Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmco2lem7 Structured version   Visualization version   GIF version

Theorem cycpmco2lem7 31399
Description: Lemma for cycpmco2 31400. (Contributed by Thierry Arnoux, 4-Jan-2024.)
Hypotheses
Ref Expression
cycpmco2.c 𝑀 = (toCyc‘𝐷)
cycpmco2.s 𝑆 = (SymGrp‘𝐷)
cycpmco2.d (𝜑𝐷𝑉)
cycpmco2.w (𝜑𝑊 ∈ dom 𝑀)
cycpmco2.i (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
cycpmco2.j (𝜑𝐽 ∈ ran 𝑊)
cycpmco2.e 𝐸 = ((𝑊𝐽) + 1)
cycpmco2.1 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
cycpmco2lem7.1 (𝜑𝐾 ∈ ran 𝑊)
cycpmco2lem7.2 (𝜑𝐾𝐽)
cycpmco2lem7.3 (𝜑 → (𝑈𝐾) ∈ (0..^𝐸))
Assertion
Ref Expression
cycpmco2lem7 (𝜑 → ((𝑀𝑈)‘𝐾) = ((𝑀𝑊)‘𝐾))

Proof of Theorem cycpmco2lem7
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 cycpmco2.c . . . 4 𝑀 = (toCyc‘𝐷)
2 cycpmco2.d . . . 4 (𝜑𝐷𝑉)
3 cycpmco2.1 . . . . 5 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
4 ssrab2 4013 . . . . . . 7 {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ⊆ Word 𝐷
5 cycpmco2.w . . . . . . . 8 (𝜑𝑊 ∈ dom 𝑀)
6 cycpmco2.s . . . . . . . . . . 11 𝑆 = (SymGrp‘𝐷)
7 eqid 2738 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
81, 6, 7tocycf 31384 . . . . . . . . . 10 (𝐷𝑉𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
92, 8syl 17 . . . . . . . . 9 (𝜑𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
109fdmd 6611 . . . . . . . 8 (𝜑 → dom 𝑀 = {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
115, 10eleqtrd 2841 . . . . . . 7 (𝜑𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
124, 11sselid 3919 . . . . . 6 (𝜑𝑊 ∈ Word 𝐷)
13 cycpmco2.i . . . . . . . 8 (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
1413eldifad 3899 . . . . . . 7 (𝜑𝐼𝐷)
1514s1cld 14308 . . . . . 6 (𝜑 → ⟨“𝐼”⟩ ∈ Word 𝐷)
16 splcl 14465 . . . . . 6 ((𝑊 ∈ Word 𝐷 ∧ ⟨“𝐼”⟩ ∈ Word 𝐷) → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) ∈ Word 𝐷)
1712, 15, 16syl2anc 584 . . . . 5 (𝜑 → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) ∈ Word 𝐷)
183, 17eqeltrid 2843 . . . 4 (𝜑𝑈 ∈ Word 𝐷)
19 cycpmco2.j . . . . 5 (𝜑𝐽 ∈ ran 𝑊)
20 cycpmco2.e . . . . 5 𝐸 = ((𝑊𝐽) + 1)
211, 6, 2, 5, 13, 19, 20, 3cycpmco2f1 31391 . . . 4 (𝜑𝑈:dom 𝑈1-1𝐷)
