| Step | Hyp | Ref
| Expression |
| 1 | | eleq2 2824 |
. . 3
⊢ (𝑥 = ∅ → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ ∅)) |
| 2 | | fveq2 6881 |
. . . 4
⊢ (𝑥 = ∅ →
(ℵ‘𝑥) =
(ℵ‘∅)) |
| 3 | 2 | breq2d 5136 |
. . 3
⊢ (𝑥 = ∅ →
((ℵ‘𝐴) ≺
(ℵ‘𝑥) ↔
(ℵ‘𝐴) ≺
(ℵ‘∅))) |
| 4 | 1, 3 | imbi12d 344 |
. 2
⊢ (𝑥 = ∅ → ((𝐴 ∈ 𝑥 → (ℵ‘𝐴) ≺ (ℵ‘𝑥)) ↔ (𝐴 ∈ ∅ → (ℵ‘𝐴) ≺
(ℵ‘∅)))) |
| 5 | | eleq2 2824 |
. . 3
⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) |
| 6 | | fveq2 6881 |
. . . 4
⊢ (𝑥 = 𝑦 → (ℵ‘𝑥) = (ℵ‘𝑦)) |
| 7 | 6 | breq2d 5136 |
. . 3
⊢ (𝑥 = 𝑦 → ((ℵ‘𝐴) ≺ (ℵ‘𝑥) ↔ (ℵ‘𝐴) ≺ (ℵ‘𝑦))) |
| 8 | 5, 7 | imbi12d 344 |
. 2
⊢ (𝑥 = 𝑦 → ((𝐴 ∈ 𝑥 → (ℵ‘𝐴) ≺ (ℵ‘𝑥)) ↔ (𝐴 ∈ 𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)))) |
| 9 | | eleq2 2824 |
. . 3
⊢ (𝑥 = suc 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ suc 𝑦)) |
| 10 | | fveq2 6881 |
. . . 4
⊢ (𝑥 = suc 𝑦 → (ℵ‘𝑥) = (ℵ‘suc 𝑦)) |
| 11 | 10 | breq2d 5136 |
. . 3
⊢ (𝑥 = suc 𝑦 → ((ℵ‘𝐴) ≺ (ℵ‘𝑥) ↔ (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))) |
| 12 | 9, 11 | imbi12d 344 |
. 2
⊢ (𝑥 = suc 𝑦 → ((𝐴 ∈ 𝑥 → (ℵ‘𝐴) ≺ (ℵ‘𝑥)) ↔ (𝐴 ∈ suc 𝑦 → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦)))) |
| 13 | | eleq2 2824 |
. . 3
⊢ (𝑥 = 𝐵 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) |
| 14 | | fveq2 6881 |
. . . 4
⊢ (𝑥 = 𝐵 → (ℵ‘𝑥) = (ℵ‘𝐵)) |
| 15 | 14 | breq2d 5136 |
. . 3
⊢ (𝑥 = 𝐵 → ((ℵ‘𝐴) ≺ (ℵ‘𝑥) ↔ (ℵ‘𝐴) ≺ (ℵ‘𝐵))) |
| 16 | 13, 15 | imbi12d 344 |
. 2
⊢ (𝑥 = 𝐵 → ((𝐴 ∈ 𝑥 → (ℵ‘𝐴) ≺ (ℵ‘𝑥)) ↔ (𝐴 ∈ 𝐵 → (ℵ‘𝐴) ≺ (ℵ‘𝐵)))) |
| 17 | | noel 4318 |
. . 3
⊢ ¬
𝐴 ∈
∅ |
| 18 | 17 | pm2.21i 119 |
. 2
⊢ (𝐴 ∈ ∅ →
(ℵ‘𝐴) ≺
(ℵ‘∅)) |
| 19 | | vex 3468 |
. . . . 5
⊢ 𝑦 ∈ V |
| 20 | 19 | elsuc2 6430 |
. . . 4
⊢ (𝐴 ∈ suc 𝑦 ↔ (𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦)) |
