MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elsuc2 Structured version   Visualization version   GIF version

Theorem elsuc2 6430
Description: Membership in a successor. (Contributed by NM, 15-Sep-2003.)
Hypothesis
Ref Expression
elsuc.1 𝐴 ∈ V
Assertion
Ref Expression
elsuc2 (𝐵 ∈ suc 𝐴 ↔ (𝐵𝐴𝐵 = 𝐴))

Proof of Theorem elsuc2
StepHypRef Expression
1 elsuc.1 . 2 𝐴 ∈ V
2 elsuc2g 6428 . 2 (𝐴 ∈ V → (𝐵 ∈ suc 𝐴 ↔ (𝐵𝐴𝐵 = 𝐴)))
31, 2ax-mp 5 1 (𝐵 ∈ suc 𝐴 ↔ (𝐵𝐴𝐵 = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847   = wceq 1540  wcel 2109  Vcvv 3464  suc csuc 6359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-un 3936  df-sn 4607  df-suc 6363
This theorem is referenced by:  alephordi  10093
  Copyright terms: Public domain W3C validator