MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephordi Structured version   Visualization version   GIF version

Theorem alephordi 9761
Description: Strict ordering property of the aleph function. (Contributed by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
alephordi (𝐵 ∈ On → (𝐴𝐵 → (ℵ‘𝐴) ≺ (ℵ‘𝐵)))

Proof of Theorem alephordi
Dummy variables 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2827 . . 3 (𝑥 = ∅ → (𝐴𝑥𝐴 ∈ ∅))
2 fveq2 6756 . . . 4 (𝑥 = ∅ → (ℵ‘𝑥) = (ℵ‘∅))
32breq2d 5082 . . 3 (𝑥 = ∅ → ((ℵ‘𝐴) ≺ (ℵ‘𝑥) ↔ (ℵ‘𝐴) ≺ (ℵ‘∅)))
41, 3imbi12d 344 . 2 (𝑥 = ∅ → ((𝐴𝑥 → (ℵ‘𝐴) ≺ (ℵ‘𝑥)) ↔ (𝐴 ∈ ∅ → (ℵ‘𝐴) ≺ (ℵ‘∅))))
5 eleq2 2827 . . 3 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
6 fveq2 6756 . . . 4 (𝑥 = 𝑦 → (ℵ‘𝑥) = (ℵ‘𝑦))
76breq2d 5082 . . 3 (𝑥 = 𝑦 → ((ℵ‘𝐴) ≺ (ℵ‘𝑥) ↔ (ℵ‘𝐴) ≺ (ℵ‘𝑦)))
85, 7imbi12d 344 . 2 (𝑥 = 𝑦 → ((𝐴𝑥 → (ℵ‘𝐴) ≺ (ℵ‘𝑥)) ↔ (𝐴𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦))))
9 eleq2 2827 . . 3 (𝑥 = suc 𝑦 → (𝐴𝑥𝐴 ∈ suc 𝑦))
10 fveq2 6756 . . . 4 (𝑥 = suc 𝑦 → (ℵ‘𝑥) = (ℵ‘suc 𝑦))
1110breq2d 5082 . . 3 (𝑥 = suc 𝑦 → ((ℵ‘𝐴) ≺ (ℵ‘𝑥) ↔ (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦)))
129, 11imbi12d 344 . 2 (𝑥 = suc 𝑦 → ((𝐴𝑥 → (ℵ‘𝐴) ≺ (ℵ‘𝑥)) ↔ (𝐴 ∈ suc 𝑦 → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))))
13 eleq2 2827 . . 3 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
14 fveq2 6756 . . . 4 (𝑥 = 𝐵 → (ℵ‘𝑥) = (ℵ‘𝐵))
1514breq2d 5082 . . 3 (𝑥 = 𝐵 → ((ℵ‘𝐴) ≺ (ℵ‘𝑥) ↔ (ℵ‘𝐴) ≺ (ℵ‘𝐵)))
1613, 15imbi12d 344 . 2 (𝑥 = 𝐵 → ((𝐴𝑥 → (ℵ‘𝐴) ≺ (ℵ‘𝑥)) ↔ (𝐴𝐵 → (ℵ‘𝐴) ≺ (ℵ‘𝐵))))
17 noel 4261 . . 3 ¬ 𝐴 ∈ ∅
1817pm2.21i 119 . 2 (𝐴 ∈ ∅ → (ℵ‘𝐴) ≺ (ℵ‘∅))
19 vex 3426 . . . . 5 𝑦 ∈ V
2019elsuc2 6321 . . . 4 (𝐴 ∈ suc 𝑦 ↔ (𝐴𝑦𝐴 = 𝑦))
21 alephordilem1 9760 . . . . . . . . 9 (𝑦 ∈ On → (ℵ‘𝑦) ≺ (ℵ‘suc 𝑦))
22 sdomtr 8851 . . . . . . . . 9 (((ℵ‘𝐴) ≺ (ℵ‘𝑦) ∧ (ℵ‘𝑦) ≺ (ℵ‘suc 𝑦)) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))
2321, 22sylan2 592 . . . . . . . 8 (((ℵ‘𝐴) ≺ (ℵ‘𝑦) ∧ 𝑦 ∈ On) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))
2423expcom 413 . . . . . . 7 (𝑦 ∈ On → ((ℵ‘𝐴) ≺ (ℵ‘𝑦) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦)))
