| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfsuc | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for successor. (Contributed by NM, 15-Sep-2003.) |
| Ref | Expression |
|---|---|
| nfsuc.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfsuc | ⊢ Ⅎ𝑥 suc 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-suc 6320 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 2 | nfsuc.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfsn 4661 | . . 3 ⊢ Ⅎ𝑥{𝐴} |
| 4 | 2, 3 | nfun 4119 | . 2 ⊢ Ⅎ𝑥(𝐴 ∪ {𝐴}) |
| 5 | 1, 4 | nfcxfr 2893 | 1 ⊢ Ⅎ𝑥 suc 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2880 ∪ cun 3896 {csn 4577 suc csuc 6316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-v 3439 df-un 3903 df-sn 4578 df-pr 4580 df-suc 6320 |
| This theorem is referenced by: ttrcltr 9617 rankidb 9704 dfon2lem3 35899 |
| Copyright terms: Public domain | W3C validator |