| 21 | | alephordilem1 10092 |
. . . . . . . . 9
⊢ (𝑦 ∈ On →
(ℵ‘𝑦) ≺
(ℵ‘suc 𝑦)) |
| 22 | | sdomtr 9134 |
. . . . . . . . 9
⊢
(((ℵ‘𝐴)
≺ (ℵ‘𝑦)
∧ (ℵ‘𝑦)
≺ (ℵ‘suc 𝑦)) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦)) |
| 23 | 21, 22 | sylan2 593 |
. . . . . . . 8
⊢
(((ℵ‘𝐴)
≺ (ℵ‘𝑦)
∧ 𝑦 ∈ On) →
(ℵ‘𝐴) ≺
(ℵ‘suc 𝑦)) |
| 24 | 23 | expcom 413 |
. . . . . . 7
⊢ (𝑦 ∈ On →
((ℵ‘𝐴) ≺
(ℵ‘𝑦) →
(ℵ‘𝐴) ≺
(ℵ‘suc 𝑦))) |
| 25 | 24 | imim2d 57 |
. . . . . 6
⊢ (𝑦 ∈ On → ((𝐴 ∈ 𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (𝐴 ∈ 𝑦 → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦)))) |
| 26 | 25 | com23 86 |
. . . . 5
⊢ (𝑦 ∈ On → (𝐴 ∈ 𝑦 → ((𝐴 ∈ 𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦)))) |
| 27 | | fveq2 6881 |
. . . . . . . . 9
⊢ (𝐴 = 𝑦 → (ℵ‘𝐴) = (ℵ‘𝑦)) |
| 28 | 27 | breq1d 5134 |
. . . . . . . 8
⊢ (𝐴 = 𝑦 → ((ℵ‘𝐴) ≺ (ℵ‘suc 𝑦) ↔ (ℵ‘𝑦) ≺ (ℵ‘suc
𝑦))) |
| 29 | 21, 28 | imbitrrid 246 |
. . . . . . 7
⊢ (𝐴 = 𝑦 → (𝑦 ∈ On → (ℵ‘𝐴) ≺ (ℵ‘suc
𝑦))) |
| 30 | 29 | a1d 25 |
. . . . . 6
⊢ (𝐴 = 𝑦 → ((𝐴 ∈ 𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (𝑦 ∈ On → (ℵ‘𝐴) ≺ (ℵ‘suc
𝑦)))) |
| 31 | 30 | com3r 87 |
. . . . 5
⊢ (𝑦 ∈ On → (𝐴 = 𝑦 → ((𝐴 ∈ 𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦)))) |
| 32 | 26, 31 | jaod 859 |
. . . 4
⊢ (𝑦 ∈ On → ((𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦) → ((𝐴 ∈ 𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦)))) |
| 33 | 20, 32 | biimtrid 242 |
. . 3
⊢ (𝑦 ∈ On → (𝐴 ∈ suc 𝑦 → ((𝐴 ∈ 𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦)))) |
| 34 | 33 | com23 86 |
. 2
⊢ (𝑦 ∈ On → ((𝐴 ∈ 𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (𝐴 ∈ suc 𝑦 → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦)))) |
| 35 | | fvexd 6896 |
. . . . . 6
⊢ (Lim
𝑥 →
(ℵ‘𝑥) ∈
V) |
