Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmco2lem7 Structured version   Visualization version   GIF version

Theorem cycpmco2lem7 33134
Description: Lemma for cycpmco2 33135. (Contributed by Thierry Arnoux, 4-Jan-2024.)
Hypotheses
Ref Expression
cycpmco2.c 𝑀 = (toCyc‘𝐷)
cycpmco2.s 𝑆 = (SymGrp‘𝐷)
cycpmco2.d (𝜑𝐷𝑉)
cycpmco2.w (𝜑𝑊 ∈ dom 𝑀)
cycpmco2.i (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
cycpmco2.j (𝜑𝐽 ∈ ran 𝑊)
cycpmco2.e 𝐸 = ((𝑊𝐽) + 1)
cycpmco2.1 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
cycpmco2lem7.1 (𝜑𝐾 ∈ ran 𝑊)
cycpmco2lem7.2 (𝜑𝐾𝐽)
cycpmco2lem7.3 (𝜑 → (𝑈𝐾) ∈ (0..^𝐸))
Assertion
Ref Expression
cycpmco2lem7 (𝜑 → ((𝑀𝑈)‘𝐾) = ((𝑀𝑊)‘𝐾))

Proof of Theorem cycpmco2lem7
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 cycpmco2.c . . . 4 𝑀 = (toCyc‘𝐷)
2 cycpmco2.d . . . 4 (𝜑𝐷𝑉)
3 cycpmco2.1 . . . . 5 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
4 ssrab2 4089 . . . . . . 7 {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ⊆ Word 𝐷
5 cycpmco2.w . . . . . . . 8 (𝜑𝑊 ∈ dom 𝑀)
6 cycpmco2.s . . . . . . . . . . 11 𝑆 = (SymGrp‘𝐷)
7 eqid 2734 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
81, 6, 7tocycf 33119 . . . . . . . . . 10 (𝐷𝑉𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
92, 8syl 17 . . . . . . . . 9 (𝜑𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
109fdmd 6746 . . . . . . . 8 (𝜑 → dom 𝑀 = {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
115, 10eleqtrd 2840 . . . . . . 7 (𝜑𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
124, 11sselid 3992 . . . . . 6 (𝜑𝑊 ∈ Word 𝐷)
13 cycpmco2.i . . . . . . . 8 (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
1413eldifad 3974 . . . . . . 7 (𝜑𝐼𝐷)
1514s1cld 14637 . . . . . 6 (𝜑 → ⟨“𝐼”⟩ ∈ Word 𝐷)
16 splcl 14786 . . . . . 6 ((𝑊 ∈ Word 𝐷 ∧ ⟨“𝐼”⟩ ∈ Word 𝐷) → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) ∈ Word 𝐷)
1712, 15, 16syl2anc 584 . . . . 5 (𝜑 → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) ∈ Word 𝐷)
183, 17eqeltrid 2842 . . . 4 (𝜑𝑈 ∈ Word 𝐷)
19 cycpmco2.j . . . . 5 (𝜑𝐽 ∈ ran 𝑊)
20 cycpmco2.e . . . . 5 𝐸 = ((𝑊𝐽) + 1)
211, 6, 2, 5, 13, 19, 20, 3cycpmco2f1 33126 . . . 4 (𝜑𝑈:dom 𝑈1-1𝐷)
