| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | limcrcl 25910 | . . . . 5
⊢ (𝑥 ∈ (𝐹 limℂ 𝐶) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐶 ∈ ℂ)) | 
| 2 | 1 | simp3d 1144 | . . . 4
⊢ (𝑥 ∈ (𝐹 limℂ 𝐶) → 𝐶 ∈ ℂ) | 
| 3 | 2 | a1i 11 | . . 3
⊢ (𝜑 → (𝑥 ∈ (𝐹 limℂ 𝐶) → 𝐶 ∈ ℂ)) | 
| 4 |  | elinel1 4200 | . . . . 5
⊢ (𝑥 ∈ (((𝐹 ↾ 𝐴) limℂ 𝐶) ∩ ((𝐹 ↾ 𝐵) limℂ 𝐶)) → 𝑥 ∈ ((𝐹 ↾ 𝐴) limℂ 𝐶)) | 
| 5 |  | limcrcl 25910 | . . . . . 6
⊢ (𝑥 ∈ ((𝐹 ↾ 𝐴) limℂ 𝐶) → ((𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)⟶ℂ ∧ dom (𝐹 ↾ 𝐴) ⊆ ℂ ∧ 𝐶 ∈ ℂ)) | 
| 6 | 5 | simp3d 1144 | . . . . 5
⊢ (𝑥 ∈ ((𝐹 ↾ 𝐴) limℂ 𝐶) → 𝐶 ∈ ℂ) | 
| 7 | 4, 6 | syl 17 | . . . 4
⊢ (𝑥 ∈ (((𝐹 ↾ 𝐴) limℂ 𝐶) ∩ ((𝐹 ↾ 𝐵) limℂ 𝐶)) → 𝐶 ∈ ℂ) | 
| 8 | 7 | a1i 11 | . . 3
⊢ (𝜑 → (𝑥 ∈ (((𝐹 ↾ 𝐴) limℂ 𝐶) ∩ ((𝐹 ↾ 𝐵) limℂ 𝐶)) → 𝐶 ∈ ℂ)) | 
| 9 |  | prfi 9364 | . . . . . . . 8
⊢ {𝐴, 𝐵} ∈ Fin | 
| 10 | 9 | a1i 11 | . . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ ℂ) → {𝐴, 𝐵} ∈ Fin) | 
| 11 |  | limcun.1 | . . . . . . . . 9
⊢ (𝜑 → 𝐴 ⊆ ℂ) | 
| 12 | 11 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 ∈ ℂ) → 𝐴 ⊆ ℂ) | 
| 13 |  | limcun.2 | . . . . . . . . 9
⊢ (𝜑 → 𝐵 ⊆ ℂ) | 
| 14 | 13 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 ∈ ℂ) → 𝐵 ⊆ ℂ) | 
| 15 |  | cnex 11237 | . . . . . . . . . . 11
⊢ ℂ
∈ V | 
| 16 | 15 | ssex 5320 | . . . . . . . . . 10
⊢ (𝐴 ⊆ ℂ → 𝐴 ∈ V) | 
| 17 | 12, 16 | syl 17 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ V) | 
| 18 | 15 | ssex 5320 | . . . . . . . . . 10
⊢ (𝐵 ⊆ ℂ → 𝐵 ∈ V) | 
| 19 | 14, 18 | syl 17 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶 ∈ ℂ) → 𝐵 ∈ V) | 
| 20 |  | sseq1 4008 | . . . . . . . . . 10
⊢ (𝑦 = 𝐴 → (𝑦 ⊆ ℂ ↔ 𝐴 ⊆ ℂ)) | 
| 21 |  | sseq1 4008 | . . . . . . . . . 10
⊢ (𝑦 = 𝐵 → (𝑦 ⊆ ℂ ↔ 𝐵 ⊆ ℂ)) | 
| 22 | 20, 21 | ralprg 4695 | . . . . . . . . 9
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∀𝑦 ∈ {𝐴, 𝐵}𝑦 ⊆ ℂ ↔ (𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ))) | 
| 23 | 17, 19, 22 | syl2anc 584 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 ∈ ℂ) → (∀𝑦 ∈ {𝐴, 𝐵}𝑦 ⊆ ℂ ↔ (𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ))) | 
