MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcun Structured version   Visualization version   GIF version

Theorem limcun 24639
Description: A point is a limit of 𝐹 on 𝐴𝐵 iff it is the limit of the restriction of 𝐹 to 𝐴 and to 𝐵. (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypotheses
Ref Expression
limcun.1 (𝜑𝐴 ⊆ ℂ)
limcun.2 (𝜑𝐵 ⊆ ℂ)
limcun.3 (𝜑𝐹:(𝐴𝐵)⟶ℂ)
Assertion
Ref Expression
limcun (𝜑 → (𝐹 lim 𝐶) = (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶)))

Proof of Theorem limcun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limcrcl 24618 . . . . 5 (𝑥 ∈ (𝐹 lim 𝐶) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐶 ∈ ℂ))
21simp3d 1145 . . . 4 (𝑥 ∈ (𝐹 lim 𝐶) → 𝐶 ∈ ℂ)
32a1i 11 . . 3 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐶) → 𝐶 ∈ ℂ))
4 elinel1 4083 . . . . 5 (𝑥 ∈ (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶)) → 𝑥 ∈ ((𝐹𝐴) lim 𝐶))
5 limcrcl 24618 . . . . . 6 (𝑥 ∈ ((𝐹𝐴) lim 𝐶) → ((𝐹𝐴):dom (𝐹𝐴)⟶ℂ ∧ dom (𝐹𝐴) ⊆ ℂ ∧ 𝐶 ∈ ℂ))
65simp3d 1145 . . . . 5 (𝑥 ∈ ((𝐹𝐴) lim 𝐶) → 𝐶 ∈ ℂ)
74, 6syl 17 . . . 4 (𝑥 ∈ (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶)) → 𝐶 ∈ ℂ)
87a1i 11 . . 3 (𝜑 → (𝑥 ∈ (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶)) → 𝐶 ∈ ℂ))
9 prfi 8860 . . . . . . . 8 {𝐴, 𝐵} ∈ Fin
109a1i 11 . . . . . . 7 ((𝜑𝐶 ∈ ℂ) → {𝐴, 𝐵} ∈ Fin)
11 limcun.1 . . . . . . . . 9 (𝜑𝐴 ⊆ ℂ)
1211adantr 484 . . . . . . . 8 ((𝜑𝐶 ∈ ℂ) → 𝐴 ⊆ ℂ)
13 limcun.2 . . . . . . . . 9 (𝜑𝐵 ⊆ ℂ)
1413adantr 484 . . . . . . . 8 ((𝜑𝐶 ∈ ℂ) → 𝐵 ⊆ ℂ)
15 cnex 10689 . . . . . . . . . . 11 ℂ ∈ V
1615ssex 5186 . . . . . . . . . 10 (𝐴 ⊆ ℂ → 𝐴 ∈ V)
1712, 16syl 17 . . . . . . . . 9 ((𝜑𝐶 ∈ ℂ) → 𝐴 ∈ V)
1815ssex 5186 . . . . . . . . . 10 (𝐵 ⊆ ℂ → 𝐵 ∈ V)
1914, 18syl 17 . . . . . . . . 9 ((𝜑𝐶 ∈ ℂ) → 𝐵 ∈ V)
20 sseq1 3900 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑦 ⊆ ℂ ↔ 𝐴 ⊆ ℂ))
21 sseq1 3900 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝑦 ⊆ ℂ ↔ 𝐵 ⊆ ℂ))
2220, 21ralprg 4582 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∀𝑦 ∈ {𝐴, 𝐵}𝑦 ⊆ ℂ ↔ (𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ)))
2317, 19, 22syl2anc 587 . . . . . . . 8 ((𝜑𝐶 ∈ ℂ) → (∀𝑦 ∈ {𝐴, 𝐵}𝑦 ⊆ ℂ ↔ (𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ)))
2412, 14, 23mpbir2and 713 . . . . . . 7 ((𝜑𝐶 ∈ ℂ) → ∀𝑦 ∈ {𝐴, 𝐵}𝑦 ⊆ ℂ)
25 limcun.3 . . . . . . . . 9 (𝜑𝐹:(𝐴𝐵)⟶ℂ)