22 id 22 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊𝑤 = 𝑊)
23 dmeq 5916 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊)
24 eqidd 2735 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊𝐷 = 𝐷)
2522, 23, 24f1eq123d 6840 . . . . . . . . . . . . . . 15 (𝑤 = 𝑊 → (𝑤:dom 𝑤1-1𝐷𝑊:dom 𝑊1-1𝐷))
2625elrab 3694 . . . . . . . . . . . . . 14 (𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
2711, 26sylib 218 . . . . . . . . . . . . 13 (𝜑 → (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
2827simprd 495 . . . . . . . . . . . 12 (𝜑𝑊:dom 𝑊1-1𝐷)
29 f1cnv 6872 . . . . . . . . . . . 12 (𝑊:dom 𝑊1-1𝐷𝑊:ran 𝑊1-1-onto→dom 𝑊)
30 f1of 6848 . . . . . . . . . . . 12 (𝑊:ran 𝑊1-1-onto→dom 𝑊𝑊:ran 𝑊⟶dom 𝑊)
3128, 29, 303syl 18 . . . . . . . . . . 11 (𝜑𝑊:ran 𝑊⟶dom 𝑊)
3231, 19ffvelcdmd 7104 . . . . . . . . . 10 (𝜑 → (𝑊𝐽) ∈ dom 𝑊)
33 wrddm 14555 . . . . . . . . . . 11 (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊)))
3412, 33syl 17 . . . . . . . . . 10 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
3532, 34eleqtrd 2840 . . . . . . . . 9 (𝜑 → (𝑊𝐽) ∈ (0..^(♯‘𝑊)))
36 fzofzp1 13799 . . . . . . . . 9 ((𝑊𝐽) ∈ (0..^(♯‘𝑊)) → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
3735, 36syl 17 . . . . . . . 8 (𝜑 → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
3820, 37eqeltrid 2842 . . . . . . 7 (𝜑𝐸 ∈ (0...(♯‘𝑊)))
39 elfzuz3 13557 . . . . . . 7 (𝐸 ∈ (0...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ𝐸))
40 fzoss2 13723 . . . . . . 7 ((♯‘𝑊) ∈ (ℤ𝐸) → (0..^𝐸) ⊆ (0..^(♯‘𝑊)))
4138, 39, 403syl 18 . . . . . 6 (𝜑 → (0..^𝐸) ⊆ (0..^(♯‘𝑊)))
421, 6, 2, 5, 13, 19, 20, 3cycpmco2lem3 33130 . . . . . . 7 (𝜑 → ((♯‘𝑈) − 1) = (♯‘𝑊))
4342oveq2d 7446 . . . . . 6 (𝜑 → (0..^((♯‘𝑈) − 1)) = (0..^(♯‘𝑊)))
4441, 43sseqtrrd 4036 . . . . 5 (𝜑 → (0..^𝐸) ⊆ (0..^((♯‘𝑈) − 1)))
45 cycpmco2lem7.3 . . . . 5 (𝜑 → (𝑈𝐾) ∈ (0..^𝐸))
4644, 45sseldd 3995 . . . 4 (𝜑 → (𝑈𝐾) ∈ (0..^((♯‘𝑈) − 1)))
471, 2, 18, 21, 46cycpmfv1 33115 . . 3 (𝜑 → ((𝑀𝑈)‘(𝑈‘(𝑈𝐾))) = (𝑈‘((𝑈𝐾) + 1)))
48 cycpmco2lem7.1 . . . 4 (𝜑𝐾 ∈ ran 𝑊)
49 f1f1orn 6859 . . . . . . 7 (𝑈:dom 𝑈1-1𝐷𝑈:dom 𝑈1-1-onto→ran 𝑈)
5021, 49syl 17 . . . . . 6 (𝜑𝑈:dom 𝑈1-1-onto→ran 𝑈)
