MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsuc Structured version   Visualization version   GIF version

Theorem nfsuc 6456
Description: Bound-variable hypothesis builder for successor. (Contributed by NM, 15-Sep-2003.)
Hypothesis
Ref Expression
nfsuc.1 𝑥𝐴
Assertion
Ref Expression
nfsuc 𝑥 suc 𝐴

Proof of Theorem nfsuc
StepHypRef Expression
1 df-suc 6390 . 2 suc 𝐴 = (𝐴 ∪ {𝐴})
2 nfsuc.1 . . 3 𝑥𝐴
32nfsn 4707 . . 3 𝑥{𝐴}
42, 3nfun 4170 . 2 𝑥(𝐴 ∪ {𝐴})
51, 4nfcxfr 2903 1 𝑥 suc 𝐴
Colors of variables: wff setvar class
Syntax hints:  wnfc 2890  cun 3949  {csn 4626  suc csuc 6386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-v 3482  df-un 3956  df-sn 4627  df-pr 4629  df-suc 6390
This theorem is referenced by:  ttrcltr  9756  rankidb  9840  dfon2lem3  35786
  Copyright terms: Public domain W3C validator