MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcun Structured version   Visualization version   GIF version

Theorem limcun 23999
Description: A point is a limit of 𝐹 on 𝐴𝐵 iff it is the limit of the restriction of 𝐹 to 𝐴 and to 𝐵. (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypotheses
Ref Expression
limcun.1 (𝜑𝐴 ⊆ ℂ)
limcun.2 (𝜑𝐵 ⊆ ℂ)
limcun.3 (𝜑𝐹:(𝐴𝐵)⟶ℂ)
Assertion
Ref Expression
limcun (𝜑 → (𝐹 lim 𝐶) = (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶)))

Proof of Theorem limcun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limcrcl 23978 . . . . 5 (𝑥 ∈ (𝐹 lim 𝐶) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐶 ∈ ℂ))
21simp3d 1175 . . . 4 (𝑥 ∈ (𝐹 lim 𝐶) → 𝐶 ∈ ℂ)
32a1i 11 . . 3 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐶) → 𝐶 ∈ ℂ))
4 inss1 4029 . . . . . 6 (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶)) ⊆ ((𝐹𝐴) lim 𝐶)
54sseli 3795 . . . . 5 (𝑥 ∈ (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶)) → 𝑥 ∈ ((𝐹𝐴) lim 𝐶))
6 limcrcl 23978 . . . . . 6 (𝑥 ∈ ((𝐹𝐴) lim 𝐶) → ((𝐹𝐴):dom (𝐹𝐴)⟶ℂ ∧ dom (𝐹𝐴) ⊆ ℂ ∧ 𝐶 ∈ ℂ))
76simp3d 1175 . . . . 5 (𝑥 ∈ ((𝐹𝐴) lim 𝐶) → 𝐶 ∈ ℂ)
85, 7syl 17 . . . 4 (𝑥 ∈ (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶)) → 𝐶 ∈ ℂ)
98a1i 11 . . 3 (𝜑 → (𝑥 ∈ (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶)) → 𝐶 ∈ ℂ))
10 prfi 8478 . . . . . . . 8 {𝐴, 𝐵} ∈ Fin
1110a1i 11 . . . . . . 7 ((𝜑𝐶 ∈ ℂ) → {𝐴, 𝐵} ∈ Fin)
12 limcun.1 . . . . . . . . 9 (𝜑𝐴 ⊆ ℂ)
1312adantr 473 . . . . . . . 8 ((𝜑𝐶 ∈ ℂ) → 𝐴 ⊆ ℂ)
14 limcun.2 . . . . . . . . 9 (𝜑𝐵 ⊆ ℂ)
1514adantr 473 . . . . . . . 8 ((𝜑𝐶 ∈ ℂ) → 𝐵 ⊆ ℂ)
16 cnex 10306 . . . . . . . . . . 11 ℂ ∈ V
1716ssex 4998 . . . . . . . . . 10 (𝐴 ⊆ ℂ → 𝐴 ∈ V)
1813, 17syl 17 . . . . . . . . 9 ((𝜑𝐶 ∈ ℂ) → 𝐴 ∈ V)
1916ssex 4998 . . . . . . . . . 10 (𝐵 ⊆ ℂ → 𝐵 ∈ V)
2015, 19syl 17 . . . . . . . . 9 ((𝜑𝐶 ∈ ℂ) → 𝐵 ∈ V)
21 sseq1 3823 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑦 ⊆ ℂ ↔ 𝐴 ⊆ ℂ))
22 sseq1 3823 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝑦 ⊆ ℂ ↔ 𝐵 ⊆ ℂ))
2321, 22ralprg 4425 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∀𝑦 ∈ {𝐴, 𝐵}𝑦 ⊆ ℂ ↔ (𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ)))
2418, 20, 23syl2anc 580 . . . . . . . 8 ((𝜑𝐶 ∈ ℂ) → (∀𝑦 ∈ {𝐴, 𝐵}𝑦 ⊆ ℂ ↔ (𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ)))
2513, 15, 24mpbir2and 705 . . . . . . 7 ((𝜑𝐶 ∈ ℂ) → ∀𝑦 ∈ {𝐴, 𝐵}𝑦 ⊆ ℂ)
26 limcun.3 . . . . . . . . 9 (𝜑𝐹:(𝐴𝐵)⟶ℂ)
2726adantr 473 . . . . . . . 8 ((𝜑𝐶 ∈ ℂ) → 𝐹:(𝐴𝐵)⟶ℂ)
28 uniiun 4764 . . . . . . . . . 10 {𝐴, 𝐵} = 𝑦 ∈ {𝐴, 𝐵}𝑦
29 uniprg 4643 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} = (𝐴𝐵))
3018, 20, 29syl2anc 580 . . . . . . . . . 10 ((𝜑𝐶 ∈ ℂ) → {𝐴, 𝐵} = (𝐴𝐵))