22 id 22 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊𝑤 = 𝑊)
23 dmeq 5812 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊)
24 eqidd 2739 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊𝐷 = 𝐷)
2522, 23, 24f1eq123d 6708 . . . . . . . . . . . . . . 15 (𝑤 = 𝑊 → (𝑤:dom 𝑤1-1𝐷𝑊:dom 𝑊1-1𝐷))
2625elrab 3624 . . . . . . . . . . . . . 14 (𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
2711, 26sylib 217 . . . . . . . . . . . . 13 (𝜑 → (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
2827simprd 496 . . . . . . . . . . . 12 (𝜑𝑊:dom 𝑊1-1𝐷)
29 f1cnv 6740 . . . . . . . . . . . 12 (𝑊:dom 𝑊1-1𝐷𝑊:ran 𝑊1-1-onto→dom 𝑊)
30 f1of 6716 . . . . . . . . . . . 12 (𝑊:ran 𝑊1-1-onto→dom 𝑊𝑊:ran 𝑊⟶dom 𝑊)
3128, 29, 303syl 18 . . . . . . . . . . 11 (𝜑𝑊:ran 𝑊⟶dom 𝑊)
3231, 19ffvelrnd 6962 . . . . . . . . . 10 (𝜑 → (𝑊𝐽) ∈ dom 𝑊)
33 wrddm 14224 . . . . . . . . . . 11 (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊)))
3412, 33syl 17 . . . . . . . . . 10 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
3532, 34eleqtrd 2841 . . . . . . . . 9 (𝜑 → (𝑊𝐽) ∈ (0..^(♯‘𝑊)))
36 fzofzp1 13484 . . . . . . . . 9 ((𝑊𝐽) ∈ (0..^(♯‘𝑊)) → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
3735, 36syl 17 . . . . . . . 8 (𝜑 → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
3820, 37eqeltrid 2843 . . . . . . 7 (𝜑𝐸 ∈ (0...(♯‘𝑊)))
39 elfzuz3 13253 . . . . . . 7 (𝐸 ∈ (0...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ𝐸))
40 fzoss2 13415 . . . . . . 7 ((♯‘𝑊) ∈ (ℤ𝐸) → (0..^𝐸) ⊆ (0..^(♯‘𝑊)))
4138, 39, 403syl 18 . . . . . 6 (𝜑 → (0..^𝐸) ⊆ (0..^(♯‘𝑊)))
421, 6, 2, 5, 13, 19, 20, 3cycpmco2lem3 31395 . . . . . . 7 (𝜑 → ((♯‘𝑈) − 1) = (♯‘𝑊))
4342oveq2d 7291 . . . . . 6 (𝜑 → (0..^((♯‘𝑈) − 1)) = (0..^(♯‘𝑊)))
4441, 43sseqtrrd 3962 . . . . 5 (𝜑 → (0..^𝐸) ⊆ (0..^((♯‘𝑈) − 1)))
45 cycpmco2lem7.3 . . . . 5 (𝜑 → (𝑈𝐾) ∈ (0..^𝐸))
4644, 45sseldd 3922 . . . 4 (𝜑 → (𝑈𝐾) ∈ (0..^((♯‘𝑈) − 1)))
471, 2, 18, 21, 46cycpmfv1 31380 . . 3 (𝜑 → ((𝑀𝑈)‘(𝑈‘(𝑈𝐾))) = (𝑈‘((𝑈𝐾) + 1)))
48 cycpmco2lem7.1 . . . 4 (𝜑𝐾 ∈ ran 𝑊)
49 f1f1orn 6727 . . . . . . 7 (𝑈:dom 𝑈1-1𝐷𝑈:dom 𝑈1-1-onto→ran 𝑈)
5021, 49syl 17 . . . . . 6 (𝜑𝑈:dom 𝑈1-1-onto→ran 𝑈)
