MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elsuc Structured version   Visualization version   GIF version

Theorem elsuc 6378
Description: Membership in a successor. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 15-Sep-2003.)
Hypothesis
Ref Expression
elsuc.1 𝐴 ∈ V
Assertion
Ref Expression
elsuc (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem elsuc
StepHypRef Expression
1 elsuc.1 . 2 𝐴 ∈ V
2 elsucg 6376 . 2 (𝐴 ∈ V → (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
31, 2ax-mp 5 1 (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847   = wceq 1541  wcel 2111  Vcvv 3436  suc csuc 6308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-un 3902  df-sn 4574  df-suc 6312
This theorem is referenced by:  sucel  6382  limsssuc  7780  omsmolem  8572  cantnfle  9561  infxpenlem  9904  inatsk  10669  nolesgn2ores  27611  nogesgn1ores  27613  untsucf  35754  dfon2lem7  35831  rdgssun  37422  omssaxinf2  45091
  Copyright terms: Public domain W3C validator