Step | Hyp | Ref
| Expression |
1 | | eleq2 2827 |
. . 3
⊢ (𝑥 = ∅ → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ ∅)) |
2 | | fveq2 6774 |
. . . 4
⊢ (𝑥 = ∅ →
(ℵ‘𝑥) =
(ℵ‘∅)) |
3 | 2 | breq2d 5086 |
. . 3
⊢ (𝑥 = ∅ →
((ℵ‘𝐴) ≺
(ℵ‘𝑥) ↔
(ℵ‘𝐴) ≺
(ℵ‘∅))) |
4 | 1, 3 | imbi12d 345 |
. 2
⊢ (𝑥 = ∅ → ((𝐴 ∈ 𝑥 → (ℵ‘𝐴) ≺ (ℵ‘𝑥)) ↔ (𝐴 ∈ ∅ → (ℵ‘𝐴) ≺
(ℵ‘∅)))) |
5 | | eleq2 2827 |
. . 3
⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) |
6 | | fveq2 6774 |
. . . 4
⊢ (𝑥 = 𝑦 → (ℵ‘𝑥) = (ℵ‘𝑦)) |
7 | 6 | breq2d 5086 |
. . 3
⊢ (𝑥 = 𝑦 → ((ℵ‘𝐴) ≺ (ℵ‘𝑥) ↔ (ℵ‘𝐴) ≺ (ℵ‘𝑦))) |
8 | 5, 7 | imbi12d 345 |
. 2
⊢ (𝑥 = 𝑦 → ((𝐴 ∈ 𝑥 → (ℵ‘𝐴) ≺ (ℵ‘𝑥)) ↔ (𝐴 ∈ 𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)))) |
9 | | eleq2 2827 |
. . 3
⊢ (𝑥 = suc 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ suc 𝑦)) |
10 | | fveq2 6774 |
. . . 4
⊢ (𝑥 = suc 𝑦 → (ℵ‘𝑥) = (ℵ‘suc 𝑦)) |
11 | 10 | breq2d 5086 |
. . 3
⊢ (𝑥 = suc 𝑦 → ((ℵ‘𝐴) ≺ (ℵ‘𝑥) ↔ (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))) |
12 | 9, 11 | imbi12d 345 |
. 2
⊢ (𝑥 = suc 𝑦 → ((𝐴 ∈ 𝑥 → (ℵ‘𝐴) ≺ (ℵ‘𝑥)) ↔ (𝐴 ∈ suc 𝑦 → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦)))) |
13 | | eleq2 2827 |
. . 3
⊢ (𝑥 = 𝐵 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) |
14 | | fveq2 6774 |
. . . 4
⊢ (𝑥 = 𝐵 → (ℵ‘𝑥) = (ℵ‘𝐵)) |
15 | 14 | breq2d 5086 |
. . 3
⊢ (𝑥 = 𝐵 → ((ℵ‘𝐴) ≺ (ℵ‘𝑥) ↔ (ℵ‘𝐴) ≺ (ℵ‘𝐵))) |
16 | 13, 15 | imbi12d 345 |
. 2
⊢ (𝑥 = 𝐵 → ((𝐴 ∈ 𝑥 → (ℵ‘𝐴) ≺ (ℵ‘𝑥)) ↔ (𝐴 ∈ 𝐵 → (ℵ‘𝐴) ≺ (ℵ‘𝐵)))) |
17 | | noel 4264 |
. . 3
⊢ ¬
𝐴 ∈
∅ |
18 | 17 | pm2.21i 119 |
. 2
⊢ (𝐴 ∈ ∅ →
(ℵ‘𝐴) ≺
(ℵ‘∅)) |
19 | | vex 3436 |
. . . . 5
⊢ 𝑦 ∈ V |
20 | 19 | elsuc2 6336 |
. . . 4
⊢ (𝐴 ∈ suc 𝑦 ↔ (𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦)) |
21 | | alephordilem1 9829 |
. . . . . . . . 9
⊢ (𝑦 ∈ On →
(ℵ‘𝑦) ≺
(ℵ‘suc 𝑦)) |
22 | | sdomtr 8902 |
. . . . . . . . 9
⊢
(((ℵ‘𝐴)
≺ (ℵ‘𝑦)
∧ (ℵ‘𝑦)
≺ (ℵ‘suc 𝑦)) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦)) |
23 | 21, 22 | sylan2 593 |
. . . . . . . 8
⊢
(((ℵ‘𝐴)
≺ (ℵ‘𝑦)
∧ 𝑦 ∈ On) →
(ℵ‘𝐴) ≺
(ℵ‘suc 𝑦)) |
24 | 23 | expcom 414 |
. . . . . . 7
⊢ (𝑦 ∈ On →
((ℵ‘𝐴) ≺
(ℵ‘𝑦) →
(ℵ‘𝐴) ≺
(ℵ‘suc 𝑦))) |
25 | 24 | imim2d 57 |
. . . . . 6
⊢ (𝑦 ∈ On → ((𝐴 ∈ 𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (𝐴 ∈ 𝑦 → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦)))) |
26 | 25 | com23 86 |