3128, 30syl5eqr 2848 . . . . . . . . 9 ((𝜑𝐶 ∈ ℂ) → 𝑦 ∈ {𝐴, 𝐵}𝑦 = (𝐴𝐵))
3231feq2d 6243 . . . . . . . 8 ((𝜑𝐶 ∈ ℂ) → (𝐹: 𝑦 ∈ {𝐴, 𝐵}𝑦⟶ℂ ↔ 𝐹:(𝐴𝐵)⟶ℂ))
3327, 32mpbird 249 . . . . . . 7 ((𝜑𝐶 ∈ ℂ) → 𝐹: 𝑦 ∈ {𝐴, 𝐵}𝑦⟶ℂ)
34 simpr 478 . . . . . . 7 ((𝜑𝐶 ∈ ℂ) → 𝐶 ∈ ℂ)
3511, 25, 33, 34limciun 23998 . . . . . 6 ((𝜑𝐶 ∈ ℂ) → (𝐹 lim 𝐶) = (ℂ ∩ 𝑦 ∈ {𝐴, 𝐵} ((𝐹𝑦) lim 𝐶)))
3635eleq2d 2865 . . . . 5 ((𝜑𝐶 ∈ ℂ) → (𝑥 ∈ (𝐹 lim 𝐶) ↔ 𝑥 ∈ (ℂ ∩ 𝑦 ∈ {𝐴, 𝐵} ((𝐹𝑦) lim 𝐶))))
37 reseq2 5596 . . . . . . . . . . . 12 (𝑦 = 𝐴 → (𝐹𝑦) = (𝐹𝐴))
3837oveq1d 6894 . . . . . . . . . . 11 (𝑦 = 𝐴 → ((𝐹𝑦) lim 𝐶) = ((𝐹𝐴) lim 𝐶))
3938eleq2d 2865 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑥 ∈ ((𝐹𝑦) lim 𝐶) ↔ 𝑥 ∈ ((𝐹𝐴) lim 𝐶)))
40 reseq2 5596 . . . . . . . . . . . 12 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
4140oveq1d 6894 . . . . . . . . . . 11 (𝑦 = 𝐵 → ((𝐹𝑦) lim 𝐶) = ((𝐹𝐵) lim 𝐶))
4241eleq2d 2865 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝑥 ∈ ((𝐹𝑦) lim 𝐶) ↔ 𝑥 ∈ ((𝐹𝐵) lim 𝐶)))
4339, 42ralprg 4425 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∀𝑦 ∈ {𝐴, 𝐵}𝑥 ∈ ((𝐹𝑦) lim 𝐶) ↔ (𝑥 ∈ ((𝐹𝐴) lim 𝐶) ∧ 𝑥 ∈ ((𝐹𝐵) lim 𝐶))))
4418, 20, 43syl2anc 580 . . . . . . . 8 ((𝜑𝐶 ∈ ℂ) → (∀𝑦 ∈ {𝐴, 𝐵}𝑥 ∈ ((𝐹𝑦) lim 𝐶) ↔ (𝑥 ∈ ((𝐹𝐴) lim 𝐶) ∧ 𝑥 ∈ ((𝐹𝐵) lim 𝐶))))
4544anbi2d 623 . . . . . . 7 ((𝜑𝐶 ∈ ℂ) → ((𝑥 ∈ ℂ ∧ ∀𝑦 ∈ {𝐴, 𝐵}𝑥 ∈ ((𝐹𝑦) lim 𝐶)) ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ((𝐹𝐴) lim 𝐶) ∧ 𝑥 ∈ ((𝐹𝐵) lim 𝐶)))))
46 limccl 23979 . . . . . . . . . 10 ((𝐹𝐴) lim 𝐶) ⊆ ℂ
4746sseli 3795 . . . . . . . . 9 (𝑥 ∈ ((𝐹𝐴) lim 𝐶) → 𝑥 ∈ ℂ)
4847adantr 473 . . . . . . . 8 ((𝑥 ∈ ((𝐹𝐴) lim 𝐶) ∧ 𝑥 ∈ ((𝐹𝐵) lim 𝐶)) → 𝑥 ∈ ℂ)
4948pm4.71ri 557 . . . . . . 7 ((𝑥 ∈ ((𝐹𝐴) lim 𝐶) ∧ 𝑥 ∈ ((𝐹𝐵) lim 𝐶)) ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ((𝐹𝐴) lim 𝐶) ∧ 𝑥 ∈ ((𝐹𝐵) lim 𝐶))))
5045, 49syl6bbr 281 . . . . . 6 ((𝜑𝐶 ∈ ℂ) → ((𝑥 ∈ ℂ ∧ ∀𝑦 ∈ {𝐴, 𝐵}𝑥 ∈ ((𝐹𝑦) lim 𝐶)) ↔ (𝑥 ∈ ((𝐹𝐴) lim 𝐶) ∧ 𝑥 ∈ ((𝐹𝐵) lim 𝐶))))
51 elriin 4784 . . . . . 6 (𝑥 ∈ (ℂ ∩ 𝑦 ∈ {𝐴, 𝐵} ((𝐹𝑦) lim 𝐶)) ↔ (𝑥 ∈ ℂ ∧ ∀𝑦 ∈ {𝐴, 𝐵}𝑥 ∈ ((𝐹𝑦) lim 𝐶)))
52 elin 3995 . . . . . 6 (𝑥 ∈ (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶)) ↔ (𝑥 ∈ ((𝐹𝐴) lim 𝐶) ∧ 𝑥 ∈ ((𝐹𝐵) lim 𝐶)))
5350, 51, 523bitr4g 306 . . . . 5 ((𝜑𝐶 ∈ ℂ) → (𝑥 ∈ (ℂ ∩ 𝑦 ∈ {𝐴, 𝐵} ((𝐹𝑦) lim 𝐶)) ↔ 𝑥 ∈ (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶))))
5436, 53bitrd 271 . . . 4 ((𝜑𝐶 ∈ ℂ) → (𝑥 ∈ (𝐹 lim 𝐶) ↔ 𝑥 ∈ (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶))))
5554ex 402 . . 3 (𝜑 → (𝐶 ∈ ℂ → (𝑥 ∈ (𝐹 lim 𝐶) ↔ 𝑥 ∈ (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶)))))
563, 9, 55pm5.21ndd 371 . 2 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐶) ↔ 𝑥 ∈ (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶))))