51 ssun1 4106 . . . . . . . 8 ran 𝑊 ⊆ (ran 𝑊 ∪ {𝐼})
521, 6, 2, 5, 13, 19, 20, 3cycpmco2rn 31392 . . . . . . . 8 (𝜑 → ran 𝑈 = (ran 𝑊 ∪ {𝐼}))
5351, 52sseqtrrid 3974 . . . . . . 7 (𝜑 → ran 𝑊 ⊆ ran 𝑈)
5453sselda 3921 . . . . . 6 ((𝜑𝐾 ∈ ran 𝑊) → 𝐾 ∈ ran 𝑈)
55 f1ocnvfv2 7149 . . . . . 6 ((𝑈:dom 𝑈1-1-onto→ran 𝑈𝐾 ∈ ran 𝑈) → (𝑈‘(𝑈𝐾)) = 𝐾)
5650, 54, 55syl2an2r 682 . . . . 5 ((𝜑𝐾 ∈ ran 𝑊) → (𝑈‘(𝑈𝐾)) = 𝐾)
5756fveq2d 6778 . . . 4 ((𝜑𝐾 ∈ ran 𝑊) → ((𝑀𝑈)‘(𝑈‘(𝑈𝐾))) = ((𝑀𝑈)‘𝐾))
5848, 57mpdan 684 . . 3 (𝜑 → ((𝑀𝑈)‘(𝑈‘(𝑈𝐾))) = ((𝑀𝑈)‘𝐾))
59 f1f1orn 6727 . . . . . . . 8 (𝑊:dom 𝑊1-1𝐷𝑊:dom 𝑊1-1-onto→ran 𝑊)
6028, 59syl 17 . . . . . . 7 (𝜑𝑊:dom 𝑊1-1-onto→ran 𝑊)
6141, 34sseqtrrd 3962 . . . . . . . 8 (𝜑 → (0..^𝐸) ⊆ dom 𝑊)
6261, 45sseldd 3922 . . . . . . 7 (𝜑 → (𝑈𝐾) ∈ dom 𝑊)
63 f1ocnvfv1 7148 . . . . . . 7 ((𝑊:dom 𝑊1-1-onto→ran 𝑊 ∧ (𝑈𝐾) ∈ dom 𝑊) → (𝑊‘(𝑊‘(𝑈𝐾))) = (𝑈𝐾))
6460, 62, 63syl2anc 584 . . . . . 6 (𝜑 → (𝑊‘(𝑊‘(𝑈𝐾))) = (𝑈𝐾))
653fveq1i 6775 . . . . . . . . 9 (𝑈‘(𝑈𝐾)) = ((𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)‘(𝑈𝐾))
66 fz0ssnn0 13351 . . . . . . . . . . . 12 (0...(♯‘𝑊)) ⊆ ℕ0
6766, 38sselid 3919 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℕ0)
68 nn0fz0 13354 . . . . . . . . . . 11 (𝐸 ∈ ℕ0𝐸 ∈ (0...𝐸))
6967, 68sylib 217 . . . . . . . . . 10 (𝜑𝐸 ∈ (0...𝐸))
7012, 69, 38, 15, 45splfv1 14468 . . . . . . . . 9 (𝜑 → ((𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)‘(𝑈𝐾)) = (𝑊‘(𝑈𝐾)))
7165, 70eqtrid 2790 . . . . . . . 8 (𝜑 → (𝑈‘(𝑈𝐾)) = (𝑊‘(𝑈𝐾)))
7248, 56mpdan 684 . . . . . . . 8 (𝜑 → (𝑈‘(𝑈𝐾)) = 𝐾)
7371, 72eqtr3d 2780 . . . . . . 7 (𝜑 → (𝑊‘(𝑈𝐾)) = 𝐾)
7473fveq2d 6778 . . . . . 6 (𝜑 → (𝑊‘(𝑊‘(𝑈𝐾))) = (𝑊𝐾))
7564, 74eqtr3d 2780 . . . . 5 (𝜑 → (𝑈𝐾) = (𝑊𝐾))
7675oveq1d 7290 . . . 4 (𝜑 → ((𝑈𝐾) + 1) = ((𝑊𝐾) + 1))
7776fveq2d 6778 . . 3 (𝜑 → (𝑈‘((𝑈𝐾) + 1)) = (𝑈‘((𝑊𝐾) + 1)))
7847, 58, 773eqtr3d 2786 . 2 (𝜑 → ((𝑀𝑈)‘𝐾) = (𝑈‘((𝑊𝐾) + 1)))
793a1i 11 . . . . 5 (𝜑𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩))
8079fveq1d 6776 . . . 4 (𝜑 → (𝑈‘((𝑊𝐾) + 1)) = ((𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)‘((𝑊𝐾) + 1)))
8138elfzelzd 13257 . . . . . . 7 (𝜑𝐸 ∈ ℤ)
