Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elsuc2 | Structured version Visualization version GIF version |
Description: Membership in a successor. (Contributed by NM, 15-Sep-2003.) |
Ref | Expression |
---|---|
elsuc.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elsuc2 | ⊢ (𝐵 ∈ suc 𝐴 ↔ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsuc.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elsuc2g 6333 | . 2 ⊢ (𝐴 ∈ V → (𝐵 ∈ suc 𝐴 ↔ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐵 ∈ suc 𝐴 ↔ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 844 = wceq 1542 ∈ wcel 2110 Vcvv 3431 suc csuc 6267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-v 3433 df-un 3897 df-sn 4568 df-suc 6271 |
This theorem is referenced by: alephordi 9831 |
Copyright terms: Public domain | W3C validator |