51 ssun1 4187 . . . . . . . 8 ran 𝑊 ⊆ (ran 𝑊 ∪ {𝐼})
521, 6, 2, 5, 13, 19, 20, 3cycpmco2rn 33127 . . . . . . . 8 (𝜑 → ran 𝑈 = (ran 𝑊 ∪ {𝐼}))
5351, 52sseqtrrid 4048 . . . . . . 7 (𝜑 → ran 𝑊 ⊆ ran 𝑈)
5453sselda 3994 . . . . . 6 ((𝜑𝐾 ∈ ran 𝑊) → 𝐾 ∈ ran 𝑈)
55 f1ocnvfv2 7296 . . . . . 6 ((𝑈:dom 𝑈1-1-onto→ran 𝑈𝐾 ∈ ran 𝑈) → (𝑈‘(𝑈𝐾)) = 𝐾)
5650, 54, 55syl2an2r 685 . . . . 5 ((𝜑𝐾 ∈ ran 𝑊) → (𝑈‘(𝑈𝐾)) = 𝐾)
5756fveq2d 6910 . . . 4 ((𝜑𝐾 ∈ ran 𝑊) → ((𝑀𝑈)‘(𝑈‘(𝑈𝐾))) = ((𝑀𝑈)‘𝐾))
5848, 57mpdan 687 . . 3 (𝜑 → ((𝑀𝑈)‘(𝑈‘(𝑈𝐾))) = ((𝑀𝑈)‘𝐾))
59 f1f1orn 6859 . . . . . . . 8 (𝑊:dom 𝑊1-1𝐷𝑊:dom 𝑊1-1-onto→ran 𝑊)
6028, 59syl 17 . . . . . . 7 (𝜑𝑊:dom 𝑊1-1-onto→ran 𝑊)
6141, 34sseqtrrd 4036 . . . . . . . 8 (𝜑 → (0..^𝐸) ⊆ dom 𝑊)
6261, 45sseldd 3995 . . . . . . 7 (𝜑 → (𝑈𝐾) ∈ dom 𝑊)
63 f1ocnvfv1 7295 . . . . . . 7 ((𝑊:dom 𝑊1-1-onto→ran 𝑊 ∧ (𝑈𝐾) ∈ dom 𝑊) → (𝑊‘(𝑊‘(𝑈𝐾))) = (𝑈𝐾))
6460, 62, 63syl2anc 584 . . . . . 6 (𝜑 → (𝑊‘(𝑊‘(𝑈𝐾))) = (𝑈𝐾))
653fveq1i 6907 . . . . . . . . 9 (𝑈‘(𝑈𝐾)) = ((𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)‘(𝑈𝐾))
66 fz0ssnn0 13658 . . . . . . . . . . . 12 (0...(♯‘𝑊)) ⊆ ℕ0
6766, 38sselid 3992 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℕ0)
68 nn0fz0 13661 . . . . . . . . . . 11 (𝐸 ∈ ℕ0𝐸 ∈ (0...𝐸))
6967, 68sylib 218 . . . . . . . . . 10 (𝜑𝐸 ∈ (0...𝐸))
7012, 69, 38, 15, 45splfv1 14789 . . . . . . . . 9 (𝜑 → ((𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)‘(𝑈𝐾)) = (𝑊‘(𝑈𝐾)))
7165, 70eqtrid 2786 . . . . . . . 8 (𝜑 → (𝑈‘(𝑈𝐾)) = (𝑊‘(𝑈𝐾)))
7248, 56mpdan 687 . . . . . . . 8 (𝜑 → (𝑈‘(𝑈𝐾)) = 𝐾)
7371, 72eqtr3d 2776 . . . . . . 7 (𝜑 → (𝑊‘(𝑈𝐾)) = 𝐾)
7473fveq2d 6910 . . . . . 6 (𝜑 → (𝑊‘(𝑊‘(𝑈𝐾))) = (𝑊𝐾))
7564, 74eqtr3d 2776 . . . . 5 (𝜑 → (𝑈𝐾) = (𝑊𝐾))
7675oveq1d 7445 . . . 4 (𝜑 → ((𝑈𝐾) + 1) = ((𝑊𝐾) + 1))
7776fveq2d 6910 . . 3 (𝜑 → (𝑈‘((𝑈𝐾) + 1)) = (𝑈‘((𝑊𝐾) + 1)))
7847, 58, 773eqtr3d 2782 . 2 (𝜑 → ((𝑀𝑈)‘𝐾) = (𝑈‘((𝑊𝐾) + 1)))
793a1i 11 . . . . 5 (𝜑𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩))
8079fveq1d 6908 . . . 4 (𝜑 → (𝑈‘((𝑊𝐾) + 1)) = ((𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)‘((𝑊𝐾) + 1)))
8138elfzelzd 13561 . . . . . . 7 (𝜑𝐸 ∈ ℤ)
82 simpr 484 . . . . . . . 8 ((𝜑 ∧ (𝑈𝐾) ∈ (0..^(𝐸 − 1))) → (𝑈𝐾) ∈ (0..^(𝐸 − 1)))