82 simpr 485 . . . . . . . 8 ((𝜑 ∧ (𝑈𝐾) ∈ (0..^(𝐸 − 1))) → (𝑈𝐾) ∈ (0..^(𝐸 − 1)))
8320a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝐸 = ((𝑊𝐽) + 1))
8483oveq1d 7290 . . . . . . . . . . . . . 14 (𝜑 → (𝐸 − 1) = (((𝑊𝐽) + 1) − 1))
85 elfzonn0 13432 . . . . . . . . . . . . . . . . 17 ((𝑊𝐽) ∈ (0..^(♯‘𝑊)) → (𝑊𝐽) ∈ ℕ0)
8635, 85syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑊𝐽) ∈ ℕ0)
8786nn0cnd 12295 . . . . . . . . . . . . . . 15 (𝜑 → (𝑊𝐽) ∈ ℂ)
88 1cnd 10970 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℂ)
8987, 88pncand 11333 . . . . . . . . . . . . . 14 (𝜑 → (((𝑊𝐽) + 1) − 1) = (𝑊𝐽))
9084, 89eqtr2d 2779 . . . . . . . . . . . . 13 (𝜑 → (𝑊𝐽) = (𝐸 − 1))
9190adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑈𝐾) = (𝐸 − 1)) → (𝑊𝐽) = (𝐸 − 1))
92 simpr 485 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑈𝐾) = (𝐸 − 1)) → (𝑈𝐾) = (𝐸 − 1))
9375adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑈𝐾) = (𝐸 − 1)) → (𝑈𝐾) = (𝑊𝐾))
9491, 92, 933eqtr2rd 2785 . . . . . . . . . . 11 ((𝜑 ∧ (𝑈𝐾) = (𝐸 − 1)) → (𝑊𝐾) = (𝑊𝐽))
9594fveq2d 6778 . . . . . . . . . 10 ((𝜑 ∧ (𝑈𝐾) = (𝐸 − 1)) → (𝑊‘(𝑊𝐾)) = (𝑊‘(𝑊𝐽)))
96 f1ocnvfv2 7149 . . . . . . . . . . . 12 ((𝑊:dom 𝑊1-1-onto→ran 𝑊𝐾 ∈ ran 𝑊) → (𝑊‘(𝑊𝐾)) = 𝐾)
9760, 48, 96syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑊‘(𝑊𝐾)) = 𝐾)
9897adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑈𝐾) = (𝐸 − 1)) → (𝑊‘(𝑊𝐾)) = 𝐾)
99 f1ocnvfv2 7149 . . . . . . . . . . . 12 ((𝑊:dom 𝑊1-1-onto→ran 𝑊𝐽 ∈ ran 𝑊) → (𝑊‘(𝑊𝐽)) = 𝐽)
10060, 19, 99syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑊‘(𝑊𝐽)) = 𝐽)
101100adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑈𝐾) = (𝐸 − 1)) → (𝑊‘(𝑊𝐽)) = 𝐽)
10295, 98, 1013eqtr3d 2786 . . . . . . . . 9 ((𝜑 ∧ (𝑈𝐾) = (𝐸 − 1)) → 𝐾 = 𝐽)
103 cycpmco2lem7.2 . . . . . . . . . 10 (𝜑𝐾𝐽)
104103adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑈𝐾) = (𝐸 − 1)) → 𝐾𝐽)
105102, 104pm2.21ddne 3029 . . . . . . . 8 ((𝜑 ∧ (𝑈𝐾) = (𝐸 − 1)) → (𝑈𝐾) ∈ (0..^(𝐸 − 1)))
106 0zd 12331 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℤ)
107 nn0p1nn 12272 . . . . . . . . . . . . . 14 ((𝑊𝐽) ∈ ℕ0 → ((𝑊𝐽) + 1) ∈ ℕ)
10886, 107syl 17 . . . . . . . . . . . . 13 (𝜑 → ((𝑊𝐽) + 1) ∈ ℕ)