. . . . 5
⊢ (𝑦 ∈ On → (𝐴 ∈ 𝑦 → ((𝐴 ∈ 𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦)))) |
27 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝐴 = 𝑦 → (ℵ‘𝐴) = (ℵ‘𝑦)) |
28 | 27 | breq1d 5084 |
. . . . . . . 8
⊢ (𝐴 = 𝑦 → ((ℵ‘𝐴) ≺ (ℵ‘suc 𝑦) ↔ (ℵ‘𝑦) ≺ (ℵ‘suc
𝑦))) |
29 | 21, 28 | syl5ibr 245 |
. . . . . . 7
⊢ (𝐴 = 𝑦 → (𝑦 ∈ On → (ℵ‘𝐴) ≺ (ℵ‘suc
𝑦))) |
30 | 29 | a1d 25 |
. . . . . 6
⊢ (𝐴 = 𝑦 → ((𝐴 ∈ 𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (𝑦 ∈ On → (ℵ‘𝐴) ≺ (ℵ‘suc
𝑦)))) |
31 | 30 | com3r 87 |
. . . . 5
⊢ (𝑦 ∈ On → (𝐴 = 𝑦 → ((𝐴 ∈ 𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦)))) |
32 | 26, 31 | jaod 856 |
. . . 4
⊢ (𝑦 ∈ On → ((𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦) → ((𝐴 ∈ 𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦)))) |
33 | 20, 32 | syl5bi 241 |
. . 3
⊢ (𝑦 ∈ On → (𝐴 ∈ suc 𝑦 → ((𝐴 ∈ 𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦)))) |
34 | 33 | com23 86 |
. 2
⊢ (𝑦 ∈ On → ((𝐴 ∈ 𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (𝐴 ∈ suc 𝑦 → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦)))) |
35 | | fvexd 6789 |
. . . . . 6
⊢ (Lim
𝑥 →
(ℵ‘𝑥) ∈
V) |
36 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑤 = 𝐴 → (ℵ‘𝑤) = (ℵ‘𝐴)) |
37 | 36 | ssiun2s 4978 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑥 → (ℵ‘𝐴) ⊆ ∪ 𝑤 ∈ 𝑥 (ℵ‘𝑤)) |
38 | | vex 3436 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
39 | | alephlim 9823 |
. . . . . . . . 9
⊢ ((𝑥 ∈ V ∧ Lim 𝑥) → (ℵ‘𝑥) = ∪ 𝑤 ∈ 𝑥 (ℵ‘𝑤)) |
40 | 38, 39 | mpan 687 |
. . . . . . . 8
⊢ (Lim
𝑥 →
(ℵ‘𝑥) =
∪ 𝑤 ∈ 𝑥 (ℵ‘𝑤)) |
41 | 40 | sseq2d 3953 |
. . . . . . 7
⊢ (Lim
𝑥 →
((ℵ‘𝐴) ⊆
(ℵ‘𝑥) ↔
(ℵ‘𝐴) ⊆
∪ 𝑤 ∈ 𝑥 (ℵ‘𝑤))) |
42 | 37, 41 | syl5ibr 245 |
. . . . . 6
⊢ (Lim
𝑥 → (𝐴 ∈ 𝑥 → (ℵ‘𝐴) ⊆ (ℵ‘𝑥))) |
43 | | ssdomg 8786 |
. . . . . 6
⊢
((ℵ‘𝑥)
∈ V → ((ℵ‘𝐴) ⊆ (ℵ‘𝑥) → (ℵ‘𝐴) ≼ (ℵ‘𝑥))) |
44 | 35, 42, 43 | sylsyld 61 |
. . . . 5
⊢ (Lim
𝑥 → (𝐴 ∈ 𝑥 → (ℵ‘𝐴) ≼ (ℵ‘𝑥))) |
45 | | limsuc 7696 |
. . . . . . . . . 10
⊢ (Lim
𝑥 → (𝐴 ∈ 𝑥 ↔ suc 𝐴 ∈ 𝑥)) |
46 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑤 = suc 𝐴 → (ℵ‘𝑤) = (ℵ‘suc 𝐴)) |
47 | 46 | ssiun2s 4978 |
. . . . . . . . . . . 12
⊢ (suc
𝐴 ∈ 𝑥 → (ℵ‘suc 𝐴) ⊆ ∪ 𝑤 ∈ 𝑥 (ℵ‘𝑤)) |
48 | 40 | sseq2d 3953 |
. . . . . . . . . . . 12
⊢ (Lim
𝑥 →
((ℵ‘suc 𝐴)
⊆ (ℵ‘𝑥)
↔ (ℵ‘suc 𝐴) ⊆ ∪ 𝑤 ∈ 𝑥 (ℵ‘𝑤))) |
49 | 47, 48 | syl5ibr 245 |
