| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elsuc | Structured version Visualization version GIF version | ||
| Description: Membership in a successor. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 15-Sep-2003.) |
| Ref | Expression |
|---|---|
| elsuc.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elsuc | ⊢ (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsuc.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elsucg 6422 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2108 Vcvv 3459 suc csuc 6354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-sn 4602 df-suc 6358 |
| This theorem is referenced by: sucel 6428 limsssuc 7845 omsmolem 8669 cantnfle 9685 infxpenlem 10027 inatsk 10792 nolesgn2ores 27636 nogesgn1ores 27638 untsucf 35727 dfon2lem7 35807 rdgssun 37396 omssaxinf2 45013 |
| Copyright terms: Public domain | W3C validator |