MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsuc Structured version   Visualization version   GIF version

Theorem nfsuc 6142
Description: Bound-variable hypothesis builder for successor. (Contributed by NM, 15-Sep-2003.)
Hypothesis
Ref Expression
nfsuc.1 𝑥𝐴
Assertion
Ref Expression
nfsuc 𝑥 suc 𝐴

Proof of Theorem nfsuc
StepHypRef Expression
1 df-suc 6077 . 2 suc 𝐴 = (𝐴 ∪ {𝐴})
2 nfsuc.1 . . 3 𝑥𝐴
32nfsn 4554 . . 3 𝑥{𝐴}
42, 3nfun 4066 . 2 𝑥(𝐴 ∪ {𝐴})
51, 4nfcxfr 2947 1 𝑥 suc 𝐴
Colors of variables: wff setvar class
Syntax hints:  wnfc 2933  cun 3861  {csn 4476  suc csuc 6073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-v 3439  df-un 3868  df-sn 4477  df-pr 4479  df-suc 6077
This theorem is referenced by:  rankidb  9080  dfon2lem3  32644
  Copyright terms: Public domain W3C validator