MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elsuc Structured version   Visualization version   GIF version

Theorem elsuc 6242
Description: Membership in a successor. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 15-Sep-2003.)
Hypothesis
Ref Expression
elsuc.1 𝐴 ∈ V
Assertion
Ref Expression
elsuc (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem elsuc
StepHypRef Expression
1 elsuc.1 . 2 𝐴 ∈ V
2 elsucg 6240 . 2 (𝐴 ∈ V → (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
31, 2ax-mp 5 1 (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wo 846   = wceq 1542  wcel 2114  Vcvv 3399  suc csuc 6175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2711
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-tru 1545  df-ex 1787  df-sb 2075  df-clab 2718  df-cleq 2731  df-clel 2812  df-v 3401  df-un 3849  df-sn 4518  df-suc 6179
This theorem is referenced by:  sucel  6246  limsssuc  7587  omsmolem  8314  cantnfle  9210  infxpenlem  9516  inatsk  10281  untsucf  33225  dfon2lem7  33342  nolesgn2ores  33521  nogesgn1ores  33523  rdgssun  35195
  Copyright terms: Public domain W3C validator