8320a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝐸 = ((𝑊𝐽) + 1))
8483oveq1d 7445 . . . . . . . . . . . . . 14 (𝜑 → (𝐸 − 1) = (((𝑊𝐽) + 1) − 1))
85 elfzonn0 13743 . . . . . . . . . . . . . . . . 17 ((𝑊𝐽) ∈ (0..^(♯‘𝑊)) → (𝑊𝐽) ∈ ℕ0)
8635, 85syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑊𝐽) ∈ ℕ0)
8786nn0cnd 12586 . . . . . . . . . . . . . . 15 (𝜑 → (𝑊𝐽) ∈ ℂ)
88 1cnd 11253 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℂ)
8987, 88pncand 11618 . . . . . . . . . . . . . 14 (𝜑 → (((𝑊𝐽) + 1) − 1) = (𝑊𝐽))
9084, 89eqtr2d 2775 . . . . . . . . . . . . 13 (𝜑 → (𝑊𝐽) = (𝐸 − 1))
9190adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑈𝐾) = (𝐸 − 1)) → (𝑊𝐽) = (𝐸 − 1))
92 simpr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑈𝐾) = (𝐸 − 1)) → (𝑈𝐾) = (𝐸 − 1))
9375adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑈𝐾) = (𝐸 − 1)) → (𝑈𝐾) = (𝑊𝐾))
9491, 92, 933eqtr2rd 2781 . . . . . . . . . . 11 ((𝜑 ∧ (𝑈𝐾) = (𝐸 − 1)) → (𝑊𝐾) = (𝑊𝐽))
9594fveq2d 6910 . . . . . . . . . 10 ((𝜑 ∧ (𝑈𝐾) = (𝐸 − 1)) → (𝑊‘(𝑊𝐾)) = (𝑊‘(𝑊𝐽)))
96 f1ocnvfv2 7296 . . . . . . . . . . . 12 ((𝑊:dom 𝑊1-1-onto→ran 𝑊𝐾 ∈ ran 𝑊) → (𝑊‘(𝑊𝐾)) = 𝐾)
9760, 48, 96syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑊‘(𝑊𝐾)) = 𝐾)
9897adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑈𝐾) = (𝐸 − 1)) → (𝑊‘(𝑊𝐾)) = 𝐾)
99 f1ocnvfv2 7296 . . . . . . . . . . . 12 ((𝑊:dom 𝑊1-1-onto→ran 𝑊𝐽 ∈ ran 𝑊) → (𝑊‘(𝑊𝐽)) = 𝐽)
10060, 19, 99syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑊‘(𝑊𝐽)) = 𝐽)
101100adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑈𝐾) = (𝐸 − 1)) → (𝑊‘(𝑊𝐽)) = 𝐽)
10295, 98, 1013eqtr3d 2782 . . . . . . . . 9 ((𝜑 ∧ (𝑈𝐾) = (𝐸 − 1)) → 𝐾 = 𝐽)
103 cycpmco2lem7.2 . . . . . . . . . 10 (𝜑𝐾𝐽)
104103adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑈𝐾) = (𝐸 − 1)) → 𝐾𝐽)
105102, 104pm2.21ddne 3023 . . . . . . . 8 ((𝜑 ∧ (𝑈𝐾) = (𝐸 − 1)) → (𝑈𝐾) ∈ (0..^(𝐸 − 1)))
106 0zd 12622 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℤ)
107 nn0p1nn 12562 . . . . . . . . . . . . . 14 ((𝑊𝐽) ∈ ℕ0 → ((𝑊𝐽) + 1) ∈ ℕ)
10886, 107syl 17 . . . . . . . . . . . . 13 (𝜑 → ((𝑊𝐽) + 1) ∈ ℕ)
10920, 108eqeltrid 2842 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℕ)