2524imim2d 57 . . . . . 6 (𝑦 ∈ On → ((𝐴𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (𝐴𝑦 → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))))
2625com23 86 . . . . 5 (𝑦 ∈ On → (𝐴𝑦 → ((𝐴𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))))
27 fveq2 6756 . . . . . . . . 9 (𝐴 = 𝑦 → (ℵ‘𝐴) = (ℵ‘𝑦))
2827breq1d 5080 . . . . . . . 8 (𝐴 = 𝑦 → ((ℵ‘𝐴) ≺ (ℵ‘suc 𝑦) ↔ (ℵ‘𝑦) ≺ (ℵ‘suc 𝑦)))
2921, 28syl5ibr 245 . . . . . . 7 (𝐴 = 𝑦 → (𝑦 ∈ On → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦)))
3029a1d 25 . . . . . 6 (𝐴 = 𝑦 → ((𝐴𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (𝑦 ∈ On → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))))
3130com3r 87 . . . . 5 (𝑦 ∈ On → (𝐴 = 𝑦 → ((𝐴𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))))
3226, 31jaod 855 . . . 4 (𝑦 ∈ On → ((𝐴𝑦𝐴 = 𝑦) → ((𝐴𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))))
3320, 32syl5bi 241 . . 3 (𝑦 ∈ On → (𝐴 ∈ suc 𝑦 → ((𝐴𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))))
3433com23 86 . 2 (𝑦 ∈ On → ((𝐴𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (𝐴 ∈ suc 𝑦 → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))))
35 fvexd 6771 . . . . . 6 (Lim 𝑥 → (ℵ‘𝑥) ∈ V)
36 fveq2 6756 . . . . . . . 8 (𝑤 = 𝐴 → (ℵ‘𝑤) = (ℵ‘𝐴))
3736ssiun2s 4974 . . . . . . 7 (𝐴𝑥 → (ℵ‘𝐴) ⊆ 𝑤𝑥 (ℵ‘𝑤))
38 vex 3426 . . . . . . . . 9 𝑥 ∈ V
39 alephlim 9754 . . . . . . . . 9 ((𝑥 ∈ V ∧ Lim 𝑥) → (ℵ‘𝑥) = 𝑤𝑥 (ℵ‘𝑤))
4038, 39mpan 686 . . . . . . . 8 (Lim 𝑥 → (ℵ‘𝑥) = 𝑤𝑥 (ℵ‘𝑤))
4140sseq2d 3949 . . . . . . 7 (Lim 𝑥 → ((ℵ‘𝐴) ⊆ (ℵ‘𝑥) ↔ (ℵ‘𝐴) ⊆ 𝑤𝑥 (ℵ‘𝑤)))
4237, 41syl5ibr 245 . . . . . 6 (Lim 𝑥 → (𝐴𝑥 → (ℵ‘𝐴) ⊆ (ℵ‘𝑥)))
43 ssdomg 8741 . . . . . 6 ((ℵ‘𝑥) ∈ V → ((ℵ‘𝐴) ⊆ (ℵ‘𝑥) → (ℵ‘𝐴) ≼ (ℵ‘𝑥)))
4435, 42, 43sylsyld 61 . . . . 5 (Lim 𝑥 → (𝐴𝑥 → (ℵ‘𝐴) ≼ (ℵ‘𝑥)))
45 limsuc 7671 . . . . . . . . . 10 (Lim 𝑥 → (𝐴𝑥 ↔ suc 𝐴𝑥))
46 fveq2 6756 . . . . . . . . . . . . 13 (𝑤 = suc 𝐴 → (ℵ‘𝑤) = (ℵ‘suc 𝐴))
4746ssiun2s 4974 . . . . . . . . . . . 12 (suc 𝐴𝑥 → (ℵ‘suc 𝐴) ⊆ 𝑤𝑥 (ℵ‘𝑤))
4840sseq2d 3949 . . . . . . . . . . . 12 (Lim 𝑥 → ((ℵ‘suc 𝐴) ⊆ (ℵ‘𝑥) ↔ (ℵ‘suc 𝐴) ⊆ 𝑤𝑥 (ℵ‘𝑤)))
4947, 48syl5ibr 245 . . . . . . . . . . 11 (Lim 𝑥 → (suc 𝐴𝑥 → (ℵ‘suc 𝐴) ⊆ (ℵ‘𝑥)))
50 ssdomg 8741 . . . . . . . . . . 11 ((ℵ‘𝑥) ∈ V → ((ℵ‘suc 𝐴) ⊆ (ℵ‘𝑥) → (ℵ‘suc 𝐴) ≼ (ℵ‘𝑥)))
