression
limcun.1 (𝜑𝐴 ⊆ ℂ)
limcun.2 (𝜑𝐵 ⊆ ℂ)
limcun.3 (𝜑𝐹:(𝐴𝐵)⟶ℂ)
Assertion
Ref Expression
limcun (𝜑 → (𝐹 lim 𝐶) = (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶)))

Proof of Theorem limcun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limcrcl 25713 . . . . 5 (𝑥 ∈ (𝐹 lim 𝐶) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐶 ∈ ℂ))
21simp3d 1141 . . . 4 (𝑥 ∈ (𝐹 lim 𝐶) → 𝐶 ∈ ℂ)
32a1i 11 . . 3 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐶) → 𝐶 ∈ ℂ))
4 elinel1 4187 . . . . 5 (𝑥 ∈ (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶)) → 𝑥 ∈ ((𝐹𝐴) lim 𝐶))
5 limcrcl 25713 . . . . . 6 (𝑥 ∈ ((𝐹𝐴) lim 𝐶) → ((𝐹𝐴):dom (𝐹𝐴)⟶ℂ ∧ dom (𝐹𝐴) ⊆ ℂ ∧ 𝐶 ∈ ℂ))
65simp3d 1141 . . . . 5 (𝑥 ∈ ((𝐹𝐴) lim 𝐶) → 𝐶 ∈ ℂ)
74, 6syl 17 . . . 4 (𝑥 ∈ (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶)) → 𝐶 ∈ ℂ)
87a1i 11 . . 3 (𝜑 → (𝑥 ∈ (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶)) → 𝐶 ∈ ℂ))
9 prfi 9317 . . . . . . . 8 {𝐴, 𝐵} ∈ Fin
109a1i 11 . . . . . . 7 ((𝜑𝐶 ∈ ℂ) → {𝐴, 𝐵} ∈ Fin)
11 limcun.1 . . . . . . . . 9 (𝜑𝐴 ⊆ ℂ)
1211adantr 480 . . . . . . . 8 ((𝜑𝐶 ∈ ℂ) → 𝐴 ⊆ ℂ)
13 limcun.2 . . . . . . . . 9 (𝜑𝐵 ⊆ ℂ)
1413adantr 480 . . . . . . . 8 ((𝜑𝐶 ∈ ℂ) → 𝐵 ⊆ ℂ)
15 cnex 11186 . . . . . . . . . . 11 ℂ ∈ V
1615ssex 5311 . . . . . . . . . 10 (𝐴 ⊆ ℂ → 𝐴 ∈ V)
1712, 16syl 17 . . . . . . . . 9 ((𝜑𝐶 ∈ ℂ) → 𝐴 ∈ V)
1815ssex 5311 . . . . . . . . . 10 (𝐵 ⊆ ℂ → 𝐵 ∈ V)
1914, 18syl 17 . . . . . . . . 9 ((𝜑𝐶 ∈ ℂ) → 𝐵 ∈ V)
20 sseq1 3999 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑦 ⊆ ℂ ↔ 𝐴 ⊆ ℂ))
21 sseq1 3999 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝑦 ⊆ ℂ ↔ 𝐵 ⊆ ℂ))
2220, 21ralprg 4690 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∀𝑦 ∈ {𝐴, 𝐵}𝑦 ⊆ ℂ ↔ (𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ)))
2317, 19, 22syl2anc 583 . . . . . . . 8 ((𝜑𝐶 ∈ ℂ) → (∀𝑦 ∈ {𝐴, 𝐵}𝑦 ⊆ ℂ ↔ (𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ)))
2412, 14, 23mpbir2and 710 . . . . . . 7 ((𝜑𝐶 ∈ ℂ) → ∀𝑦 ∈ {𝐴, 𝐵}𝑦 ⊆ ℂ)
25 limcun.3 . . . . . . . . 9 (𝜑𝐹:(𝐴𝐵)⟶ℂ)
