MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcun Structured version   Visualization version   GIF version

Theorem limcun 25059
Description: A point is a limit of 𝐹 on 𝐴𝐵 iff it is the limit of the restriction of 𝐹 to 𝐴 and to 𝐵. (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypotheses
Ref Expression
limcun.1 (𝜑𝐴 ⊆ ℂ)
limcun.2 (𝜑𝐵 ⊆ ℂ)
limcun.3 (𝜑𝐹:(𝐴𝐵)⟶ℂ)
Assertion
Ref Expression
limcun (𝜑 → (𝐹 lim 𝐶) = (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶)))

Proof of Theorem limcun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limcrcl 25038 . . . . 5 (𝑥 ∈ (𝐹 lim 𝐶) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐶 ∈ ℂ))
21simp3d 1143 . . . 4 (𝑥 ∈ (𝐹 lim 𝐶) → 𝐶 ∈ ℂ)
32a1i 11 . . 3 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐶) → 𝐶 ∈ ℂ))
4 elinel1 4129 . . . . 5 (𝑥 ∈ (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶)) → 𝑥 ∈ ((𝐹𝐴) lim 𝐶))
5 limcrcl 25038 . . . . . 6 (𝑥 ∈ ((𝐹𝐴) lim 𝐶) → ((𝐹𝐴):dom (𝐹𝐴)⟶ℂ ∧ dom (𝐹𝐴) ⊆ ℂ ∧ 𝐶 ∈ ℂ))
65simp3d 1143 . . . . 5 (𝑥 ∈ ((𝐹𝐴) lim 𝐶) → 𝐶 ∈ ℂ)
74, 6syl 17 . . . 4 (𝑥 ∈ (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶)) → 𝐶 ∈ ℂ)
87a1i 11 . . 3 (𝜑 → (𝑥 ∈ (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶)) → 𝐶 ∈ ℂ))
9 prfi 9089 . . . . . . . 8 {𝐴, 𝐵} ∈ Fin
109a1i 11 . . . . . . 7 ((𝜑𝐶 ∈ ℂ) → {𝐴, 𝐵} ∈ Fin)
11 limcun.1 . . . . . . . . 9 (𝜑𝐴 ⊆ ℂ)
1211adantr 481 . . . . . . . 8 ((𝜑𝐶 ∈ ℂ) → 𝐴 ⊆ ℂ)
13 limcun.2 . . . . . . . . 9 (𝜑𝐵 ⊆ ℂ)
1413adantr 481 . . . . . . . 8 ((𝜑𝐶 ∈ ℂ) → 𝐵 ⊆ ℂ)
15 cnex 10952 . . . . . . . . . . 11 ℂ ∈ V
1615ssex 5245 . . . . . . . . . 10 (𝐴 ⊆ ℂ → 𝐴 ∈ V)
1712, 16syl 17 . . . . . . . . 9 ((𝜑𝐶 ∈ ℂ) → 𝐴 ∈ V)
1815ssex 5245 . . . . . . . . . 10 (𝐵 ⊆ ℂ → 𝐵 ∈ V)
1914, 18syl 17 . . . . . . . . 9 ((𝜑𝐶 ∈ ℂ) → 𝐵 ∈ V)
20 sseq1 3946 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑦 ⊆ ℂ ↔ 𝐴 ⊆ ℂ))
21 sseq1 3946 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝑦 ⊆ ℂ ↔ 𝐵 ⊆ ℂ))
