Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmco2lem7 Structured version   Visualization version   GIF version

Theorem cycpmco2lem7 32262
Description: Lemma for cycpmco2 32263. (Contributed by Thierry Arnoux, 4-Jan-2024.)
Hypotheses
Ref Expression
cycpmco2.c 𝑀 = (toCyc‘𝐷)
cycpmco2.s 𝑆 = (SymGrp‘𝐷)
cycpmco2.d (𝜑𝐷𝑉)
cycpmco2.w (𝜑𝑊 ∈ dom 𝑀)
cycpmco2.i (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
cycpmco2.j (𝜑𝐽 ∈ ran 𝑊)
cycpmco2.e 𝐸 = ((𝑊𝐽) + 1)
cycpmco2.1 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
cycpmco2lem7.1 (𝜑𝐾 ∈ ran 𝑊)
cycpmco2lem7.2 (𝜑𝐾𝐽)
cycpmco2lem7.3 (𝜑 → (𝑈𝐾) ∈ (0..^𝐸))
Assertion
Ref Expression
cycpmco2lem7 (𝜑 → ((𝑀𝑈)‘𝐾) = ((𝑀𝑊)‘𝐾))

Proof of Theorem cycpmco2lem7
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 cycpmco2.c . . . 4 𝑀 = (toCyc‘𝐷)
2 cycpmco2.d . . . 4 (𝜑𝐷𝑉)
3 cycpmco2.1 . . . . 5 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
4 ssrab2 4075 . . . . . . 7 {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ⊆ Word 𝐷
5 cycpmco2.w . . . . . . . 8 (𝜑𝑊 ∈ dom 𝑀)
6 cycpmco2.s . . . . . . . . . . 11 𝑆 = (SymGrp‘𝐷)
7 eqid 2733 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
81, 6, 7tocycf 32247 . . . . . . . . . 10 (𝐷𝑉𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
92, 8syl 17 . . . . . . . . 9 (𝜑𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
109fdmd 6718 . . . . . . . 8 (𝜑 → dom 𝑀 = {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
115, 10eleqtrd 2836 . . . . . . 7 (𝜑𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
124, 11sselid 3978 . . . . . 6 (𝜑𝑊 ∈ Word 𝐷)
13 cycpmco2.i . . . . . . . 8 (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
1413eldifad 3958 . . . . . . 7 (𝜑𝐼𝐷)
1514s1cld 14540 . . . . . 6 (𝜑 → ⟨“𝐼”⟩ ∈ Word 𝐷)
16 splcl 14689 . . . . . 6 ((𝑊 ∈ Word 𝐷 ∧ ⟨“𝐼”⟩ ∈ Word 𝐷) → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) ∈ Word 𝐷)
1712, 15, 16syl2anc 585 . . . . 5 (𝜑 → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) ∈ Word 𝐷)
183, 17eqeltrid 2838 . . . 4 (𝜑𝑈 ∈ Word 𝐷)
19 cycpmco2.j . . . . 5 (𝜑𝐽 ∈ ran 𝑊)
20 cycpmco2.e . . . . 5 𝐸 = ((𝑊𝐽) + 1)
211, 6, 2, 5, 13, 19, 20, 3cycpmco2f1 32254 . . . 4 (𝜑𝑈:dom 𝑈1-1𝐷)
22 id 22 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊𝑤 = 𝑊)
23 dmeq 5898 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊)
24 eqidd 2734 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊𝐷 = 𝐷)
2522, 23, 24f1eq123d 6815 . . . . . . . . . . . . . . 15 (𝑤 = 𝑊 → (𝑤:dom 𝑤1-1𝐷𝑊:dom 𝑊1-1𝐷))