2625adantr 480 . . . . . . . 8 ((𝜑𝐶 ∈ ℂ) → 𝐹:(𝐴𝐵)⟶ℂ)
27 uniiun 5051 . . . . . . . . . 10 {𝐴, 𝐵} = 𝑦 ∈ {𝐴, 𝐵}𝑦
28 uniprg 4915 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} = (𝐴𝐵))
2917, 19, 28syl2anc 583 . . . . . . . . . 10 ((𝜑𝐶 ∈ ℂ) → {𝐴, 𝐵} = (𝐴𝐵))
3027, 29eqtr3id 2778 . . . . . . . . 9 ((𝜑𝐶 ∈ ℂ) → 𝑦 ∈ {𝐴, 𝐵}𝑦 = (𝐴𝐵))
3130feq2d 6693 . . . . . . . 8 ((𝜑𝐶 ∈ ℂ) → (𝐹: 𝑦 ∈ {𝐴, 𝐵}𝑦⟶ℂ ↔ 𝐹:(𝐴𝐵)⟶ℂ))
3226, 31mpbird 257 . . . . . . 7 ((𝜑𝐶 ∈ ℂ) → 𝐹: 𝑦 ∈ {𝐴, 𝐵}𝑦⟶ℂ)
33 simpr 484 . . . . . . 7 ((𝜑𝐶 ∈ ℂ) → 𝐶 ∈ ℂ)
3410, 24, 32, 33limciun 25733 . . . . . 6 ((𝜑𝐶 ∈ ℂ) → (𝐹 lim 𝐶) = (ℂ ∩ 𝑦 ∈ {𝐴, 𝐵} ((𝐹𝑦) lim 𝐶)))
3534eleq2d 2811 . . . . 5 ((𝜑𝐶 ∈ ℂ) → (𝑥 ∈ (𝐹 lim 𝐶) ↔ 𝑥 ∈ (ℂ ∩ 𝑦 ∈ {𝐴, 𝐵} ((𝐹𝑦) lim 𝐶))))
36 reseq2 5966 . . . . . . . . . . . 12 (𝑦 = 𝐴 → (𝐹𝑦) = (𝐹𝐴))
3736oveq1d 7416 . . . . . . . . . . 11 (𝑦 = 𝐴 → ((𝐹𝑦) lim 𝐶) = ((𝐹𝐴) lim 𝐶))
3837eleq2d 2811 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑥 ∈ ((𝐹𝑦) lim 𝐶) ↔ 𝑥 ∈ ((𝐹𝐴) lim 𝐶)))
39 reseq2 5966 . . . . . . . . . . . 12 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
4039oveq1d 7416 . . . . . . . . . . 11 (𝑦 = 𝐵 → ((𝐹𝑦) lim 𝐶) = ((𝐹𝐵) lim 𝐶))
4140eleq2d 2811 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝑥 ∈ ((𝐹𝑦) lim 𝐶) ↔ 𝑥 ∈ ((𝐹𝐵) lim 𝐶)))
4238, 41ralprg 4690 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∀𝑦 ∈ {𝐴, 𝐵}𝑥 ∈ ((𝐹𝑦) lim 𝐶) ↔ (𝑥 ∈ ((𝐹𝐴) lim 𝐶) ∧ 𝑥 ∈ ((𝐹𝐵) lim 𝐶))))
4317, 19, 42syl2anc 583 . . . . . . . 8 ((𝜑𝐶 ∈ ℂ) → (∀𝑦 ∈ {𝐴, 𝐵}𝑥 ∈ ((𝐹𝑦) lim 𝐶) ↔ (𝑥 ∈ ((𝐹𝐴) lim 𝐶) ∧ 𝑥 ∈ ((𝐹𝐵) lim 𝐶))))
4443anbi2d 628 . . . . . . 7 ((𝜑𝐶 ∈ ℂ) → ((𝑥 ∈ ℂ ∧ ∀𝑦 ∈ {𝐴, 𝐵}𝑥 ∈ ((𝐹𝑦) lim 𝐶)) ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ((𝐹𝐴) lim 𝐶) ∧ 𝑥 ∈ ((𝐹𝐵) lim 𝐶)))))
45 limccl 25714 . . . . . . . . . 10 ((𝐹𝐴) lim 𝐶) ⊆ ℂ
4645sseli 3970 . . . . . . . . 9 (𝑥 ∈ ((𝐹𝐴) lim 𝐶) → 𝑥 ∈ ℂ)
4746adantr 480 . . . . . . . 8 ((𝑥 ∈ ((𝐹𝐴) lim 𝐶) ∧ 𝑥 ∈ ((𝐹𝐵) lim 𝐶)) → 𝑥 ∈ ℂ)
4847pm4.71ri 560 . . . . . . 7 ((𝑥 ∈ ((𝐹𝐴) lim 𝐶) ∧ 𝑥 ∈ ((𝐹𝐵) lim 𝐶)) ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ((𝐹𝐴) lim 𝐶) ∧ 𝑥 ∈ ((𝐹𝐵) lim 𝐶))))
