MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephordi Structured version   Visualization version   GIF version

Theorem alephordi 10010
Description: Strict ordering property of the aleph function. (Contributed by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
alephordi (𝐵 ∈ On → (𝐴𝐵 → (ℵ‘𝐴) ≺ (ℵ‘𝐵)))

Proof of Theorem alephordi
Dummy variables 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2826 . . 3 (𝑥 = ∅ → (𝐴𝑥𝐴 ∈ ∅))
2 fveq2 6842 . . . 4 (𝑥 = ∅ → (ℵ‘𝑥) = (ℵ‘∅))
32breq2d 5117 . . 3 (𝑥 = ∅ → ((ℵ‘𝐴) ≺ (ℵ‘𝑥) ↔ (ℵ‘𝐴) ≺ (ℵ‘∅)))
41, 3imbi12d 344 . 2 (𝑥 = ∅ → ((𝐴𝑥 → (ℵ‘𝐴) ≺ (ℵ‘𝑥)) ↔ (𝐴 ∈ ∅ → (ℵ‘𝐴) ≺ (ℵ‘∅))))
5 eleq2 2826 . . 3 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
6 fveq2 6842 . . . 4 (𝑥 = 𝑦 → (ℵ‘𝑥) = (ℵ‘𝑦))
76breq2d 5117 . . 3 (𝑥 = 𝑦 → ((ℵ‘𝐴) ≺ (ℵ‘𝑥) ↔ (ℵ‘𝐴) ≺ (ℵ‘𝑦)))
85, 7imbi12d 344 . 2 (𝑥 = 𝑦 → ((𝐴𝑥 → (ℵ‘𝐴) ≺ (ℵ‘𝑥)) ↔ (𝐴𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦))))
9 eleq2 2826 . . 3 (𝑥 = suc 𝑦 → (𝐴𝑥𝐴 ∈ suc 𝑦))
10 fveq2 6842 . . . 4 (𝑥 = suc 𝑦 → (ℵ‘𝑥) = (ℵ‘suc 𝑦))
1110breq2d 5117 . . 3 (𝑥 = suc 𝑦 → ((ℵ‘𝐴) ≺ (ℵ‘𝑥) ↔ (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦)))
129, 11imbi12d 344 . 2 (𝑥 = suc 𝑦 → ((𝐴𝑥 → (ℵ‘𝐴) ≺ (ℵ‘𝑥)) ↔ (𝐴 ∈ suc 𝑦 → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))))
13 eleq2 2826 . . 3 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
14 fveq2 6842 . . . 4 (𝑥 = 𝐵 → (ℵ‘𝑥) = (ℵ‘𝐵))
1514breq2d 5117 . . 3 (𝑥 = 𝐵 → ((ℵ‘𝐴) ≺ (ℵ‘𝑥) ↔ (ℵ‘𝐴) ≺ (ℵ‘𝐵)))
1613, 15imbi12d 344 . 2 (𝑥 = 𝐵 → ((𝐴𝑥 → (ℵ‘𝐴) ≺ (ℵ‘𝑥)) ↔ (𝐴𝐵 → (ℵ‘𝐴) ≺ (ℵ‘𝐵))))
17 noel 4290 . . 3 ¬ 𝐴 ∈ ∅
1817pm2.21i 119 . 2 (𝐴 ∈ ∅ → (ℵ‘𝐴) ≺ (ℵ‘∅))
19 vex 3449 . . . . 5 𝑦 ∈ V
2019elsuc2 6388 . . . 4 (𝐴 ∈ suc 𝑦 ↔ (𝐴𝑦𝐴 = 𝑦))
21 alephordilem1 10009 . . . . . . . . 9 (𝑦 ∈ On → (ℵ‘𝑦) ≺ (ℵ‘suc 𝑦))
22 sdomtr 9059 . . . . . . . . 9 (((ℵ‘𝐴) ≺ (ℵ‘𝑦) ∧ (ℵ‘𝑦) ≺ (ℵ‘suc 𝑦)) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))
2321, 22sylan2 593 . . . . . . . 8 (((ℵ‘𝐴) ≺ (ℵ‘𝑦) ∧ 𝑦 ∈ On) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))
2423expcom 414 . . . . . . 7 (𝑦 ∈ On → ((ℵ‘𝐴) ≺ (ℵ‘𝑦) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦)))
