| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elsuc2 | Structured version Visualization version GIF version | ||
| Description: Membership in a successor. (Contributed by NM, 15-Sep-2003.) |
| Ref | Expression |
|---|---|
| elsuc.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elsuc2 | ⊢ (𝐵 ∈ suc 𝐴 ↔ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsuc.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elsuc2g 6385 | . 2 ⊢ (𝐴 ∈ V → (𝐵 ∈ suc 𝐴 ↔ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐵 ∈ suc 𝐴 ↔ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1541 ∈ wcel 2113 Vcvv 3437 suc csuc 6316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 df-sn 4578 df-suc 6320 |
| This theorem is referenced by: alephordi 9976 |
| Copyright terms: Public domain | W3C validator |