10920, 108eqeltrid 2843 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℕ)
110 0p1e1 12095 . . . . . . . . . . . . . 14 (0 + 1) = 1
111110fveq2i 6777 . . . . . . . . . . . . 13 (ℤ‘(0 + 1)) = (ℤ‘1)
112 nnuz 12621 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
113111, 112eqtr4i 2769 . . . . . . . . . . . 12 (ℤ‘(0 + 1)) = ℕ
114109, 113eleqtrrdi 2850 . . . . . . . . . . 11 (𝜑𝐸 ∈ (ℤ‘(0 + 1)))
115 fzosplitsnm1 13462 . . . . . . . . . . 11 ((0 ∈ ℤ ∧ 𝐸 ∈ (ℤ‘(0 + 1))) → (0..^𝐸) = ((0..^(𝐸 − 1)) ∪ {(𝐸 − 1)}))
116106, 114, 115syl2anc 584 . . . . . . . . . 10 (𝜑 → (0..^𝐸) = ((0..^(𝐸 − 1)) ∪ {(𝐸 − 1)}))
11745, 116eleqtrd 2841 . . . . . . . . 9 (𝜑 → (𝑈𝐾) ∈ ((0..^(𝐸 − 1)) ∪ {(𝐸 − 1)}))
118 fvex 6787 . . . . . . . . . 10 (𝑈𝐾) ∈ V
119 elunsn 30858 . . . . . . . . . 10 ((𝑈𝐾) ∈ V → ((𝑈𝐾) ∈ ((0..^(𝐸 − 1)) ∪ {(𝐸 − 1)}) ↔ ((𝑈𝐾) ∈ (0..^(𝐸 − 1)) ∨ (𝑈𝐾) = (𝐸 − 1))))
120118, 119ax-mp 5 . . . . . . . . 9 ((𝑈𝐾) ∈ ((0..^(𝐸 − 1)) ∪ {(𝐸 − 1)}) ↔ ((𝑈𝐾) ∈ (0..^(𝐸 − 1)) ∨ (𝑈𝐾) = (𝐸 − 1)))
121117, 120sylib 217 . . . . . . . 8 (𝜑 → ((𝑈𝐾) ∈ (0..^(𝐸 − 1)) ∨ (𝑈𝐾) = (𝐸 − 1)))
12282, 105, 121mpjaodan 956 . . . . . . 7 (𝜑 → (𝑈𝐾) ∈ (0..^(𝐸 − 1)))
123 elfzom1elp1fzo 13454 . . . . . . 7 ((𝐸 ∈ ℤ ∧ (𝑈𝐾) ∈ (0..^(𝐸 − 1))) → ((𝑈𝐾) + 1) ∈ (0..^𝐸))
12481, 122, 123syl2anc 584 . . . . . 6 (𝜑 → ((𝑈𝐾) + 1) ∈ (0..^𝐸))
12576, 124eqeltrrd 2840 . . . . 5 (𝜑 → ((𝑊𝐾) + 1) ∈ (0..^𝐸))
12612, 69, 38, 15, 125splfv1 14468 . . . 4 (𝜑 → ((𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)‘((𝑊𝐾) + 1)) = (𝑊‘((𝑊𝐾) + 1)))
12780, 126eqtrd 2778 . . 3 (𝜑 → (𝑈‘((𝑊𝐾) + 1)) = (𝑊‘((𝑊𝐾) + 1)))
128 1zzd 12351 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
12981, 128zsubcld 12431 . . . . . . . 8 (𝜑 → (𝐸 − 1) ∈ ℤ)
130 lencl 14236 . . . . . . . . . . 11 (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈ ℕ0)
131 nn0fz0 13354 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℕ0 ↔ (♯‘𝑊) ∈ (0...(♯‘𝑊)))
132131biimpi 215 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
13312, 130, 1323syl 18 . . . . . . . . . 10 (𝜑 → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
134133elfzelzd 13257 . . . . . . . . 9 (𝜑 → (♯‘𝑊) ∈ ℤ)
