MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsuc Structured version   Visualization version   GIF version

Theorem nfsuc 6337
Description: Bound-variable hypothesis builder for successor. (Contributed by NM, 15-Sep-2003.)
Hypothesis
Ref Expression
nfsuc.1 𝑥𝐴
Assertion
Ref Expression
nfsuc 𝑥 suc 𝐴

Proof of Theorem nfsuc
StepHypRef Expression
1 df-suc 6272 . 2 suc 𝐴 = (𝐴 ∪ {𝐴})
2 nfsuc.1 . . 3 𝑥𝐴
32nfsn 4643 . . 3 𝑥{𝐴}
42, 3nfun 4099 . 2 𝑥(𝐴 ∪ {𝐴})
51, 4nfcxfr 2905 1 𝑥 suc 𝐴
Colors of variables: wff setvar class
Syntax hints:  wnfc 2887  cun 3885  {csn 4561  suc csuc 6268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-v 3434  df-un 3892  df-sn 4562  df-pr 4564  df-suc 6272
This theorem is referenced by:  ttrcltr  9474  rankidb  9558  dfon2lem3  33761
  Copyright terms: Public domain W3C validator