| 36 | | fveq2 6881 |
. . . . . . . 8
⊢ (𝑤 = 𝐴 → (ℵ‘𝑤) = (ℵ‘𝐴)) |
| 37 | 36 | ssiun2s 5029 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑥 → (ℵ‘𝐴) ⊆ ∪ 𝑤 ∈ 𝑥 (ℵ‘𝑤)) |
| 38 | | vex 3468 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
| 39 | | alephlim 10086 |
. . . . . . . . 9
⊢ ((𝑥 ∈ V ∧ Lim 𝑥) → (ℵ‘𝑥) = ∪ 𝑤 ∈ 𝑥 (ℵ‘𝑤)) |
| 40 | 38, 39 | mpan 690 |
. . . . . . . 8
⊢ (Lim
𝑥 →
(ℵ‘𝑥) =
∪ 𝑤 ∈ 𝑥 (ℵ‘𝑤)) |
| 41 | 40 | sseq2d 3996 |
. . . . . . 7
⊢ (Lim
𝑥 →
((ℵ‘𝐴) ⊆
(ℵ‘𝑥) ↔
(ℵ‘𝐴) ⊆
∪ 𝑤 ∈ 𝑥 (ℵ‘𝑤))) |
| 42 | 37, 41 | imbitrrid 246 |
. . . . . 6
⊢ (Lim
𝑥 → (𝐴 ∈ 𝑥 → (ℵ‘𝐴) ⊆ (ℵ‘𝑥))) |
| 43 | | ssdomg 9019 |
. . . . . 6
⊢
((ℵ‘𝑥)
∈ V → ((ℵ‘𝐴) ⊆ (ℵ‘𝑥) → (ℵ‘𝐴) ≼ (ℵ‘𝑥))) |
| 44 | 35, 42, 43 | sylsyld 61 |
. . . . 5
⊢ (Lim
𝑥 → (𝐴 ∈ 𝑥 → (ℵ‘𝐴) ≼ (ℵ‘𝑥))) |
| 45 | | limsuc 7849 |
. . . . . . . . . 10
⊢ (Lim
𝑥 → (𝐴 ∈ 𝑥 ↔ suc 𝐴 ∈ 𝑥)) |
| 46 | | fveq2 6881 |
. . . . . . . . . . . . 13
⊢ (𝑤 = suc 𝐴 → (ℵ‘𝑤) = (ℵ‘suc 𝐴)) |
| 47 | 46 | ssiun2s 5029 |
. . . . . . . . . . . 12
⊢ (suc
𝐴 ∈ 𝑥 → (ℵ‘suc 𝐴) ⊆ ∪ 𝑤 ∈ 𝑥 (ℵ‘𝑤)) |
| 48 | 40 | sseq2d 3996 |
. . . . . . . . . . . 12
⊢ (Lim
𝑥 →
((ℵ‘suc 𝐴)
⊆ (ℵ‘𝑥)
↔ (ℵ‘suc 𝐴) ⊆ ∪ 𝑤 ∈ 𝑥 (ℵ‘𝑤))) |
| 49 | 47, 48 | imbitrrid 246 |
. . . . . . . . . . 11
⊢ (Lim
𝑥 → (suc 𝐴 ∈ 𝑥 → (ℵ‘suc 𝐴) ⊆ (ℵ‘𝑥))) |
| 50 | | ssdomg 9019 |
. . . . . . . . . . 11
⊢
((ℵ‘𝑥)
∈ V → ((ℵ‘suc 𝐴) ⊆ (ℵ‘𝑥) → (ℵ‘suc 𝐴) ≼ (ℵ‘𝑥))) |
| 51 | 35, 49, 50 | sylsyld 61 |
. . . . . . . . . 10
⊢ (Lim
𝑥 → (suc 𝐴 ∈ 𝑥 → (ℵ‘suc 𝐴) ≼ (ℵ‘𝑥))) |
| 52 | 45, 51 | sylbid 240 |
. . . . . . . . 9
⊢ (Lim
𝑥 → (𝐴 ∈ 𝑥 → (ℵ‘suc 𝐴) ≼ (ℵ‘𝑥))) |
| 53 | 52 | imp 406 |
. . . . . . . 8
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ 𝑥) → (ℵ‘suc 𝐴) ≼ (ℵ‘𝑥)) |
| 54 | | domnsym 9118 |
. . . . . . . 8
⊢
((ℵ‘suc 𝐴) ≼ (ℵ‘𝑥) → ¬ (ℵ‘𝑥) ≺ (ℵ‘suc
𝐴)) |
| 55 | 53, 54 | syl 17 |
