MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elsuc Structured version   Visualization version   GIF version

Theorem elsuc 6392
Description: Membership in a successor. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 15-Sep-2003.)
Hypothesis
Ref Expression
elsuc.1 𝐴 ∈ V
Assertion
Ref Expression
elsuc (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem elsuc
StepHypRef Expression
1 elsuc.1 . 2 𝐴 ∈ V
2 elsucg 6390 . 2 (𝐴 ∈ V → (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
31, 2ax-mp 5 1 (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847   = wceq 1540  wcel 2109  Vcvv 3444  suc csuc 6322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3446  df-un 3916  df-sn 4586  df-suc 6326
This theorem is referenced by:  sucel  6396  limsssuc  7806  omsmolem  8598  cantnfle  9600  infxpenlem  9942  inatsk  10707  nolesgn2ores  27617  nogesgn1ores  27619  untsucf  35690  dfon2lem7  35770  rdgssun  37359  omssaxinf2  44971
  Copyright terms: Public domain W3C validator