110 0p1e1 12385 . . . . . . . . . . . . . 14 (0 + 1) = 1
111110fveq2i 6909 . . . . . . . . . . . . 13 (ℤ‘(0 + 1)) = (ℤ‘1)
112 nnuz 12918 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
113111, 112eqtr4i 2765 . . . . . . . . . . . 12 (ℤ‘(0 + 1)) = ℕ
114109, 113eleqtrrdi 2849 . . . . . . . . . . 11 (𝜑𝐸 ∈ (ℤ‘(0 + 1)))
115 fzosplitsnm1 13775 . . . . . . . . . . 11 ((0 ∈ ℤ ∧ 𝐸 ∈ (ℤ‘(0 + 1))) → (0..^𝐸) = ((0..^(𝐸 − 1)) ∪ {(𝐸 − 1)}))
116106, 114, 115syl2anc 584 . . . . . . . . . 10 (𝜑 → (0..^𝐸) = ((0..^(𝐸 − 1)) ∪ {(𝐸 − 1)}))
11745, 116eleqtrd 2840 . . . . . . . . 9 (𝜑 → (𝑈𝐾) ∈ ((0..^(𝐸 − 1)) ∪ {(𝐸 − 1)}))
118 fvex 6919 . . . . . . . . . 10 (𝑈𝐾) ∈ V
119 elunsn 4687 . . . . . . . . . 10 ((𝑈𝐾) ∈ V → ((𝑈𝐾) ∈ ((0..^(𝐸 − 1)) ∪ {(𝐸 − 1)}) ↔ ((𝑈𝐾) ∈ (0..^(𝐸 − 1)) ∨ (𝑈𝐾) = (𝐸 − 1))))
120118, 119ax-mp 5 . . . . . . . . 9 ((𝑈𝐾) ∈ ((0..^(𝐸 − 1)) ∪ {(𝐸 − 1)}) ↔ ((𝑈𝐾) ∈ (0..^(𝐸 − 1)) ∨ (𝑈𝐾) = (𝐸 − 1)))
121117, 120sylib 218 . . . . . . . 8 (𝜑 → ((𝑈𝐾) ∈ (0..^(𝐸 − 1)) ∨ (𝑈𝐾) = (𝐸 − 1)))
12282, 105, 121mpjaodan 960 . . . . . . 7 (𝜑 → (𝑈𝐾) ∈ (0..^(𝐸 − 1)))
123 elfzom1elp1fzo 13767 . . . . . . 7 ((𝐸 ∈ ℤ ∧ (𝑈𝐾) ∈ (0..^(𝐸 − 1))) → ((𝑈𝐾) + 1) ∈ (0..^𝐸))
12481, 122, 123syl2anc 584 . . . . . 6 (𝜑 → ((𝑈𝐾) + 1) ∈ (0..^𝐸))
12576, 124eqeltrrd 2839 . . . . 5 (𝜑 → ((𝑊𝐾) + 1) ∈ (0..^𝐸))
12612, 69, 38, 15, 125splfv1 14789 . . . 4 (𝜑 → ((𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)‘((𝑊𝐾) + 1)) = (𝑊‘((𝑊𝐾) + 1)))
12780, 126eqtrd 2774 . . 3 (𝜑 → (𝑈‘((𝑊𝐾) + 1)) = (𝑊‘((𝑊𝐾) + 1)))
128 1zzd 12645 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
12981, 128zsubcld 12724 . . . . . . . 8 (𝜑 → (𝐸 − 1) ∈ ℤ)
130 lencl 14567 . . . . . . . . . . 11 (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈ ℕ0)
131 nn0fz0 13661 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℕ0 ↔ (♯‘𝑊) ∈ (0...(♯‘𝑊)))
132131biimpi 216 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
13312, 130, 1323syl 18 . . . . . . . . . 10 (𝜑 → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
134133elfzelzd 13561 . . . . . . . . 9 (𝜑 → (♯‘𝑊) ∈ ℤ)
135134, 128zsubcld 12724 . . . . . . . 8 (𝜑 → ((♯‘𝑊) − 1) ∈ ℤ)
136109nnred 12278 . . . . . . . . 9 (𝜑𝐸 ∈ ℝ)