5756eqrdv 2798 1 (𝜑 → (𝐹 lim 𝐶) = (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  wral 3090  Vcvv 3386  cun 3768  cin 3769  wss 3770  {cpr 4371   cuni 4629   ciun 4711   ciin 4712  dom cdm 5313  cres 5315  wf 6098  (class class class)co 6879  Fincfn 8196  cc 10223   lim climc 23966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-rep 4965  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098  ax-un 7184  ax-cnex 10281  ax-resscn 10282  ax-1cn 10283  ax-icn 10284  ax-addcl 10285  ax-addrcl 10286  ax-mulcl 10287  ax-mulrcl 10288  ax-mulcom 10289  ax-addass 10290  ax-mulass 10291  ax-distr 10292  ax-i2m1 10293  ax-1ne0 10294  ax-1rid 10295  ax-rnegex 10296  ax-rrecex 10297  ax-cnre 10298  ax-pre-lttri 10299  ax-pre-lttrn 10300  ax-pre-ltadd 10301  ax-pre-mulgt0 10302  ax-pre-sup 10303
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3388  df-sbc 3635  df-csb 3730  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-pss 3786  df-nul 4117  df-if 4279  df-pw 4352  df-sn 4370  df-pr 4372  df-tp 4374  df-op 4376  df-uni 4630  df-int 4669  df-iun 4713  df-iin 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5221  df-eprel 5226  df-po 5234  df-so 5235  df-fr 5272  df-we 5274  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-res 5325  df-ima 5326  df-pred 5899  df-ord 5945  df-on 5946  df-lim 5947  df-suc 5948  df-iota 6065  df-fun 6104  df-fn 6105  df-f 6106  df-f1 6107  df-fo 6108  df-f1o 6109  df-fv 6110  df-riota 6840  df-ov 6882  df-oprab 6883  df-mpt2 6884  df-om 7301  df-1st 7402  df-2nd 7403  df-wrecs 7646  df-recs 7708  df-rdg 7746  df-1o 7800  df-oadd 7804  df-er 7983  df-map 8098  df-pm 8099  df-en 8197  df-dom 8198  df-sdom 8199  df-fin 8200  df-fi 8560  df-sup 8591  df-inf 8592  df-pnf 10366  df-mnf 10367  df-xr 10368  df-ltxr 10369  df-le 10370  df-sub 10559  df-neg 10560  df-div 10978  df-nn 11314  df-2 11375  df-3 11376  df-4 11377  df-5 11378  df-6 11379  df-7 11380  df-8 11381  df-9 11382  df-n0 11580  df-z 11666  df-dec 11783  df-uz 11930  df-q 12033  df-rp 12074  df-xneg 12192  df-xadd 12193  df-xmul 12194  df-fz 12580  df-seq 13055  df-exp 13114  df-cj 14179  df-re 14180  df-im 14181  df-sqrt 14315  df-abs 14316  df-struct 16185  df-ndx 16186  df-slot 16187  df-base 16189  df-plusg 16279  df-mulr 16280  df-starv 16281  df-tset 16285  df-ple 16286  df-ds 16288  df-unif 16289  df-rest 16397  df-topn 16398  df-topgen 16418  df-psmet 20059  df-xmet 20060  df-met 20061  df-bl 20062  df-mopn 20063  df-cnfld 20068  df-top 21026  df-topon 21043  df-topsp 21065  df-bases 21078  df-cnp 21360  df-xms 22452  df-ms 22453  df-limc 23970
This theorem is referenced by:  lhop  24119
  Copyright terms: Public domain W3C validator