MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephordi Structured version   Visualization version   GIF version

Theorem alephordi 10071
Description: Strict ordering property of the aleph function. (Contributed by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
alephordi (𝐵 ∈ On → (𝐴𝐵 → (ℵ‘𝐴) ≺ (ℵ‘𝐵)))

Proof of Theorem alephordi
Dummy variables 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2822 . . 3 (𝑥 = ∅ → (𝐴𝑥𝐴 ∈ ∅))
2 fveq2 6891 . . . 4 (𝑥 = ∅ → (ℵ‘𝑥) = (ℵ‘∅))
32breq2d 5160 . . 3 (𝑥 = ∅ → ((ℵ‘𝐴) ≺ (ℵ‘𝑥) ↔ (ℵ‘𝐴) ≺ (ℵ‘∅)))
41, 3imbi12d 344 . 2 (𝑥 = ∅ → ((𝐴𝑥 → (ℵ‘𝐴) ≺ (ℵ‘𝑥)) ↔ (𝐴 ∈ ∅ → (ℵ‘𝐴) ≺ (ℵ‘∅))))
5 eleq2 2822 . . 3 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
6 fveq2 6891 . . . 4 (𝑥 = 𝑦 → (ℵ‘𝑥) = (ℵ‘𝑦))
76breq2d 5160 . . 3 (𝑥 = 𝑦 → ((ℵ‘𝐴) ≺ (ℵ‘𝑥) ↔ (ℵ‘𝐴) ≺ (ℵ‘𝑦)))
85, 7imbi12d 344 . 2 (𝑥 = 𝑦 → ((𝐴𝑥 → (ℵ‘𝐴) ≺ (ℵ‘𝑥)) ↔ (𝐴𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦))))
9 eleq2 2822 . . 3 (𝑥 = suc 𝑦 → (𝐴𝑥𝐴 ∈ suc 𝑦))
10 fveq2 6891 . . . 4 (𝑥 = suc 𝑦 → (ℵ‘𝑥) = (ℵ‘suc 𝑦))
1110breq2d 5160 . . 3 (𝑥 = suc 𝑦 → ((ℵ‘𝐴) ≺ (ℵ‘𝑥) ↔ (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦)))
129, 11imbi12d 344 . 2 (𝑥 = suc 𝑦 → ((𝐴𝑥 → (ℵ‘𝐴) ≺ (ℵ‘𝑥)) ↔ (𝐴 ∈ suc 𝑦 → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))))
13 eleq2 2822 . . 3 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
14 fveq2 6891 . . . 4 (𝑥 = 𝐵 → (ℵ‘𝑥) = (ℵ‘𝐵))
1514breq2d 5160 . . 3 (𝑥 = 𝐵 → ((ℵ‘𝐴) ≺ (ℵ‘𝑥) ↔ (ℵ‘𝐴) ≺ (ℵ‘𝐵)))
1613, 15imbi12d 344 . 2 (𝑥 = 𝐵 → ((𝐴𝑥 → (ℵ‘𝐴) ≺ (ℵ‘𝑥)) ↔ (𝐴𝐵 → (ℵ‘𝐴) ≺ (ℵ‘𝐵))))
17 noel 4330 . . 3 ¬ 𝐴 ∈ ∅
1817pm2.21i 119 . 2 (𝐴 ∈ ∅ → (ℵ‘𝐴) ≺ (ℵ‘∅))
19 vex 3478 . . . . 5 𝑦 ∈ V
2019elsuc2 6435 . . . 4 (𝐴 ∈ suc 𝑦 ↔ (𝐴𝑦𝐴 = 𝑦))
21 alephordilem1 10070 . . . . . . . . 9 (𝑦 ∈ On → (ℵ‘𝑦) ≺ (ℵ‘suc 𝑦))
22 sdomtr 9117 . . . . . . . . 9 (((ℵ‘𝐴) ≺ (ℵ‘𝑦) ∧ (ℵ‘𝑦) ≺ (ℵ‘suc 𝑦)) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))
2321, 22sylan2 593 . . . . . . . 8 (((ℵ‘𝐴) ≺ (ℵ‘𝑦) ∧ 𝑦 ∈ On) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))
2423expcom 414 . . . . . . 7 (𝑦 ∈ On → ((ℵ‘𝐴) ≺ (ℵ‘𝑦) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦)))
2524imim2d 57 . . . . . 6 (𝑦 ∈ On → ((𝐴𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (𝐴𝑦 → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))))