2625elrab 3681 . . . . . . . . . . . . . 14 (𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
2711, 26sylib 217 . . . . . . . . . . . . 13 (𝜑 → (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
2827simprd 497 . . . . . . . . . . . 12 (𝜑𝑊:dom 𝑊1-1𝐷)
29 f1cnv 6847 . . . . . . . . . . . 12 (𝑊:dom 𝑊1-1𝐷𝑊:ran 𝑊1-1-onto→dom 𝑊)
30 f1of 6823 . . . . . . . . . . . 12 (𝑊:ran 𝑊1-1-onto→dom 𝑊𝑊:ran 𝑊⟶dom 𝑊)
3128, 29, 303syl 18 . . . . . . . . . . 11 (𝜑𝑊:ran 𝑊⟶dom 𝑊)
3231, 19ffvelcdmd 7075 . . . . . . . . . 10 (𝜑 → (𝑊𝐽) ∈ dom 𝑊)
33 wrddm 14458 . . . . . . . . . . 11 (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊)))
3412, 33syl 17 . . . . . . . . . 10 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
3532, 34eleqtrd 2836 . . . . . . . . 9 (𝜑 → (𝑊𝐽) ∈ (0..^(♯‘𝑊)))
36 fzofzp1 13716 . . . . . . . . 9 ((𝑊𝐽) ∈ (0..^(♯‘𝑊)) → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
3735, 36syl 17 . . . . . . . 8 (𝜑 → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
3820, 37eqeltrid 2838 . . . . . . 7 (𝜑𝐸 ∈ (0...(♯‘𝑊)))
39 elfzuz3 13485 . . . . . . 7 (𝐸 ∈ (0...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ𝐸))
40 fzoss2 13647 . . . . . . 7 ((♯‘𝑊) ∈ (ℤ𝐸) → (0..^𝐸) ⊆ (0..^(♯‘𝑊)))
4138, 39, 403syl 18 . . . . . 6 (𝜑 → (0..^𝐸) ⊆ (0..^(♯‘𝑊)))
421, 6, 2, 5, 13, 19, 20, 3cycpmco2lem3 32258 . . . . . . 7 (𝜑 → ((♯‘𝑈) − 1) = (♯‘𝑊))
4342oveq2d 7412 . . . . . 6 (𝜑 → (0..^((♯‘𝑈) − 1)) = (0..^(♯‘𝑊)))
4441, 43sseqtrrd 4021 . . . . 5 (𝜑 → (0..^𝐸) ⊆ (0..^((♯‘𝑈) − 1)))
45 cycpmco2lem7.3 . . . . 5 (𝜑 → (𝑈𝐾) ∈ (0..^𝐸))
4644, 45sseldd 3981 . . . 4 (𝜑 → (𝑈𝐾) ∈ (0..^((♯‘𝑈) − 1)))
471, 2, 18, 21, 46cycpmfv1 32243 . . 3 (𝜑 → ((𝑀𝑈)‘(𝑈‘(𝑈𝐾))) = (𝑈‘((𝑈𝐾) + 1)))
48 cycpmco2lem7.1 . . . 4 (𝜑𝐾 ∈ ran 𝑊)
49 f1f1orn 6834 . . . . . . 7 (𝑈:dom 𝑈1-1𝐷𝑈:dom 𝑈1-1-onto→ran 𝑈)
5021, 49syl 17 . . . . . 6 (𝜑𝑈:dom 𝑈1-1-onto→ran 𝑈)
51 ssun1 4170 . . . . . . . 8 ran 𝑊 ⊆ (ran 𝑊 ∪ {𝐼})
521, 6, 2, 5, 13, 19, 20, 3cycpmco2rn 32255 . . . . . . . 8 (𝜑 → ran 𝑈 = (ran 𝑊 ∪ {𝐼}))
5351, 52sseqtrrid 4033 . . . . . . 7 (𝜑 → ran 𝑊 ⊆ ran 𝑈)
5453sselda 3980 . . . . . 6 ((𝜑𝐾 ∈ ran 𝑊) → 𝐾 ∈ ran 𝑈)
55 f1ocnvfv2 7262 . . . . . 6 ((𝑈:dom 𝑈1-1-onto→ran 𝑈𝐾 ∈ ran 𝑈) → (𝑈‘(𝑈𝐾)) = 𝐾)
5650, 54, 55syl2an2r 684 . . . . 5 ((𝜑𝐾 ∈ ran 𝑊) → (𝑈‘(𝑈𝐾)) = 𝐾)
5756fveq2d 6885 . . . 4 ((𝜑𝐾 ∈ ran 𝑊) → ((𝑀𝑈)‘(𝑈‘(𝑈𝐾))) = ((𝑀𝑈)‘𝐾))
5848, 57mpdan 686 . . 3 (𝜑 → ((𝑀𝑈)‘(𝑈‘(𝑈𝐾))) = ((𝑀𝑈)‘𝐾))
59 f1f1orn 6834 . . . . . . . 8 (𝑊:dom 𝑊1-1𝐷𝑊:dom 𝑊1-1-onto→ran 𝑊)
6028, 59syl 17 . . . . . . 7 (𝜑𝑊:dom 𝑊1-1-onto→ran 𝑊)
6141, 34sseqtrrd 4021 . . . . . . . 8 (𝜑 → (0..^𝐸) ⊆ dom 𝑊)