2625adantr 484 . . . . . . . 8 ((𝜑𝐶 ∈ ℂ) → 𝐹:(𝐴𝐵)⟶ℂ)
27 uniiun 4941 . . . . . . . . . 10 {𝐴, 𝐵} = 𝑦 ∈ {𝐴, 𝐵}𝑦
28 uniprg 4810 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} = (𝐴𝐵))
2917, 19, 28syl2anc 587 . . . . . . . . . 10 ((𝜑𝐶 ∈ ℂ) → {𝐴, 𝐵} = (𝐴𝐵))
3027, 29eqtr3id 2787 . . . . . . . . 9 ((𝜑𝐶 ∈ ℂ) → 𝑦 ∈ {𝐴, 𝐵}𝑦 = (𝐴𝐵))
3130feq2d 6484 . . . . . . . 8 ((𝜑𝐶 ∈ ℂ) → (𝐹: 𝑦 ∈ {𝐴, 𝐵}𝑦⟶ℂ ↔ 𝐹:(𝐴𝐵)⟶ℂ))
3226, 31mpbird 260 . . . . . . 7 ((𝜑𝐶 ∈ ℂ) → 𝐹: 𝑦 ∈ {𝐴, 𝐵}𝑦⟶ℂ)
33 simpr 488 . . . . . . 7 ((𝜑𝐶 ∈ ℂ) → 𝐶 ∈ ℂ)
3410, 24, 32, 33limciun 24638 . . . . . 6 ((𝜑𝐶 ∈ ℂ) → (𝐹 lim 𝐶) = (ℂ ∩ 𝑦 ∈ {𝐴, 𝐵} ((𝐹𝑦) lim 𝐶)))
3534eleq2d 2818 . . . . 5 ((𝜑𝐶 ∈ ℂ) → (𝑥 ∈ (𝐹 lim 𝐶) ↔ 𝑥 ∈ (ℂ ∩ 𝑦 ∈ {𝐴, 𝐵} ((𝐹𝑦) lim 𝐶))))
36 reseq2 5814 . . . . . . . . . . . 12 (𝑦 = 𝐴 → (𝐹𝑦) = (𝐹𝐴))
3736oveq1d 7179 . . . . . . . . . . 11 (𝑦 = 𝐴 → ((𝐹𝑦) lim 𝐶) = ((𝐹𝐴) lim 𝐶))
3837eleq2d 2818 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑥 ∈ ((𝐹𝑦) lim 𝐶) ↔ 𝑥 ∈ ((𝐹𝐴) lim 𝐶)))
39 reseq2 5814 . . . . . . . . . . . 12 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
4039oveq1d 7179 . . . . . . . . . . 11 (𝑦 = 𝐵 → ((𝐹𝑦) lim 𝐶) = ((𝐹𝐵) lim 𝐶))
4140eleq2d 2818 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝑥 ∈ ((𝐹𝑦) lim 𝐶) ↔ 𝑥 ∈ ((𝐹𝐵) lim 𝐶)))
4238, 41ralprg 4582 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∀𝑦 ∈ {𝐴, 𝐵}𝑥 ∈ ((𝐹𝑦) lim 𝐶) ↔ (𝑥 ∈ ((𝐹𝐴) lim 𝐶) ∧ 𝑥 ∈ ((𝐹𝐵) lim 𝐶))))
4317, 19, 42syl2anc 587 . . . . . . . 8 ((𝜑𝐶 ∈ ℂ) → (∀𝑦 ∈ {𝐴, 𝐵}𝑥 ∈ ((𝐹𝑦) lim 𝐶) ↔ (𝑥 ∈ ((𝐹𝐴) lim 𝐶) ∧ 𝑥 ∈ ((𝐹𝐵) lim 𝐶))))
4443anbi2d 632 . . . . . . 7 ((𝜑𝐶 ∈ ℂ) → ((𝑥 ∈ ℂ ∧ ∀𝑦 ∈ {𝐴, 𝐵}𝑥 ∈ ((𝐹𝑦) lim 𝐶)) ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ((𝐹𝐴) lim 𝐶) ∧ 𝑥 ∈ ((𝐹𝐵) lim 𝐶)))))
45 limccl 24619 . . . . . . . . . 10 ((𝐹𝐴) lim 𝐶) ⊆ ℂ
4645sseli 3871 . . . . . . . . 9 (𝑥 ∈ ((𝐹𝐴) lim 𝐶) → 𝑥 ∈ ℂ)
4746adantr 484 . . . . . . . 8 ((𝑥 ∈ ((𝐹𝐴) lim 𝐶) ∧ 𝑥 ∈ ((𝐹𝐵) lim 𝐶)) → 𝑥 ∈ ℂ)
4847pm4.71ri 564 . . . . . . 7 ((𝑥 ∈ ((𝐹𝐴) lim 𝐶) ∧ 𝑥 ∈ ((𝐹𝐵) lim 𝐶)) ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ((𝐹𝐴) lim 𝐶) ∧ 𝑥 ∈ ((𝐹𝐵) lim 𝐶))))
4944, 48bitr4di 292 . . . . . 6 ((𝜑𝐶 ∈ ℂ) → ((𝑥 ∈ ℂ ∧ ∀𝑦 ∈ {𝐴, 𝐵}𝑥 ∈ ((𝐹𝑦) lim 𝐶)) ↔ (𝑥 ∈ ((𝐹𝐴) lim 𝐶) ∧ 𝑥 ∈ ((𝐹𝐵) lim 𝐶))))
50 elriin 4963 . . . . . 6 (𝑥 ∈ (ℂ ∩ 𝑦 ∈ {𝐴, 𝐵} ((𝐹𝑦) lim 𝐶)) ↔ (𝑥 ∈ ℂ ∧ ∀𝑦 ∈ {𝐴, 𝐵}𝑥 ∈ ((𝐹𝑦) lim 𝐶)))