2220, 21ralprg 4630 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∀𝑦 ∈ {𝐴, 𝐵}𝑦 ⊆ ℂ ↔ (𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ)))
2317, 19, 22syl2anc 584 . . . . . . . 8 ((𝜑𝐶 ∈ ℂ) → (∀𝑦 ∈ {𝐴, 𝐵}𝑦 ⊆ ℂ ↔ (𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ)))
2412, 14, 23mpbir2and 710 . . . . . . 7 ((𝜑𝐶 ∈ ℂ) → ∀𝑦 ∈ {𝐴, 𝐵}𝑦 ⊆ ℂ)
25 limcun.3 . . . . . . . . 9 (𝜑𝐹:(𝐴𝐵)⟶ℂ)
2625adantr 481 . . . . . . . 8 ((𝜑𝐶 ∈ ℂ) → 𝐹:(𝐴𝐵)⟶ℂ)
27 uniiun 4988 . . . . . . . . . 10 {𝐴, 𝐵} = 𝑦 ∈ {𝐴, 𝐵}𝑦
28 uniprg 4856 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} = (𝐴𝐵))
2917, 19, 28syl2anc 584 . . . . . . . . . 10 ((𝜑𝐶 ∈ ℂ) → {𝐴, 𝐵} = (𝐴𝐵))
3027, 29eqtr3id 2792 . . . . . . . . 9 ((𝜑𝐶 ∈ ℂ) → 𝑦 ∈ {𝐴, 𝐵}𝑦 = (𝐴𝐵))
3130feq2d 6586 . . . . . . . 8 ((𝜑𝐶 ∈ ℂ) → (𝐹: 𝑦 ∈ {𝐴, 𝐵}𝑦⟶ℂ ↔ 𝐹:(𝐴𝐵)⟶ℂ))
3226, 31mpbird 256 . . . . . . 7 ((𝜑𝐶 ∈ ℂ) → 𝐹: 𝑦 ∈ {𝐴, 𝐵}𝑦⟶ℂ)
33 simpr 485 . . . . . . 7 ((𝜑𝐶 ∈ ℂ) → 𝐶 ∈ ℂ)
3410, 24, 32, 33limciun 25058 . . . . . 6 ((𝜑𝐶 ∈ ℂ) → (𝐹 lim 𝐶) = (ℂ ∩ 𝑦 ∈ {𝐴, 𝐵} ((𝐹𝑦) lim 𝐶)))
3534eleq2d 2824 . . . . 5 ((𝜑𝐶 ∈ ℂ) → (𝑥 ∈ (𝐹 lim 𝐶) ↔ 𝑥 ∈ (ℂ ∩ 𝑦 ∈ {𝐴, 𝐵} ((𝐹𝑦) lim 𝐶))))
36 reseq2 5886 . . . . . . . . . . . 12 (𝑦 = 𝐴 → (𝐹𝑦) = (𝐹𝐴))
3736oveq1d 7290 . . . . . . . . . . 11 (𝑦 = 𝐴 → ((𝐹𝑦) lim 𝐶) = ((𝐹𝐴) lim 𝐶))
3837eleq2d 2824 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑥 ∈ ((𝐹𝑦) lim 𝐶) ↔ 𝑥 ∈ ((𝐹𝐴) lim 𝐶)))
39 reseq2 5886 . . . . . . . . . . . 12 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
4039oveq1d 7290 . . . . . . . . . . 11 (𝑦 = 𝐵 → ((𝐹𝑦) lim 𝐶) = ((𝐹𝐵) lim 𝐶))
4140eleq2d 2824 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝑥 ∈ ((𝐹𝑦) lim 𝐶) ↔ 𝑥 ∈ ((𝐹𝐵) lim 𝐶)))
4238, 41ralprg 4630 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∀𝑦 ∈ {𝐴, 𝐵}𝑥 ∈ ((𝐹𝑦) lim 𝐶) ↔ (𝑥 ∈ ((𝐹𝐴) lim 𝐶) ∧ 𝑥 ∈ ((𝐹𝐵) lim 𝐶))))
4317, 19, 42syl2anc 584 . . . . . . . 8 ((𝜑𝐶 ∈ ℂ) → (∀𝑦 ∈ {𝐴, 𝐵}𝑥 ∈ ((𝐹𝑦) lim 𝐶) ↔ (𝑥 ∈ ((𝐹𝐴) lim 𝐶) ∧ 𝑥 ∈ ((𝐹𝐵) lim 𝐶))))
4443anbi2d 629 . . . . . . 7 ((𝜑𝐶 ∈ ℂ) → ((𝑥 ∈ ℂ ∧ ∀𝑦 ∈ {𝐴, 𝐵}𝑥 ∈ ((𝐹𝑦) lim 𝐶)) ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ((𝐹𝐴) lim 𝐶) ∧ 𝑥 ∈ ((𝐹𝐵) lim 𝐶)))))
