MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephordi Structured version   Visualization version   GIF version

Theorem alephordi 9975
Description: Strict ordering property of the aleph function. (Contributed by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
alephordi (𝐵 ∈ On → (𝐴𝐵 → (ℵ‘𝐴) ≺ (ℵ‘𝐵)))

Proof of Theorem alephordi
Dummy variables 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2822 . . 3 (𝑥 = ∅ → (𝐴𝑥𝐴 ∈ ∅))
2 fveq2 6831 . . . 4 (𝑥 = ∅ → (ℵ‘𝑥) = (ℵ‘∅))
32breq2d 5107 . . 3 (𝑥 = ∅ → ((ℵ‘𝐴) ≺ (ℵ‘𝑥) ↔ (ℵ‘𝐴) ≺ (ℵ‘∅)))
41, 3imbi12d 344 . 2 (𝑥 = ∅ → ((𝐴𝑥 → (ℵ‘𝐴) ≺ (ℵ‘𝑥)) ↔ (𝐴 ∈ ∅ → (ℵ‘𝐴) ≺ (ℵ‘∅))))
5 eleq2 2822 . . 3 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
6 fveq2 6831 . . . 4 (𝑥 = 𝑦 → (ℵ‘𝑥) = (ℵ‘𝑦))
76breq2d 5107 . . 3 (𝑥 = 𝑦 → ((ℵ‘𝐴) ≺ (ℵ‘𝑥) ↔ (ℵ‘𝐴) ≺ (ℵ‘𝑦)))
85, 7imbi12d 344 . 2 (𝑥 = 𝑦 → ((𝐴𝑥 → (ℵ‘𝐴) ≺ (ℵ‘𝑥)) ↔ (𝐴𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦))))
9 eleq2 2822 . . 3 (𝑥 = suc 𝑦 → (𝐴𝑥𝐴 ∈ suc 𝑦))
10 fveq2 6831 . . . 4 (𝑥 = suc 𝑦 → (ℵ‘𝑥) = (ℵ‘suc 𝑦))
1110breq2d 5107 . . 3 (𝑥 = suc 𝑦 → ((ℵ‘𝐴) ≺ (ℵ‘𝑥) ↔ (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦)))
129, 11imbi12d 344 . 2 (𝑥 = suc 𝑦 → ((𝐴𝑥 → (ℵ‘𝐴) ≺ (ℵ‘𝑥)) ↔ (𝐴 ∈ suc 𝑦 → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))))
13 eleq2 2822 . . 3 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
14 fveq2 6831 . . . 4 (𝑥 = 𝐵 → (ℵ‘𝑥) = (ℵ‘𝐵))
1514breq2d 5107 . . 3 (𝑥 = 𝐵 → ((ℵ‘𝐴) ≺ (ℵ‘𝑥) ↔ (ℵ‘𝐴) ≺ (ℵ‘𝐵)))
1613, 15imbi12d 344 . 2 (𝑥 = 𝐵 → ((𝐴𝑥 → (ℵ‘𝐴) ≺ (ℵ‘𝑥)) ↔ (𝐴𝐵 → (ℵ‘𝐴) ≺ (ℵ‘𝐵))))
17 noel 4289 . . 3 ¬ 𝐴 ∈ ∅
1817pm2.21i 119 . 2 (𝐴 ∈ ∅ → (ℵ‘𝐴) ≺ (ℵ‘∅))
19 vex 3442 . . . . 5 𝑦 ∈ V
2019elsuc2 6387 . . . 4 (𝐴 ∈ suc 𝑦 ↔ (𝐴𝑦𝐴 = 𝑦))
21 alephordilem1 9974 . . . . . . . . 9 (𝑦 ∈ On → (ℵ‘𝑦) ≺ (ℵ‘suc 𝑦))
22 sdomtr 9038 . . . . . . . . 9 (((ℵ‘𝐴) ≺ (ℵ‘𝑦) ∧ (ℵ‘𝑦) ≺ (ℵ‘suc 𝑦)) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))
2321, 22sylan2 593 . . . . . . . 8 (((ℵ‘𝐴) ≺ (ℵ‘𝑦) ∧ 𝑦 ∈ On) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))
2423expcom 413 . . . . . . 7 (𝑦 ∈ On → ((ℵ‘𝐴) ≺ (ℵ‘𝑦) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦)))