51 elin 3857 . . . . . 6 (𝑥 ∈ (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶)) ↔ (𝑥 ∈ ((𝐹𝐴) lim 𝐶) ∧ 𝑥 ∈ ((𝐹𝐵) lim 𝐶)))
5249, 50, 513bitr4g 317 . . . . 5 ((𝜑𝐶 ∈ ℂ) → (𝑥 ∈ (ℂ ∩ 𝑦 ∈ {𝐴, 𝐵} ((𝐹𝑦) lim 𝐶)) ↔ 𝑥 ∈ (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶))))
5335, 52bitrd 282 . . . 4 ((𝜑𝐶 ∈ ℂ) → (𝑥 ∈ (𝐹 lim 𝐶) ↔ 𝑥 ∈ (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶))))
5453ex 416 . . 3 (𝜑 → (𝐶 ∈ ℂ → (𝑥 ∈ (𝐹 lim 𝐶) ↔ 𝑥 ∈ (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶)))))
553, 8, 54pm5.21ndd 384 . 2 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐶) ↔ 𝑥 ∈ (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶))))
5655eqrdv 2736 1 (𝜑 → (𝐹 lim 𝐶) = (((𝐹𝐴) lim 𝐶) ∩ ((𝐹𝐵) lim 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2113  wral 3053  Vcvv 3397  cun 3839  cin 3840  wss 3841  {cpr 4515   cuni 4793   ciun 4878   ciin 4879  dom cdm 5519  cres 5521  wf 6329  (class class class)co 7164  Fincfn 8548  cc 10606   lim climc 24606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685  ax-pre-sup 10686
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-int 4834  df-iun 4880  df-iin 4881  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-1st 7707  df-2nd 7708  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-1o 8124  df-er 8313  df-map 8432  df-pm 8433  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-fi 8941  df-sup 8972  df-inf 8973  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-div 11369  df-nn 11710  df-2 11772  df-3 11773  df-4 11774  df-5 11775  df-6 11776  df-7 11777  df-8 11778  df-9 11779  df-n0 11970  df-z 12056  df-dec 12173  df-uz 12318  df-q 12424  df-rp 12466  df-xneg 12583  df-xadd 12584  df-xmul 12585  df-fz 12975  df-seq 13454  df-exp 13515  df-cj 14541  df-re 14542  df-im 14543  df-sqrt 14677  df-abs 14678  df-struct 16581  df-ndx 16582  df-slot 16583  df-base 16585  df-plusg 16674  df-mulr 16675  df-starv 16676  df-tset 16680  df-ple 16681  df-ds 16683  df-unif 16684  df-rest 16792  df-topn 16793  df-topgen 16813  df-psmet 20202  df-xmet 20203  df-met 20204  df-bl 20205  df-mopn 20206  df-cnfld 20211  df-top 21638  df-topon 21655  df-topsp 21677  df-bases 21690  df-cnp 21972  df-xms 23066  df-ms 23067  df-limc 24610
This theorem is referenced by:  lhop  24760
  Copyright terms: Public domain W3C validator