5135, 49, 50sylsyld 61 . . . . . . . . . 10 (Lim 𝑥 → (suc 𝐴𝑥 → (ℵ‘suc 𝐴) ≼ (ℵ‘𝑥)))
5245, 51sylbid 239 . . . . . . . . 9 (Lim 𝑥 → (𝐴𝑥 → (ℵ‘suc 𝐴) ≼ (ℵ‘𝑥)))
5352imp 406 . . . . . . . 8 ((Lim 𝑥𝐴𝑥) → (ℵ‘suc 𝐴) ≼ (ℵ‘𝑥))
54 domnsym 8839 . . . . . . . 8 ((ℵ‘suc 𝐴) ≼ (ℵ‘𝑥) → ¬ (ℵ‘𝑥) ≺ (ℵ‘suc 𝐴))
5553, 54syl 17 . . . . . . 7 ((Lim 𝑥𝐴𝑥) → ¬ (ℵ‘𝑥) ≺ (ℵ‘suc 𝐴))
56 limelon 6314 . . . . . . . . . 10 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On)
5738, 56mpan 686 . . . . . . . . 9 (Lim 𝑥𝑥 ∈ On)
58 onelon 6276 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝐴𝑥) → 𝐴 ∈ On)
5957, 58sylan 579 . . . . . . . 8 ((Lim 𝑥𝐴𝑥) → 𝐴 ∈ On)
60 ensym 8744 . . . . . . . . 9 ((ℵ‘𝐴) ≈ (ℵ‘𝑥) → (ℵ‘𝑥) ≈ (ℵ‘𝐴))
61 alephordilem1 9760 . . . . . . . . 9 (𝐴 ∈ On → (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴))
62 ensdomtr 8849 . . . . . . . . . 10 (((ℵ‘𝑥) ≈ (ℵ‘𝐴) ∧ (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)) → (ℵ‘𝑥) ≺ (ℵ‘suc 𝐴))
6362ex 412 . . . . . . . . 9 ((ℵ‘𝑥) ≈ (ℵ‘𝐴) → ((ℵ‘𝐴) ≺ (ℵ‘suc 𝐴) → (ℵ‘𝑥) ≺ (ℵ‘suc 𝐴)))
6460, 61, 63syl2im 40 . . . . . . . 8 ((ℵ‘𝐴) ≈ (ℵ‘𝑥) → (𝐴 ∈ On → (ℵ‘𝑥) ≺ (ℵ‘suc 𝐴)))
6559, 64syl5com 31 . . . . . . 7 ((Lim 𝑥𝐴𝑥) → ((ℵ‘𝐴) ≈ (ℵ‘𝑥) → (ℵ‘𝑥) ≺ (ℵ‘suc 𝐴)))
6655, 65mtod 197 . . . . . 6 ((Lim 𝑥𝐴𝑥) → ¬ (ℵ‘𝐴) ≈ (ℵ‘𝑥))
6766ex 412 . . . . 5 (Lim 𝑥 → (𝐴𝑥 → ¬ (ℵ‘𝐴) ≈ (ℵ‘𝑥)))
6844, 67jcad 512 . . . 4 (Lim 𝑥 → (𝐴𝑥 → ((ℵ‘𝐴) ≼ (ℵ‘𝑥) ∧ ¬ (ℵ‘𝐴) ≈ (ℵ‘𝑥))))
69 brsdom 8718 . . . 4 ((ℵ‘𝐴) ≺ (ℵ‘𝑥) ↔ ((ℵ‘𝐴) ≼ (ℵ‘𝑥) ∧ ¬ (ℵ‘𝐴) ≈ (ℵ‘𝑥)))
7068, 69syl6ibr 251 . . 3 (Lim 𝑥 → (𝐴𝑥 → (ℵ‘𝐴) ≺ (ℵ‘𝑥)))
7170a1d 25 . 2 (Lim 𝑥 → (∀𝑦𝑥 (𝐴𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (𝐴𝑥 → (ℵ‘𝐴) ≺ (ℵ‘𝑥))))
724, 8, 12, 16, 18, 34, 71tfinds 7681 1 (𝐵 ∈ On → (𝐴𝐵 → (ℵ‘𝐴) ≺ (ℵ‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  wss 3883  c0 4253   ciun 4921   class class class wbr 5070  Oncon0 6251  Lim wlim 6252  suc csuc 6253  cfv 6418  cen 8688  cdom 8689  csdm 8690  cale 9625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-oi 9199  df-har 9246  df-card 9628  df-aleph 9629
This theorem is referenced by:  alephord  9762  alephval2  10259
  Copyright terms: Public domain W3C validator