2524imim2d 57 . . . . . 6 (𝑦 ∈ On → ((𝐴𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (𝐴𝑦 → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))))
2625com23 86 . . . . 5 (𝑦 ∈ On → (𝐴𝑦 → ((𝐴𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))))
27 fveq2 6831 . . . . . . . . 9 (𝐴 = 𝑦 → (ℵ‘𝐴) = (ℵ‘𝑦))
2827breq1d 5105 . . . . . . . 8 (𝐴 = 𝑦 → ((ℵ‘𝐴) ≺ (ℵ‘suc 𝑦) ↔ (ℵ‘𝑦) ≺ (ℵ‘suc 𝑦)))
2921, 28imbitrrid 246 . . . . . . 7 (𝐴 = 𝑦 → (𝑦 ∈ On → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦)))
3029a1d 25 . . . . . 6 (𝐴 = 𝑦 → ((𝐴𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (𝑦 ∈ On → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))))
3130com3r 87 . . . . 5 (𝑦 ∈ On → (𝐴 = 𝑦 → ((𝐴𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))))
3226, 31jaod 859 . . . 4 (𝑦 ∈ On → ((𝐴𝑦𝐴 = 𝑦) → ((𝐴𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))))
3320, 32biimtrid 242 . . 3 (𝑦 ∈ On → (𝐴 ∈ suc 𝑦 → ((𝐴𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))))
3433com23 86 . 2 (𝑦 ∈ On → ((𝐴𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (𝐴 ∈ suc 𝑦 → (ℵ‘𝐴) ≺ (ℵ‘suc 𝑦))))
35 fvexd 6846 . . . . . 6 (Lim 𝑥 → (ℵ‘𝑥) ∈ V)
36 fveq2 6831 . . . . . . . 8 (𝑤 = 𝐴 → (ℵ‘𝑤) = (ℵ‘𝐴))
3736ssiun2s 5001 . . . . . . 7 (𝐴𝑥 → (ℵ‘𝐴) ⊆ 𝑤𝑥 (ℵ‘𝑤))
38 vex 3442 . . . . . . . . 9 𝑥 ∈ V
39 alephlim 9968 . . . . . . . . 9 ((𝑥 ∈ V ∧ Lim 𝑥) → (ℵ‘𝑥) = 𝑤𝑥 (ℵ‘𝑤))
4038, 39mpan 690 . . . . . . . 8 (Lim 𝑥 → (ℵ‘𝑥) = 𝑤𝑥 (ℵ‘𝑤))
4140sseq2d 3964 . . . . . . 7 (Lim 𝑥 → ((ℵ‘𝐴) ⊆ (ℵ‘𝑥) ↔ (ℵ‘𝐴) ⊆ 𝑤𝑥 (ℵ‘𝑤)))
4237, 41imbitrrid 246 . . . . . 6 (Lim 𝑥 → (𝐴𝑥 → (ℵ‘𝐴) ⊆ (ℵ‘𝑥)))
43 ssdomg 8932 . . . . . 6 ((ℵ‘𝑥) ∈ V → ((ℵ‘𝐴) ⊆ (ℵ‘𝑥) → (ℵ‘𝐴) ≼ (ℵ‘𝑥)))
4435, 42, 43sylsyld 61 . . . . 5 (Lim 𝑥 → (𝐴𝑥 → (ℵ‘𝐴) ≼ (ℵ‘𝑥)))
45 limsuc 7788 . . . . . . . . . 10 (Lim 𝑥 → (𝐴𝑥 ↔ suc 𝐴𝑥))
46 fveq2 6831 . . . . . . . . . . . . 13 (𝑤 = suc 𝐴 → (ℵ‘𝑤) = (ℵ‘suc 𝐴))
4746ssiun2s 5001 . . . . . . . . . . . 12 (suc 𝐴𝑥 → (ℵ‘suc 𝐴) ⊆ 𝑤𝑥 (ℵ‘𝑤))
4840sseq2d 3964 . . . . . . . . . . . 12 (Lim 𝑥 → ((ℵ‘suc 𝐴) ⊆ (ℵ‘𝑥) ↔ (ℵ‘suc 𝐴) ⊆ 𝑤𝑥 (ℵ‘𝑤)))
4947, 48imbitrrid 246 . . . . . . . . . . 11 (Lim 𝑥 → (suc 𝐴𝑥 → (ℵ‘suc 𝐴) ⊆ (ℵ‘𝑥)))
50 ssdomg 8932 . . . . . . . . . . 11 ((ℵ‘𝑥) ∈ V → ((ℵ‘suc 𝐴) ⊆ (ℵ‘𝑥) → (ℵ‘suc 𝐴) ≼ (ℵ‘𝑥)))
