![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfsuc | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for successor. (Contributed by NM, 15-Sep-2003.) |
Ref | Expression |
---|---|
nfsuc.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfsuc | ⊢ Ⅎ𝑥 suc 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 6369 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
2 | nfsuc.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfsn 4710 | . . 3 ⊢ Ⅎ𝑥{𝐴} |
4 | 2, 3 | nfun 4164 | . 2 ⊢ Ⅎ𝑥(𝐴 ∪ {𝐴}) |
5 | 1, 4 | nfcxfr 2899 | 1 ⊢ Ⅎ𝑥 suc 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2881 ∪ cun 3945 {csn 4627 suc csuc 6365 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-v 3474 df-un 3952 df-sn 4628 df-pr 4630 df-suc 6369 |
This theorem is referenced by: ttrcltr 9713 rankidb 9797 dfon2lem3 35061 |
Copyright terms: Public domain | W3C validator |