Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elsuc2g | Structured version Visualization version GIF version |
Description: Variant of membership in a successor, requiring that 𝐵 rather than 𝐴 be a set. (Contributed by NM, 28-Oct-2003.) |
Ref | Expression |
---|---|
elsuc2g | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 6269 | . . 3 ⊢ suc 𝐵 = (𝐵 ∪ {𝐵}) | |
2 | 1 | eleq2i 2831 | . 2 ⊢ (𝐴 ∈ suc 𝐵 ↔ 𝐴 ∈ (𝐵 ∪ {𝐵})) |
3 | elun 4087 | . . 3 ⊢ (𝐴 ∈ (𝐵 ∪ {𝐵}) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ {𝐵})) | |
4 | elsn2g 4604 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | |
5 | 4 | orbi2d 912 | . . 3 ⊢ (𝐵 ∈ 𝑉 → ((𝐴 ∈ 𝐵 ∨ 𝐴 ∈ {𝐵}) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
6 | 3, 5 | syl5bb 282 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (𝐵 ∪ {𝐵}) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
7 | 2, 6 | syl5bb 282 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 843 = wceq 1541 ∈ wcel 2109 ∪ cun 3889 {csn 4566 suc csuc 6265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-un 3896 df-sn 4567 df-suc 6269 |
This theorem is referenced by: elsuc2 6333 om2uzlti 13651 |
Copyright terms: Public domain | W3C validator |