Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfsuc | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for successor. (Contributed by NM, 15-Sep-2003.) |
Ref | Expression |
---|---|
nfsuc.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfsuc | ⊢ Ⅎ𝑥 suc 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 6313 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
2 | nfsuc.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfsn 4660 | . . 3 ⊢ Ⅎ𝑥{𝐴} |
4 | 2, 3 | nfun 4117 | . 2 ⊢ Ⅎ𝑥(𝐴 ∪ {𝐴}) |
5 | 1, 4 | nfcxfr 2903 | 1 ⊢ Ⅎ𝑥 suc 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2885 ∪ cun 3900 {csn 4578 suc csuc 6309 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-v 3444 df-un 3907 df-sn 4579 df-pr 4581 df-suc 6313 |
This theorem is referenced by: ttrcltr 9578 rankidb 9662 dfon2lem3 34044 |
Copyright terms: Public domain | W3C validator |