| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfsuc | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for successor. (Contributed by NM, 15-Sep-2003.) |
| Ref | Expression |
|---|---|
| nfsuc.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfsuc | ⊢ Ⅎ𝑥 suc 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-suc 6390 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 2 | nfsuc.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfsn 4707 | . . 3 ⊢ Ⅎ𝑥{𝐴} |
| 4 | 2, 3 | nfun 4170 | . 2 ⊢ Ⅎ𝑥(𝐴 ∪ {𝐴}) |
| 5 | 1, 4 | nfcxfr 2903 | 1 ⊢ Ⅎ𝑥 suc 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2890 ∪ cun 3949 {csn 4626 suc csuc 6386 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-v 3482 df-un 3956 df-sn 4627 df-pr 4629 df-suc 6390 |
| This theorem is referenced by: ttrcltr 9756 rankidb 9840 dfon2lem3 35786 |
| Copyright terms: Public domain | W3C validator |