![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfsuc | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for successor. (Contributed by NM, 15-Sep-2003.) |
Ref | Expression |
---|---|
nfsuc.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfsuc | ⊢ Ⅎ𝑥 suc 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 6401 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
2 | nfsuc.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfsn 4732 | . . 3 ⊢ Ⅎ𝑥{𝐴} |
4 | 2, 3 | nfun 4193 | . 2 ⊢ Ⅎ𝑥(𝐴 ∪ {𝐴}) |
5 | 1, 4 | nfcxfr 2906 | 1 ⊢ Ⅎ𝑥 suc 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2893 ∪ cun 3974 {csn 4648 suc csuc 6397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-v 3490 df-un 3981 df-sn 4649 df-pr 4651 df-suc 6401 |
This theorem is referenced by: ttrcltr 9785 rankidb 9869 dfon2lem3 35749 |
Copyright terms: Public domain | W3C validator |