2625com23 86 . . . . 5 (𝑦 ∈ On → (𝐴𝑦 → ((𝐴𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))))
27 fveq2 6891 . . . . . . . . 9 (𝐴 = 𝑦 → (ℵ‘𝐴) = (ℵ‘𝑦))
2827breq1d 5158 . . . . . . . 8 (𝐴 = 𝑦 → ((ℵ‘𝐴) ≺ (ℵ‘suc 𝑦) ↔ (ℵ‘𝑦) ≺ (ℵ‘suc 𝑦)))
2921, 28imbitrrid 245 . . . . . . 7 (𝐴 = 𝑦 → (𝑦 ∈ On → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦)))
3029a1d 25 . . . . . 6 (𝐴 = 𝑦 → ((𝐴𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (𝑦 ∈ On → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))))
3130com3r 87 . . . . 5 (𝑦 ∈ On → (𝐴 = 𝑦 → ((𝐴𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))))
3226, 31jaod 857 . . . 4 (𝑦 ∈ On → ((𝐴𝑦𝐴 = 𝑦) → ((𝐴𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))))
3320, 32biimtrid 241 . . 3 (𝑦 ∈ On → (𝐴 ∈ suc 𝑦 → ((𝐴𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))))
3433com23 86 . 2 (𝑦 ∈ On → ((𝐴𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (𝐴 ∈ suc 𝑦 → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))))
35 fvexd 6906 . . . . . 6 (Lim 𝑥 → (ℵ‘𝑥) ∈ V)
36 fveq2 6891 . . . . . . . 8 (𝑤 = 𝐴 → (ℵ‘𝑤) = (ℵ‘𝐴))
3736ssiun2s 5051 . . . . . . 7 (𝐴𝑥 → (ℵ‘𝐴) ⊆ 𝑤𝑥 (ℵ‘𝑤))
38 vex 3478 . . . . . . . . 9 𝑥 ∈ V
39 alephlim 10064 . . . . . . . . 9 ((𝑥 ∈ V ∧ Lim 𝑥) → (ℵ‘𝑥) = 𝑤𝑥 (ℵ‘𝑤))
4038, 39mpan 688 . . . . . . . 8 (Lim 𝑥 → (ℵ‘𝑥) = 𝑤𝑥 (ℵ‘𝑤))
4140sseq2d 4014 . . . . . . 7 (Lim 𝑥 → ((ℵ‘𝐴) ⊆ (ℵ‘𝑥) ↔ (ℵ‘𝐴) ⊆ 𝑤𝑥 (ℵ‘𝑤)))
4237, 41imbitrrid 245 . . . . . 6 (Lim 𝑥 → (𝐴𝑥 → (ℵ‘𝐴) ⊆ (ℵ‘𝑥)))
43 ssdomg 8998 . . . . . 6 ((ℵ‘𝑥) ∈ V → ((ℵ‘𝐴) ⊆ (ℵ‘𝑥) → (ℵ‘𝐴) ≼ (ℵ‘𝑥)))
4435, 42, 43sylsyld 61 . . . . 5 (Lim 𝑥 → (𝐴𝑥 → (ℵ‘𝐴) ≼ (ℵ‘𝑥)))
45 limsuc 7840 . . . . . . . . . 10 (Lim 𝑥 → (𝐴𝑥 ↔ suc 𝐴𝑥))
46 fveq2 6891 . . . . . . . . . . . . 13 (𝑤 = suc 𝐴 → (ℵ‘𝑤) = (ℵ‘suc 𝐴))
4746ssiun2s 5051 . . . . . . . . . . . 12 (suc 𝐴𝑥 → (ℵ‘suc 𝐴) ⊆ 𝑤𝑥 (ℵ‘𝑤))
4840sseq2d 4014 . . . . . . . . . . . 12 (Lim 𝑥 → ((ℵ‘suc 𝐴) ⊆ (ℵ‘𝑥) ↔ (ℵ‘suc 𝐴) ⊆ 𝑤𝑥 (ℵ‘𝑤)))
4947, 48imbitrrid 245 . . . . . . . . . . 11 (Lim 𝑥 → (suc 𝐴𝑥 → (ℵ‘suc 𝐴) ⊆ (ℵ‘𝑥)))
50 ssdomg 8998 . . . . . . . . . . 11 ((ℵ‘𝑥) ∈ V → ((ℵ‘suc 𝐴) ⊆ (ℵ‘𝑥) → (ℵ‘suc 𝐴) ≼ (ℵ‘𝑥)))
5135, 49, 50sylsyld 61 . . . . . . . . . 10 (Lim 𝑥 → (suc 𝐴𝑥 → (ℵ‘suc 𝐴) ≼ (ℵ‘𝑥)))
