![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elsuc | Structured version Visualization version GIF version |
Description: Membership in a successor. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 15-Sep-2003.) |
Ref | Expression |
---|---|
elsuc.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elsuc | ⊢ (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsuc.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elsucg 6463 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∨ wo 846 = wceq 1537 ∈ wcel 2108 Vcvv 3488 suc csuc 6397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-sn 4649 df-suc 6401 |
This theorem is referenced by: sucel 6469 limsssuc 7887 omsmolem 8713 cantnfle 9740 infxpenlem 10082 inatsk 10847 nolesgn2ores 27735 nogesgn1ores 27737 untsucf 35672 dfon2lem7 35753 rdgssun 37344 |
Copyright terms: Public domain | W3C validator |