. . . . . . 7
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ 𝑥) → ¬ (ℵ‘𝑥) ≺ (ℵ‘suc
𝐴)) |
| 56 | | limelon 6422 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On) |
| 57 | 38, 56 | mpan 690 |
. . . . . . . . 9
⊢ (Lim
𝑥 → 𝑥 ∈ On) |
| 58 | | onelon 6382 |
. . . . . . . . 9
⊢ ((𝑥 ∈ On ∧ 𝐴 ∈ 𝑥) → 𝐴 ∈ On) |
| 59 | 57, 58 | sylan 580 |
. . . . . . . 8
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ 𝑥) → 𝐴 ∈ On) |
| 60 | | ensym 9022 |
. . . . . . . . 9
⊢
((ℵ‘𝐴)
≈ (ℵ‘𝑥)
→ (ℵ‘𝑥)
≈ (ℵ‘𝐴)) |
| 61 | | alephordilem1 10092 |
. . . . . . . . 9
⊢ (𝐴 ∈ On →
(ℵ‘𝐴) ≺
(ℵ‘suc 𝐴)) |
| 62 | | ensdomtr 9132 |
. . . . . . . . . 10
⊢
(((ℵ‘𝑥)
≈ (ℵ‘𝐴)
∧ (ℵ‘𝐴)
≺ (ℵ‘suc 𝐴)) → (ℵ‘𝑥) ≺ (ℵ‘suc 𝐴)) |
| 63 | 62 | ex 412 |
. . . . . . . . 9
⊢
((ℵ‘𝑥)
≈ (ℵ‘𝐴)
→ ((ℵ‘𝐴)
≺ (ℵ‘suc 𝐴) → (ℵ‘𝑥) ≺ (ℵ‘suc 𝐴))) |
| 64 | 60, 61, 63 | syl2im 40 |
. . . . . . . 8
⊢
((ℵ‘𝐴)
≈ (ℵ‘𝑥)
→ (𝐴 ∈ On →
(ℵ‘𝑥) ≺
(ℵ‘suc 𝐴))) |
| 65 | 59, 64 | syl5com 31 |
. . . . . . 7
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ 𝑥) → ((ℵ‘𝐴) ≈ (ℵ‘𝑥) → (ℵ‘𝑥) ≺ (ℵ‘suc 𝐴))) |
| 66 | 55, 65 | mtod 198 |
. . . . . 6
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ 𝑥) → ¬ (ℵ‘𝐴) ≈ (ℵ‘𝑥)) |
| 67 | 66 | ex 412 |
. . . . 5
⊢ (Lim
𝑥 → (𝐴 ∈ 𝑥 → ¬ (ℵ‘𝐴) ≈ (ℵ‘𝑥))) |
| 68 | 44, 67 | jcad 512 |
. . . 4
⊢ (Lim
𝑥 → (𝐴 ∈ 𝑥 → ((ℵ‘𝐴) ≼ (ℵ‘𝑥) ∧ ¬ (ℵ‘𝐴) ≈ (ℵ‘𝑥)))) |
| 69 | | brsdom 8994 |
. . . 4
⊢
((ℵ‘𝐴)
≺ (ℵ‘𝑥)
↔ ((ℵ‘𝐴)
≼ (ℵ‘𝑥)
∧ ¬ (ℵ‘𝐴) ≈ (ℵ‘𝑥))) |
| 70 | 68, 69 | imbitrrdi 252 |
. . 3
⊢ (Lim
𝑥 → (𝐴 ∈ 𝑥 → (ℵ‘𝐴) ≺ (ℵ‘𝑥))) |
| 71 | 70 | a1d 25 |
. 2
⊢ (Lim
𝑥 → (∀𝑦 ∈ 𝑥 (𝐴 ∈ 𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (𝐴 ∈ 𝑥 → (ℵ‘𝐴) ≺ (ℵ‘𝑥)))) |
| 72 | 4, 8, 12, 16, 18, 34, 71 | tfinds 7860 |
1
⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → (ℵ‘𝐴) ≺ (ℵ‘𝐵))) |