5245, 51sylbid 239 . . . . . . . . 9 (Lim 𝑥 → (𝐴𝑥 → (ℵ‘suc 𝐴) ≼ (ℵ‘𝑥)))
5352imp 407 . . . . . . . 8 ((Lim 𝑥𝐴𝑥) → (ℵ‘suc 𝐴) ≼ (ℵ‘𝑥))
54 domnsym 9101 . . . . . . . 8 ((ℵ‘suc 𝐴) ≼ (ℵ‘𝑥) → ¬ (ℵ‘𝑥) ≺ (ℵ‘suc 𝐴))
5553, 54syl 17 . . . . . . 7 ((Lim 𝑥𝐴𝑥) → ¬ (ℵ‘𝑥) ≺ (ℵ‘suc 𝐴))
56 limelon 6428 . . . . . . . . . 10 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On)
5738, 56mpan 688 . . . . . . . . 9 (Lim 𝑥𝑥 ∈ On)
58 onelon 6389 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝐴𝑥) → 𝐴 ∈ On)
5957, 58sylan 580 . . . . . . . 8 ((Lim 𝑥𝐴𝑥) → 𝐴 ∈ On)
60 ensym 9001 . . . . . . . . 9 ((ℵ‘𝐴) ≈ (ℵ‘𝑥) → (ℵ‘𝑥) ≈ (ℵ‘𝐴))
61 alephordilem1 10070 . . . . . . . . 9 (𝐴 ∈ On → (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴))
62 ensdomtr 9115 . . . . . . . . . 10 (((ℵ‘𝑥) ≈ (ℵ‘𝐴) ∧ (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)) → (ℵ‘𝑥) ≺ (ℵ‘suc 𝐴))
6362ex 413 . . . . . . . . 9 ((ℵ‘𝑥) ≈ (ℵ‘𝐴) → ((ℵ‘𝐴) ≺ (ℵ‘suc 𝐴) → (ℵ‘𝑥) ≺ (ℵ‘suc 𝐴)))
6460, 61, 63syl2im 40 . . . . . . . 8 ((ℵ‘𝐴) ≈ (ℵ‘𝑥) → (𝐴 ∈ On → (ℵ‘𝑥) ≺ (ℵ‘suc 𝐴)))
6559, 64syl5com 31 . . . . . . 7 ((Lim 𝑥𝐴𝑥) → ((ℵ‘𝐴) ≈ (ℵ‘𝑥) → (ℵ‘𝑥) ≺ (ℵ‘suc 𝐴)))
6655, 65mtod 197 . . . . . 6 ((Lim 𝑥𝐴𝑥) → ¬ (ℵ‘𝐴) ≈ (ℵ‘𝑥))
6766ex 413 . . . . 5 (Lim 𝑥 → (𝐴𝑥 → ¬ (ℵ‘𝐴) ≈ (ℵ‘𝑥)))
6844, 67jcad 513 . . . 4 (Lim 𝑥 → (𝐴𝑥 → ((ℵ‘𝐴) ≼ (ℵ‘𝑥) ∧ ¬ (ℵ‘𝐴) ≈ (ℵ‘𝑥))))
69 brsdom 8973 . . . 4 ((ℵ‘𝐴) ≺ (ℵ‘𝑥) ↔ ((ℵ‘𝐴) ≼ (ℵ‘𝑥) ∧ ¬ (ℵ‘𝐴) ≈ (ℵ‘𝑥)))
7068, 69imbitrrdi 251 . . 3 (Lim 𝑥 → (𝐴𝑥 → (ℵ‘𝐴) ≺ (ℵ‘𝑥)))
7170a1d 25 . 2 (Lim 𝑥 → (∀𝑦𝑥 (𝐴𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (𝐴𝑥 → (ℵ‘𝐴) ≺ (ℵ‘𝑥))))
724, 8, 12, 16, 18, 34, 71tfinds 7851 1 (𝐵 ∈ On → (𝐴𝐵 → (ℵ‘𝐴) ≺ (ℵ‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845   = wceq 1541  wcel 2106  wral 3061  Vcvv 3474  wss 3948  c0 4322   ciun 4997   class class class wbr 5148  Oncon0 6364  Lim wlim 6365  suc csuc 6366  cfv 6543  cen 8938  cdom 8939  csdm 8940  cale 9933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-inf2 9638
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-oi 9507  df-har 9554  df-card 9936  df-aleph 9937
This theorem is referenced by:  alephord  10072  alephval2  10569
  Copyright terms: Public domain W3C validator