2524imim2d 57 . . . . . 6 (𝑦 ∈ On → ((𝐴𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (𝐴𝑦 → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))))
2625com23 86 . . . . 5 (𝑦 ∈ On → (𝐴𝑦 → ((𝐴𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))))
27 fveq2 6842 . . . . . . . . 9 (𝐴 = 𝑦 → (ℵ‘𝐴) = (ℵ‘𝑦))
2827breq1d 5115 . . . . . . . 8 (𝐴 = 𝑦 → ((ℵ‘𝐴) ≺ (ℵ‘suc 𝑦) ↔ (ℵ‘𝑦) ≺ (ℵ‘suc 𝑦)))
2921, 28syl5ibr 245 . . . . . . 7 (𝐴 = 𝑦 → (𝑦 ∈ On → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦)))
3029a1d 25 . . . . . 6 (𝐴 = 𝑦 → ((𝐴𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (𝑦 ∈ On → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))))
3130com3r 87 . . . . 5 (𝑦 ∈ On → (𝐴 = 𝑦 → ((𝐴𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))))
3226, 31jaod 857 . . . 4 (𝑦 ∈ On → ((𝐴𝑦𝐴 = 𝑦) → ((𝐴𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))))
3320, 32biimtrid 241 . . 3 (𝑦 ∈ On → (𝐴 ∈ suc 𝑦 → ((𝐴𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))))
3433com23 86 . 2 (𝑦 ∈ On → ((𝐴𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (𝐴 ∈ suc 𝑦 → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))))
35 fvexd 6857 . . . . . 6 (Lim 𝑥 → (ℵ‘𝑥) ∈ V)
36 fveq2 6842 . . . . . . . 8 (𝑤 = 𝐴 → (ℵ‘𝑤) = (ℵ‘𝐴))
3736ssiun2s 5008 . . . . . . 7 (𝐴𝑥 → (ℵ‘𝐴) ⊆ 𝑤𝑥 (ℵ‘𝑤))
38 vex 3449 . . . . . . . . 9 𝑥 ∈ V
39 alephlim 10003 . . . . . . . . 9 ((𝑥 ∈ V ∧ Lim 𝑥) → (ℵ‘𝑥) = 𝑤𝑥 (ℵ‘𝑤))
4038, 39mpan 688 . . . . . . . 8 (Lim 𝑥 → (ℵ‘𝑥) = 𝑤𝑥 (ℵ‘𝑤))
4140sseq2d 3976 . . . . . . 7 (Lim 𝑥 → ((ℵ‘𝐴) ⊆ (ℵ‘𝑥) ↔ (ℵ‘𝐴) ⊆ 𝑤𝑥 (ℵ‘𝑤)))
4237, 41syl5ibr 245 . . . . . 6 (Lim 𝑥 → (𝐴𝑥 → (ℵ‘𝐴) ⊆ (ℵ‘𝑥)))
43 ssdomg 8940 . . . . . 6 ((ℵ‘𝑥) ∈ V → ((ℵ‘𝐴) ⊆ (ℵ‘𝑥) → (ℵ‘𝐴) ≼ (ℵ‘𝑥)))
4435, 42, 43sylsyld 61 . . . . 5 (Lim 𝑥 → (𝐴𝑥 → (ℵ‘𝐴) ≼ (ℵ‘𝑥)))
45 limsuc 7785 . . . . . . . . . 10 (Lim 𝑥 → (𝐴𝑥 ↔ suc 𝐴𝑥))
46 fveq2 6842 . . . . . . . . . . . . 13 (𝑤 = suc 𝐴 → (ℵ‘𝑤) = (ℵ‘suc 𝐴))
4746ssiun2s 5008 . . . . . . . . . . . 12 (suc 𝐴𝑥 → (ℵ‘suc 𝐴) ⊆ 𝑤𝑥 (ℵ‘𝑤))
4840sseq2d 3976 . . . . . . . . . . . 12 (Lim 𝑥 → ((ℵ‘suc 𝐴) ⊆ (ℵ‘𝑥) ↔ (ℵ‘suc 𝐴) ⊆ 𝑤𝑥 (ℵ‘𝑤)))
4947, 48syl5ibr 245 . . . . . . . . . . 11 (Lim 𝑥 → (suc 𝐴𝑥 → (ℵ‘suc 𝐴) ⊆ (ℵ‘𝑥)))
50 ssdomg 8940 . . . . . . . . . . 11 ((ℵ‘𝑥) ∈ V → ((ℵ‘suc 𝐴) ⊆ (ℵ‘𝑥) → (ℵ‘suc 𝐴) ≼ (ℵ‘𝑥)))