| 24 | 12, 14, 23 | mpbir2and 713 | . . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ ℂ) → ∀𝑦 ∈ {𝐴, 𝐵}𝑦 ⊆ ℂ) | 
| 25 |  | limcun.3 | . . . . . . . . 9
⊢ (𝜑 → 𝐹:(𝐴 ∪ 𝐵)⟶ℂ) | 
| 26 | 25 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 ∈ ℂ) → 𝐹:(𝐴 ∪ 𝐵)⟶ℂ) | 
| 27 |  | uniiun 5057 | . . . . . . . . . 10
⊢ ∪ {𝐴,
𝐵} = ∪ 𝑦 ∈ {𝐴, 𝐵}𝑦 | 
| 28 |  | uniprg 4922 | . . . . . . . . . . 11
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ∪ {𝐴,
𝐵} = (𝐴 ∪ 𝐵)) | 
| 29 | 17, 19, 28 | syl2anc 584 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐶 ∈ ℂ) → ∪ {𝐴,
𝐵} = (𝐴 ∪ 𝐵)) | 
| 30 | 27, 29 | eqtr3id 2790 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶 ∈ ℂ) → ∪ 𝑦 ∈ {𝐴, 𝐵}𝑦 = (𝐴 ∪ 𝐵)) | 
| 31 | 30 | feq2d 6721 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 ∈ ℂ) → (𝐹:∪ 𝑦 ∈ {𝐴, 𝐵}𝑦⟶ℂ ↔ 𝐹:(𝐴 ∪ 𝐵)⟶ℂ)) | 
| 32 | 26, 31 | mpbird 257 | . . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ ℂ) → 𝐹:∪ 𝑦 ∈ {𝐴, 𝐵}𝑦⟶ℂ) | 
| 33 |  | simpr 484 | . . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ ℂ) → 𝐶 ∈ ℂ) | 
| 34 | 10, 24, 32, 33 | limciun 25930 | . . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ ℂ) → (𝐹 limℂ 𝐶) = (ℂ ∩ ∩ 𝑦 ∈ {𝐴, 𝐵} ((𝐹 ↾ 𝑦) limℂ 𝐶))) | 
| 35 | 34 | eleq2d 2826 | . . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ ℂ) → (𝑥 ∈ (𝐹 limℂ 𝐶) ↔ 𝑥 ∈ (ℂ ∩ ∩ 𝑦 ∈ {𝐴, 𝐵} ((𝐹 ↾ 𝑦) limℂ 𝐶)))) | 
| 36 |  | reseq2 5991 | . . . . . . . . . . . 12
⊢ (𝑦 = 𝐴 → (𝐹 ↾ 𝑦) = (𝐹 ↾ 𝐴)) | 
| 37 | 36 | oveq1d 7447 | . . . . . . . . . . 11
⊢ (𝑦 = 𝐴 → ((𝐹 ↾ 𝑦) limℂ 𝐶) = ((𝐹 ↾ 𝐴) limℂ 𝐶)) | 
| 38 | 37 | eleq2d 2826 | . . . . . . . . . 10
⊢ (𝑦 = 𝐴 → (𝑥 ∈ ((𝐹 ↾ 𝑦) limℂ 𝐶) ↔ 𝑥 ∈ ((𝐹 ↾ 𝐴) limℂ 𝐶))) | 
| 39 |  | reseq2 5991 | . . . . . . . . . . . 12
⊢ (𝑦 = 𝐵 → (𝐹 ↾ 𝑦) = (𝐹 ↾ 𝐵)) | 
| 40 | 39 | oveq1d 7447 | . . . . . . . . . . 11
⊢ (𝑦 = 𝐵 → ((𝐹 ↾ 𝑦) limℂ 𝐶) = ((𝐹 ↾ 𝐵) limℂ 𝐶)) | 
| 41 | 40 | eleq2d 2826 | . . . . . . . . . 10
⊢ (𝑦 = 𝐵 → (𝑥 ∈ ((𝐹 ↾ 𝑦) limℂ 𝐶) ↔ 𝑥 ∈ ((𝐹 ↾ 𝐵) limℂ 𝐶))) | 
| 42 | 38, 41 | ralprg 4695 | . . . . . . . . 9