. . . . . . . . . . 11
⊢ (Lim
𝑥 → (suc 𝐴 ∈ 𝑥 → (ℵ‘suc 𝐴) ⊆ (ℵ‘𝑥))) |
50 | | ssdomg 8786 |
. . . . . . . . . . 11
⊢
((ℵ‘𝑥)
∈ V → ((ℵ‘suc 𝐴) ⊆ (ℵ‘𝑥) → (ℵ‘suc 𝐴) ≼ (ℵ‘𝑥))) |
51 | 35, 49, 50 | sylsyld 61 |
. . . . . . . . . 10
⊢ (Lim
𝑥 → (suc 𝐴 ∈ 𝑥 → (ℵ‘suc 𝐴) ≼ (ℵ‘𝑥))) |
52 | 45, 51 | sylbid 239 |
. . . . . . . . 9
⊢ (Lim
𝑥 → (𝐴 ∈ 𝑥 → (ℵ‘suc 𝐴) ≼ (ℵ‘𝑥))) |
53 | 52 | imp 407 |
. . . . . . . 8
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ 𝑥) → (ℵ‘suc 𝐴) ≼ (ℵ‘𝑥)) |
54 | | domnsym 8886 |
. . . . . . . 8
⊢
((ℵ‘suc 𝐴) ≼ (ℵ‘𝑥) → ¬ (ℵ‘𝑥) ≺ (ℵ‘suc
𝐴)) |
55 | 53, 54 | syl 17 |
. . . . . . 7
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ 𝑥) → ¬ (ℵ‘𝑥) ≺ (ℵ‘suc
𝐴)) |
56 | | limelon 6329 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On) |
57 | 38, 56 | mpan 687 |
. . . . . . . . 9
⊢ (Lim
𝑥 → 𝑥 ∈ On) |
58 | | onelon 6291 |
. . . . . . . . 9
⊢ ((𝑥 ∈ On ∧ 𝐴 ∈ 𝑥) → 𝐴 ∈ On) |
59 | 57, 58 | sylan 580 |
. . . . . . . 8
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ 𝑥) → 𝐴 ∈ On) |
60 | | ensym 8789 |
. . . . . . . . 9
⊢
((ℵ‘𝐴)
≈ (ℵ‘𝑥)
→ (ℵ‘𝑥)
≈ (ℵ‘𝐴)) |
61 | | alephordilem1 9829 |
. . . . . . . . 9
⊢ (𝐴 ∈ On →
(ℵ‘𝐴) ≺
(ℵ‘suc 𝐴)) |
62 | | ensdomtr 8900 |
. . . . . . . . . 10
⊢
(((ℵ‘𝑥)
≈ (ℵ‘𝐴)
∧ (ℵ‘𝐴)
≺ (ℵ‘suc 𝐴)) → (ℵ‘𝑥) ≺ (ℵ‘suc 𝐴)) |
63 | 62 | ex 413 |
. . . . . . . . 9
⊢
((ℵ‘𝑥)
≈ (ℵ‘𝐴)
→ ((ℵ‘𝐴)
≺ (ℵ‘suc 𝐴) → (ℵ‘𝑥) ≺ (ℵ‘suc 𝐴))) |
64 | 60, 61, 63 | syl2im 40 |
. . . . . . . 8
⊢
((ℵ‘𝐴)
≈ (ℵ‘𝑥)
→ (𝐴 ∈ On →
(ℵ‘𝑥) ≺
(ℵ‘suc 𝐴))) |
65 | 59, 64 | syl5com 31 |
. . . . . . 7
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ 𝑥) → ((ℵ‘𝐴) ≈ (ℵ‘𝑥) → (ℵ‘𝑥) ≺ (ℵ‘suc 𝐴))) |
66 | 55, 65 | mtod 197 |
. . . . . 6
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ 𝑥) → ¬ (ℵ‘𝐴) ≈ (ℵ‘𝑥)) |
67 | 66 | ex 413 |
. . . . 5
⊢ (Lim
𝑥 → (𝐴 ∈ 𝑥 → ¬ (ℵ‘𝐴) ≈ (ℵ‘𝑥))) |
68 | 44, 67 | jcad 513 |
. . . 4
⊢ (Lim
𝑥 → (𝐴 ∈ 𝑥 → ((ℵ‘𝐴) ≼ (ℵ‘𝑥) ∧ ¬ (ℵ‘𝐴) ≈ (ℵ‘𝑥)))) |
69 | | brsdom 8763 |
. . . 4
⊢
((ℵ‘𝐴)
≺ (ℵ‘𝑥)
↔ ((ℵ‘𝐴)
≼ (ℵ‘𝑥)
∧ ¬ (ℵ‘𝐴) ≈ (ℵ‘𝑥))) |
70 | 68, 69 | syl6ibr 251 |
. . 3
⊢ (Lim
𝑥 → (𝐴 ∈ 𝑥 → (ℵ‘𝐴) ≺ (ℵ‘𝑥))) |
71 | 70 | a1d 25 |
. 2
⊢ (Lim
𝑥 → (∀𝑦 ∈ 𝑥 (𝐴 ∈ 𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (𝐴 ∈ 𝑥 → (ℵ‘𝐴) ≺ (ℵ‘𝑥)))) |
72 | 4, 8, 12, 16, 18, 34, 71 | tfinds 7706 |
1
⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → (ℵ‘𝐴) ≺ (ℵ‘𝐵))) |