45 limccl 25039 . . . . . . . . . 10 ((𝐹𝐴) lim 𝐶) ⊆ ℂ
4645sseli 3917 . . . . . . . . 9 (𝑥 ∈ ((𝐹𝐴) lim 𝐶) → 𝑥 ∈ ℂ)
4746adantr 481 . . . . . . . 8 ((𝑥 ∈ ((𝐹𝐴) lim 𝐶) ∧ 𝑥 ∈ ((𝐹𝐵) lim 𝐶)) → 𝑥 ∈ ℂ)
4847pm4.71ri 561 . . . . . . 7 ((𝑥 ∈ ((𝐹𝐴) lim 𝐶) ∧ 𝑥 ∈ ((𝐹𝐵) lim 𝐶)) ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ((𝐹𝐴) lim 𝐶) ∧ 𝑥 ∈ ((𝐹𝐵) lim 𝐶))))
4944, 48bitr4di 289 . . . . . 6 ((𝜑𝐶 ∈ ℂ) → ((𝑥 ∈ ℂ ∧ ∀𝑦 ∈ {𝐴, 𝐵}𝑥 ∈ ((𝐹𝑦) lim 𝐶)) ↔ (𝑥 ∈ ((𝐹𝐴) lim 𝐶) ∧ 𝑥 ∈ ((𝐹𝐵) lim 𝐶))))
50 elriin 5010 . . . . . 6 (𝑥 ∈ (ℂ ∩ 𝑦 ∈ {𝐴, 𝐵} ((𝐹𝑦) lim 𝐶)) ↔ (𝑥 ∈ ℂ ∧ ∀𝑦 ∈ {𝐴, 𝐵}𝑥 ∈ ((𝐹𝑦) lim 𝐶)))
51 elin 3903 . . . . . 6 (𝑥 ∈ (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶)) ↔ (𝑥 ∈ ((𝐹𝐴) lim 𝐶) ∧ 𝑥 ∈ ((𝐹𝐵) lim 𝐶)))
5249, 50, 513bitr4g 314 . . . . 5 ((𝜑𝐶 ∈ ℂ) → (𝑥 ∈ (ℂ ∩ 𝑦 ∈ {𝐴, 𝐵} ((𝐹𝑦) lim 𝐶)) ↔ 𝑥 ∈ (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶))))
5335, 52bitrd 278 . . . 4 ((𝜑𝐶 ∈ ℂ) → (𝑥 ∈ (𝐹 lim 𝐶) ↔ 𝑥 ∈ (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶))))
5453ex 413 . . 3 (𝜑 → (𝐶 ∈ ℂ → (𝑥 ∈ (𝐹 lim 𝐶) ↔ 𝑥 ∈ (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶)))))
553, 8, 54pm5.21ndd 381 . 2 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐶) ↔ 𝑥 ∈ (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶))))
5655eqrdv 2736 1 (𝜑 → (𝐹 lim 𝐶) = (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  cun 3885  cin 3886  wss 3887  {cpr 4563   cuni 4839   ciun 4924   ciin 4925  dom cdm 5589  cres 5591  wf 6429  (class class class)co 7275  Fincfn 8733  cc 10869   lim climc 25026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-fz 13240  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-starv 16977  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-rest 17133  df-topn 17134  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cnp 22379  df-xms 23473  df-ms 23474  df-limc 25030
This theorem is referenced by:  lhop  25180
  Copyright terms: Public domain W3C validator