135134, 128zsubcld 12431 . . . . . . . 8 (𝜑 → ((♯‘𝑊) − 1) ∈ ℤ)
136109nnred 11988 . . . . . . . . 9 (𝜑𝐸 ∈ ℝ)
137134zred 12426 . . . . . . . . 9 (𝜑 → (♯‘𝑊) ∈ ℝ)
138 1red 10976 . . . . . . . . 9 (𝜑 → 1 ∈ ℝ)
139 elfzle2 13260 . . . . . . . . . 10 (𝐸 ∈ (0...(♯‘𝑊)) → 𝐸 ≤ (♯‘𝑊))
14038, 139syl 17 . . . . . . . . 9 (𝜑𝐸 ≤ (♯‘𝑊))
141136, 137, 138, 140lesub1dd 11591 . . . . . . . 8 (𝜑 → (𝐸 − 1) ≤ ((♯‘𝑊) − 1))
142 eluz 12596 . . . . . . . . 9 (((𝐸 − 1) ∈ ℤ ∧ ((♯‘𝑊) − 1) ∈ ℤ) → (((♯‘𝑊) − 1) ∈ (ℤ‘(𝐸 − 1)) ↔ (𝐸 − 1) ≤ ((♯‘𝑊) − 1)))
143142biimpar 478 . . . . . . . 8 ((((𝐸 − 1) ∈ ℤ ∧ ((♯‘𝑊) − 1) ∈ ℤ) ∧ (𝐸 − 1) ≤ ((♯‘𝑊) − 1)) → ((♯‘𝑊) − 1) ∈ (ℤ‘(𝐸 − 1)))
144129, 135, 141, 143syl21anc 835 . . . . . . 7 (𝜑 → ((♯‘𝑊) − 1) ∈ (ℤ‘(𝐸 − 1)))
145 fzoss2 13415 . . . . . . 7 (((♯‘𝑊) − 1) ∈ (ℤ‘(𝐸 − 1)) → (0..^(𝐸 − 1)) ⊆ (0..^((♯‘𝑊) − 1)))
146144, 145syl 17 . . . . . 6 (𝜑 → (0..^(𝐸 − 1)) ⊆ (0..^((♯‘𝑊) − 1)))
147146, 122sseldd 3922 . . . . 5 (𝜑 → (𝑈𝐾) ∈ (0..^((♯‘𝑊) − 1)))
14875, 147eqeltrrd 2840 . . . 4 (𝜑 → (𝑊𝐾) ∈ (0..^((♯‘𝑊) − 1)))
1491, 2, 12, 28, 148cycpmfv1 31380 . . 3 (𝜑 → ((𝑀𝑊)‘(𝑊‘(𝑊𝐾))) = (𝑊‘((𝑊𝐾) + 1)))
15097fveq2d 6778 . . 3 (𝜑 → ((𝑀𝑊)‘(𝑊‘(𝑊𝐾))) = ((𝑀𝑊)‘𝐾))
151127, 149, 1503eqtr2rd 2785 . 2 (𝜑 → ((𝑀𝑊)‘𝐾) = (𝑈‘((𝑊𝐾) + 1)))
15278, 151eqtr4d 2781 1 (𝜑 → ((𝑀𝑈)‘𝐾) = ((𝑀𝑊)‘𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  {crab 3068  Vcvv 3432  cdif 3884  cun 3885  wss 3887  {csn 4561  cotp 4569   class class class wbr 5074  ccnv 5588  dom cdm 5589  ran crn 5590  wf 6429  1-1wf1 6430  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872   + caddc 10874  cle 11010  cmin 11205  cn 11973  0cn0 12233  cz 12319  cuz 12582  ...cfz 13239  ..^cfzo 13382  chash 14044  Word cword 14217  ⟨“cs1 14300   splice csplice 14462  Basecbs 16912  SymGrpcsymg 18974  toCycctocyc 31373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-hash 14045  df-word 14218  df-concat 14274  df-s1 14301  df-substr 14354  df-pfx 14384  df-splice 14463  df-csh 14502  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-tset 16981  df-efmnd 18508  df-symg 18975  df-tocyc 31374
This theorem is referenced by:  cycpmco2  31400
  Copyright terms: Public domain W3C validator