137134zred 12719 . . . . . . . . 9 (𝜑 → (♯‘𝑊) ∈ ℝ)
138 1red 11259 . . . . . . . . 9 (𝜑 → 1 ∈ ℝ)
139 elfzle2 13564 . . . . . . . . . 10 (𝐸 ∈ (0...(♯‘𝑊)) → 𝐸 ≤ (♯‘𝑊))
14038, 139syl 17 . . . . . . . . 9 (𝜑𝐸 ≤ (♯‘𝑊))
141136, 137, 138, 140lesub1dd 11876 . . . . . . . 8 (𝜑 → (𝐸 − 1) ≤ ((♯‘𝑊) − 1))
142 eluz 12889 . . . . . . . . 9 (((𝐸 − 1) ∈ ℤ ∧ ((♯‘𝑊) − 1) ∈ ℤ) → (((♯‘𝑊) − 1) ∈ (ℤ‘(𝐸 − 1)) ↔ (𝐸 − 1) ≤ ((♯‘𝑊) − 1)))
143142biimpar 477 . . . . . . . 8 ((((𝐸 − 1) ∈ ℤ ∧ ((♯‘𝑊) − 1) ∈ ℤ) ∧ (𝐸 − 1) ≤ ((♯‘𝑊) − 1)) → ((♯‘𝑊) − 1) ∈ (ℤ‘(𝐸 − 1)))
144129, 135, 141, 143syl21anc 838 . . . . . . 7 (𝜑 → ((♯‘𝑊) − 1) ∈ (ℤ‘(𝐸 − 1)))
145 fzoss2 13723 . . . . . . 7 (((♯‘𝑊) − 1) ∈ (ℤ‘(𝐸 − 1)) → (0..^(𝐸 − 1)) ⊆ (0..^((♯‘𝑊) − 1)))
146144, 145syl 17 . . . . . 6 (𝜑 → (0..^(𝐸 − 1)) ⊆ (0..^((♯‘𝑊) − 1)))
147146, 122sseldd 3995 . . . . 5 (𝜑 → (𝑈𝐾) ∈ (0..^((♯‘𝑊) − 1)))
14875, 147eqeltrrd 2839 . . . 4 (𝜑 → (𝑊𝐾) ∈ (0..^((♯‘𝑊) − 1)))
1491, 2, 12, 28, 148cycpmfv1 33115 . . 3 (𝜑 → ((𝑀𝑊)‘(𝑊‘(𝑊𝐾))) = (𝑊‘((𝑊𝐾) + 1)))
15097fveq2d 6910 . . 3 (𝜑 → ((𝑀𝑊)‘(𝑊‘(𝑊𝐾))) = ((𝑀𝑊)‘𝐾))
151127, 149, 1503eqtr2rd 2781 . 2 (𝜑 → ((𝑀𝑊)‘𝐾) = (𝑈‘((𝑊𝐾) + 1)))
15278, 151eqtr4d 2777 1 (𝜑 → ((𝑀𝑈)‘𝐾) = ((𝑀𝑊)‘𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1536  wcel 2105  wne 2937  {crab 3432  Vcvv 3477  cdif 3959  cun 3960  wss 3962  {csn 4630  cotp 4638   class class class wbr 5147  ccnv 5687  dom cdm 5688  ran crn 5689  wf 6558  1-1wf1 6559  1-1-ontowf1o 6561  cfv 6562  (class class class)co 7430  0cc0 11152  1c1 11153   + caddc 11155  cle 11293  cmin 11489  cn 12263  0cn0 12523  cz 12610  cuz 12875  ...cfz 13543  ..^cfzo 13690  chash 14365  Word cword 14548  ⟨“cs1 14629   splice csplice 14783  Basecbs 17244  SymGrpcsymg 19400  toCycctocyc 33108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-ot 4639  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-hash 14366  df-word 14549  df-concat 14605  df-s1 14630  df-substr 14675  df-pfx 14705  df-splice 14784  df-csh 14823  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-tset 17316  df-efmnd 18894  df-symg 19401  df-tocyc 33109
This theorem is referenced by:  cycpmco2  33135
  Copyright terms: Public domain W3C validator