Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfsuc | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for successor. (Contributed by NM, 15-Sep-2003.) |
Ref | Expression |
---|---|
nfsuc.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfsuc | ⊢ Ⅎ𝑥 suc 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 6257 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
2 | nfsuc.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfsn 4640 | . . 3 ⊢ Ⅎ𝑥{𝐴} |
4 | 2, 3 | nfun 4095 | . 2 ⊢ Ⅎ𝑥(𝐴 ∪ {𝐴}) |
5 | 1, 4 | nfcxfr 2904 | 1 ⊢ Ⅎ𝑥 suc 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2886 ∪ cun 3881 {csn 4558 suc csuc 6253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-v 3424 df-un 3888 df-sn 4559 df-pr 4561 df-suc 6257 |
This theorem is referenced by: rankidb 9489 dfon2lem3 33667 ttrcltr 33702 |
Copyright terms: Public domain | W3C validator |