5135, 49, 50sylsyld 61 . . . . . . . . . 10 (Lim 𝑥 → (suc 𝐴𝑥 → (ℵ‘suc 𝐴) ≼ (ℵ‘𝑥)))
5245, 51sylbid 239 . . . . . . . . 9 (Lim 𝑥 → (𝐴𝑥 → (ℵ‘suc 𝐴) ≼ (ℵ‘𝑥)))
5352imp 407 . . . . . . . 8 ((Lim 𝑥𝐴𝑥) → (ℵ‘suc 𝐴) ≼ (ℵ‘𝑥))
54 domnsym 9043 . . . . . . . 8 ((ℵ‘suc 𝐴) ≼ (ℵ‘𝑥) → ¬ (ℵ‘𝑥) ≺ (ℵ‘suc 𝐴))
5553, 54syl 17 . . . . . . 7 ((Lim 𝑥𝐴𝑥) → ¬ (ℵ‘𝑥) ≺ (ℵ‘suc 𝐴))
56 limelon 6381 . . . . . . . . . 10 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On)
5738, 56mpan 688 . . . . . . . . 9 (Lim 𝑥𝑥 ∈ On)
58 onelon 6342 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝐴𝑥) → 𝐴 ∈ On)
5957, 58sylan 580 . . . . . . . 8 ((Lim 𝑥𝐴𝑥) → 𝐴 ∈ On)
60 ensym 8943 . . . . . . . . 9 ((ℵ‘𝐴) ≈ (ℵ‘𝑥) → (ℵ‘𝑥) ≈ (ℵ‘𝐴))
61 alephordilem1 10009 . . . . . . . . 9 (𝐴 ∈ On → (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴))
62 ensdomtr 9057 . . . . . . . . . 10 (((ℵ‘𝑥) ≈ (ℵ‘𝐴) ∧ (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)) → (ℵ‘𝑥) ≺ (ℵ‘suc 𝐴))
6362ex 413 . . . . . . . . 9 ((ℵ‘𝑥) ≈ (ℵ‘𝐴) → ((ℵ‘𝐴) ≺ (ℵ‘suc 𝐴) → (ℵ‘𝑥) ≺ (ℵ‘suc 𝐴)))
6460, 61, 63syl2im 40 . . . . . . . 8 ((ℵ‘𝐴) ≈ (ℵ‘𝑥) → (𝐴 ∈ On → (ℵ‘𝑥) ≺ (ℵ‘suc 𝐴)))
6559, 64syl5com 31 . . . . . . 7 ((Lim 𝑥𝐴𝑥) → ((ℵ‘𝐴) ≈ (ℵ‘𝑥) → (ℵ‘𝑥) ≺ (ℵ‘suc 𝐴)))
6655, 65mtod 197 . . . . . 6 ((Lim 𝑥𝐴𝑥) → ¬ (ℵ‘𝐴) ≈ (ℵ‘𝑥))
6766ex 413 . . . . 5 (Lim 𝑥 → (𝐴𝑥 → ¬ (ℵ‘𝐴) ≈ (ℵ‘𝑥)))
6844, 67jcad 513 . . . 4 (Lim 𝑥 → (𝐴𝑥 → ((ℵ‘𝐴) ≼ (ℵ‘𝑥) ∧ ¬ (ℵ‘𝐴) ≈ (ℵ‘𝑥))))
69 brsdom 8915 . . . 4 ((ℵ‘𝐴) ≺ (ℵ‘𝑥) ↔ ((ℵ‘𝐴) ≼ (ℵ‘𝑥) ∧ ¬ (ℵ‘𝐴) ≈ (ℵ‘𝑥)))
7068, 69syl6ibr 251 . . 3 (Lim 𝑥 → (𝐴𝑥 → (ℵ‘𝐴) ≺ (ℵ‘𝑥)))
7170a1d 25 . 2 (Lim 𝑥 → (∀𝑦𝑥 (𝐴𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (𝐴𝑥 → (ℵ‘𝐴) ≺ (ℵ‘𝑥))))
724, 8, 12, 16, 18, 34, 71tfinds 7796 1 (𝐵 ∈ On → (𝐴𝐵 → (ℵ‘𝐴) ≺ (ℵ‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845   = wceq 1541  wcel 2106  wral 3064  Vcvv 3445  wss 3910  c0 4282   ciun 4954   class class class wbr 5105  Oncon0 6317  Lim wlim 6318  suc csuc 6319  cfv 6496  cen 8880  cdom 8881  csdm 8882  cale 9872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-oi 9446  df-har 9493  df-card 9875  df-aleph 9876
This theorem is referenced by:  alephord  10011  alephval2  10508
  Copyright terms: Public domain W3C validator