4944, 48bitr4di 289 . . . . . 6 ((𝜑𝐶 ∈ ℂ) → ((𝑥 ∈ ℂ ∧ ∀𝑦 ∈ {𝐴, 𝐵}𝑥 ∈ ((𝐹𝑦) lim 𝐶)) ↔ (𝑥 ∈ ((𝐹𝐴) lim 𝐶) ∧ 𝑥 ∈ ((𝐹𝐵) lim 𝐶))))
50 elriin 5074 . . . . . 6 (𝑥 ∈ (ℂ ∩ 𝑦 ∈ {𝐴, 𝐵} ((𝐹𝑦) lim 𝐶)) ↔ (𝑥 ∈ ℂ ∧ ∀𝑦 ∈ {𝐴, 𝐵}𝑥 ∈ ((𝐹𝑦) lim 𝐶)))
51 elin 3956 . . . . . 6 (𝑥 ∈ (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶)) ↔ (𝑥 ∈ ((𝐹𝐴) lim 𝐶) ∧ 𝑥 ∈ ((𝐹𝐵) lim 𝐶)))
5249, 50, 513bitr4g 314 . . . . 5 ((𝜑𝐶 ∈ ℂ) → (𝑥 ∈ (ℂ ∩ 𝑦 ∈ {𝐴, 𝐵} ((𝐹𝑦) lim 𝐶)) ↔ 𝑥 ∈ (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶))))
5335, 52bitrd 279 . . . 4 ((𝜑𝐶 ∈ ℂ) → (𝑥 ∈ (𝐹 lim 𝐶) ↔ 𝑥 ∈ (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶))))
5453ex 412 . . 3 (𝜑 → (𝐶 ∈ ℂ → (𝑥 ∈ (𝐹 lim 𝐶) ↔ 𝑥 ∈ (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶)))))
553, 8, 54pm5.21ndd 379 . 2 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐶) ↔ 𝑥 ∈ (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶))))
5655eqrdv 2722 1 (𝜑 → (𝐹 lim 𝐶) = (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wral 3053  Vcvv 3466  cun 3938  cin 3939  wss 3940  {cpr 4622   cuni 4899   ciun 4987   ciin 4988  dom cdm 5666  cres 5668  wf 6529  (class class class)co 7401  Fincfn 8934  cc 11103   lim climc 25701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-pre-sup 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8698  df-map 8817  df-pm 8818  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-fi 9401  df-sup 9432  df-inf 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-fz 13481  df-seq 13963  df-exp 14024  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17141  df-plusg 17206  df-mulr 17207  df-starv 17208  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-rest 17364  df-topn 17365  df-topgen 17385  df-psmet 21215  df-xmet 21216  df-met 21217  df-bl 21218  df-mopn 21219  df-cnfld 21224  df-top 22706  df-topon 22723  df-topsp 22745  df-bases 22759  df-cnp 23042  df-xms 24136  df-ms 24137  df-limc 25705
This theorem is referenced by:  lhop  25859
  Copyright terms: Public domain W3C validator