5135, 49, 50sylsyld 61 . . . . . . . . . 10 (Lim 𝑥 → (suc 𝐴𝑥 → (ℵ‘suc 𝐴) ≼ (ℵ‘𝑥)))
5245, 51sylbid 240 . . . . . . . . 9 (Lim 𝑥 → (𝐴𝑥 → (ℵ‘suc 𝐴) ≼ (ℵ‘𝑥)))
5352imp 406 . . . . . . . 8 ((Lim 𝑥𝐴𝑥) → (ℵ‘suc 𝐴) ≼ (ℵ‘𝑥))
54 domnsym 9026 . . . . . . . 8 ((ℵ‘suc 𝐴) ≼ (ℵ‘𝑥) → ¬ (ℵ‘𝑥) ≺ (ℵ‘suc 𝐴))
5553, 54syl 17 . . . . . . 7 ((Lim 𝑥𝐴𝑥) → ¬ (ℵ‘𝑥) ≺ (ℵ‘suc 𝐴))
56 limelon 6379 . . . . . . . . . 10 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On)
5738, 56mpan 690 . . . . . . . . 9 (Lim 𝑥𝑥 ∈ On)
58 onelon 6339 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝐴𝑥) → 𝐴 ∈ On)
5957, 58sylan 580 . . . . . . . 8 ((Lim 𝑥𝐴𝑥) → 𝐴 ∈ On)
60 ensym 8935 . . . . . . . . 9 ((ℵ‘𝐴) ≈ (ℵ‘𝑥) → (ℵ‘𝑥) ≈ (ℵ‘𝐴))
61 alephordilem1 9974 . . . . . . . . 9 (𝐴 ∈ On → (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴))
62 ensdomtr 9036 . . . . . . . . . 10 (((ℵ‘𝑥) ≈ (ℵ‘𝐴) ∧ (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)) → (ℵ‘𝑥) ≺ (ℵ‘suc 𝐴))
6362ex 412 . . . . . . . . 9 ((ℵ‘𝑥) ≈ (ℵ‘𝐴) → ((ℵ‘𝐴) ≺ (ℵ‘suc 𝐴) → (ℵ‘𝑥) ≺ (ℵ‘suc 𝐴)))
6460, 61, 63syl2im 40 . . . . . . . 8 ((ℵ‘𝐴) ≈ (ℵ‘𝑥) → (𝐴 ∈ On → (ℵ‘𝑥) ≺ (ℵ‘suc 𝐴)))
6559, 64syl5com 31 . . . . . . 7 ((Lim 𝑥𝐴𝑥) → ((ℵ‘𝐴) ≈ (ℵ‘𝑥) → (ℵ‘𝑥) ≺ (ℵ‘suc 𝐴)))
6655, 65mtod 198 . . . . . 6 ((Lim 𝑥𝐴𝑥) → ¬ (ℵ‘𝐴) ≈ (ℵ‘𝑥))
6766ex 412 . . . . 5 (Lim 𝑥 → (𝐴𝑥 → ¬ (ℵ‘𝐴) ≈ (ℵ‘𝑥)))
6844, 67jcad 512 . . . 4 (Lim 𝑥 → (𝐴𝑥 → ((ℵ‘𝐴) ≼ (ℵ‘𝑥) ∧ ¬ (ℵ‘𝐴) ≈ (ℵ‘𝑥))))
69 brsdom 8906 . . . 4 ((ℵ‘𝐴) ≺ (ℵ‘𝑥) ↔ ((ℵ‘𝐴) ≼ (ℵ‘𝑥) ∧ ¬ (ℵ‘𝐴) ≈ (ℵ‘𝑥)))
7068, 69imbitrrdi 252 . . 3 (Lim 𝑥 → (𝐴𝑥 → (ℵ‘𝐴) ≺ (ℵ‘𝑥)))
7170a1d 25 . 2 (Lim 𝑥 → (∀𝑦𝑥 (𝐴𝑦 → (ℵ‘𝐴) ≺ (ℵ‘𝑦)) → (𝐴𝑥 → (ℵ‘𝐴) ≺ (ℵ‘𝑥))))
724, 8, 12, 16, 18, 34, 71tfinds 7799 1 (𝐵 ∈ On → (𝐴𝐵 → (ℵ‘𝐴) ≺ (ℵ‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1541  wcel 2113  wral 3049  Vcvv 3438  wss 3899  c0 4284   ciun 4943   class class class wbr 5095  Oncon0 6314  Lim wlim 6315  suc csuc 6316  cfv 6489  cen 8875  cdom 8876  csdm 8877  cale 9839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9541
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-oi 9406  df-har 9453  df-card 9842  df-aleph 9843
This theorem is referenced by:  alephord  9976  alephval2  10473
  Copyright terms: Public domain W3C validator