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∀𝑦 ∈ {𝐴, 𝐵}𝑥 ∈ ((𝐹 ↾ 𝑦) limℂ 𝐶) ↔ (𝑥 ∈ ((𝐹 ↾ 𝐴) limℂ 𝐶) ∧ 𝑥 ∈ ((𝐹 ↾ 𝐵) limℂ 𝐶)))) | 
| 43 | 17, 19, 42 | syl2anc 584 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 ∈ ℂ) → (∀𝑦 ∈ {𝐴, 𝐵}𝑥 ∈ ((𝐹 ↾ 𝑦) limℂ 𝐶) ↔ (𝑥 ∈ ((𝐹 ↾ 𝐴) limℂ 𝐶) ∧ 𝑥 ∈ ((𝐹 ↾ 𝐵) limℂ 𝐶)))) | 
| 44 | 43 | anbi2d 630 | . . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ ℂ) → ((𝑥 ∈ ℂ ∧ ∀𝑦 ∈ {𝐴, 𝐵}𝑥 ∈ ((𝐹 ↾ 𝑦) limℂ 𝐶)) ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ((𝐹 ↾ 𝐴) limℂ 𝐶) ∧ 𝑥 ∈ ((𝐹 ↾ 𝐵) limℂ 𝐶))))) | 
| 45 |  | limccl 25911 | . . . . . . . . . 10
⊢ ((𝐹 ↾ 𝐴) limℂ 𝐶) ⊆ ℂ | 
| 46 | 45 | sseli 3978 | . . . . . . . . 9
⊢ (𝑥 ∈ ((𝐹 ↾ 𝐴) limℂ 𝐶) → 𝑥 ∈ ℂ) | 
| 47 | 46 | adantr 480 | . . . . . . . 8
⊢ ((𝑥 ∈ ((𝐹 ↾ 𝐴) limℂ 𝐶) ∧ 𝑥 ∈ ((𝐹 ↾ 𝐵) limℂ 𝐶)) → 𝑥 ∈ ℂ) | 
| 48 | 47 | pm4.71ri 560 | . . . . . . 7
⊢ ((𝑥 ∈ ((𝐹 ↾ 𝐴) limℂ 𝐶) ∧ 𝑥 ∈ ((𝐹 ↾ 𝐵) limℂ 𝐶)) ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ((𝐹 ↾ 𝐴) limℂ 𝐶) ∧ 𝑥 ∈ ((𝐹 ↾ 𝐵) limℂ 𝐶)))) | 
| 49 | 44, 48 | bitr4di 289 | . . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ ℂ) → ((𝑥 ∈ ℂ ∧ ∀𝑦 ∈ {𝐴, 𝐵}𝑥 ∈ ((𝐹 ↾ 𝑦) limℂ 𝐶)) ↔ (𝑥 ∈ ((𝐹 ↾ 𝐴) limℂ 𝐶) ∧ 𝑥 ∈ ((𝐹 ↾ 𝐵) limℂ 𝐶)))) | 
| 50 |  | elriin 5080 | . . . . . 6
⊢ (𝑥 ∈ (ℂ ∩ ∩ 𝑦 ∈ {𝐴, 𝐵} ((𝐹 ↾ 𝑦) limℂ 𝐶)) ↔ (𝑥 ∈ ℂ ∧ ∀𝑦 ∈ {𝐴, 𝐵}𝑥 ∈ ((𝐹 ↾ 𝑦) limℂ 𝐶))) | 
| 51 |  | elin 3966 | . . . . . 6
⊢ (𝑥 ∈ (((𝐹 ↾ 𝐴) limℂ 𝐶) ∩ ((𝐹 ↾ 𝐵) limℂ 𝐶)) ↔ (𝑥 ∈ ((𝐹 ↾ 𝐴) limℂ 𝐶) ∧ 𝑥 ∈ ((𝐹 ↾ 𝐵) limℂ 𝐶))) | 
| 52 | 49, 50, 51 | 3bitr4g 314 | . . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ ℂ) → (𝑥 ∈ (ℂ ∩ ∩ 𝑦 ∈ {𝐴, 𝐵} ((𝐹 ↾ 𝑦) limℂ 𝐶)) ↔ 𝑥 ∈ (((𝐹 ↾ 𝐴) limℂ 𝐶) ∩ ((𝐹 ↾ 𝐵) limℂ 𝐶)))) | 
| 53 | 35, 52 | bitrd 279 | . . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ ℂ) → (𝑥 ∈ (𝐹 limℂ 𝐶) ↔ 𝑥 ∈ (((𝐹 ↾ 𝐴) limℂ 𝐶) ∩ ((𝐹 ↾ 𝐵) limℂ 𝐶)))) | 
| 54 | 53 | ex 412 | . . 3
⊢ (𝜑 → (𝐶 ∈ ℂ → (𝑥 ∈ (𝐹 limℂ 𝐶) ↔ 𝑥 ∈ (((𝐹 ↾ 𝐴) limℂ 𝐶) ∩ ((𝐹 ↾ 𝐵) limℂ 𝐶))))) | 
| 55 | 3, 8, 54 | pm5.21ndd 379 | . 2
⊢ (𝜑 → (𝑥 ∈ (𝐹 limℂ 𝐶) ↔ 𝑥 ∈ (((𝐹 ↾ 𝐴) limℂ 𝐶) ∩ ((𝐹 ↾ 𝐵) limℂ 𝐶)))) | 
| 56 | 55 | eqrdv 2734 | 1
⊢ (𝜑 → (𝐹 limℂ 𝐶) = (((𝐹 ↾ 𝐴) limℂ 𝐶) ∩ ((𝐹 ↾ 𝐵) limℂ 𝐶))) |