6261, 45sseldd 3981 . . . . . . 7 (𝜑 → (𝑈𝐾) ∈ dom 𝑊)
63 f1ocnvfv1 7261 . . . . . . 7 ((𝑊:dom 𝑊1-1-onto→ran 𝑊 ∧ (𝑈𝐾) ∈ dom 𝑊) → (𝑊‘(𝑊‘(𝑈𝐾))) = (𝑈𝐾))
6460, 62, 63syl2anc 585 . . . . . 6 (𝜑 → (𝑊‘(𝑊‘(𝑈𝐾))) = (𝑈𝐾))
653fveq1i 6882 . . . . . . . . 9 (𝑈‘(𝑈𝐾)) = ((𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)‘(𝑈𝐾))
66 fz0ssnn0 13583 . . . . . . . . . . . 12 (0...(♯‘𝑊)) ⊆ ℕ0
6766, 38sselid 3978 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℕ0)
68 nn0fz0 13586 . . . . . . . . . . 11 (𝐸 ∈ ℕ0𝐸 ∈ (0...𝐸))
6967, 68sylib 217 . . . . . . . . . 10 (𝜑𝐸 ∈ (0...𝐸))
7012, 69, 38, 15, 45splfv1 14692 . . . . . . . . 9 (𝜑 → ((𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)‘(𝑈𝐾)) = (𝑊‘(𝑈𝐾)))
7165, 70eqtrid 2785 . . . . . . . 8 (𝜑 → (𝑈‘(𝑈𝐾)) = (𝑊‘(𝑈𝐾)))
7248, 56mpdan 686 . . . . . . . 8 (𝜑 → (𝑈‘(𝑈𝐾)) = 𝐾)
7371, 72eqtr3d 2775 . . . . . . 7 (𝜑 → (𝑊‘(𝑈𝐾)) = 𝐾)
7473fveq2d 6885 . . . . . 6 (𝜑 → (𝑊‘(𝑊‘(𝑈𝐾))) = (𝑊𝐾))
7564, 74eqtr3d 2775 . . . . 5 (𝜑 → (𝑈𝐾) = (𝑊𝐾))
7675oveq1d 7411 . . . 4 (𝜑 → ((𝑈𝐾) + 1) = ((𝑊𝐾) + 1))
7776fveq2d 6885 . . 3 (𝜑 → (𝑈‘((𝑈𝐾) + 1)) = (𝑈‘((𝑊𝐾) + 1)))
7847, 58, 773eqtr3d 2781 . 2 (𝜑 → ((𝑀𝑈)‘𝐾) = (𝑈‘((𝑊𝐾) + 1)))
793a1i 11 . . . . 5 (𝜑𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩))
8079fveq1d 6883 . . . 4 (𝜑 → (𝑈‘((𝑊𝐾) + 1)) = ((𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)‘((𝑊𝐾) + 1)))
8138elfzelzd 13489 . . . . . . 7 (𝜑𝐸 ∈ ℤ)
82 simpr 486 . . . . . . . 8 ((𝜑 ∧ (𝑈𝐾) ∈ (0..^(𝐸 − 1))) → (𝑈𝐾) ∈ (0..^(𝐸 − 1)))
8320a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝐸 = ((𝑊𝐽) + 1))
8483oveq1d 7411 . . . . . . . . . . . . . 14 (𝜑 → (𝐸 − 1) = (((𝑊𝐽) + 1) − 1))
85 elfzonn0 13664 . . . . . . . . . . . . . . . . 17 ((𝑊𝐽) ∈ (0..^(♯‘𝑊)) → (𝑊𝐽) ∈ ℕ0)
8635, 85syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑊𝐽) ∈ ℕ0)
8786nn0cnd 12521 . . . . . . . . . . . . . . 15 (𝜑 → (𝑊𝐽) ∈ ℂ)
88 1cnd 11196 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℂ)
8987, 88pncand 11559 . . . . . . . . . . . . . 14 (𝜑 → (((𝑊𝐽) + 1) − 1) = (𝑊𝐽))
9084, 89eqtr2d 2774 . . . . . . . . . . . . 13 (𝜑 → (𝑊𝐽) = (𝐸 − 1))
9190adantr 482 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑈𝐾) = (𝐸 − 1)) → (𝑊𝐽) = (𝐸 − 1))
92 simpr 486 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑈𝐾) = (𝐸 − 1)) → (𝑈𝐾) = (𝐸 − 1))
9375adantr 482 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑈𝐾) = (𝐸 − 1)) → (𝑈𝐾) = (𝑊𝐾))
9491, 92, 933eqtr2rd 2780 . . . . . . . . . . 11 ((𝜑 ∧ (𝑈𝐾) = (𝐸 − 1)) → (𝑊𝐾) = (𝑊𝐽))
9594fveq2d 6885 . . . . . . . . . 10 ((𝜑 ∧ (𝑈𝐾) = (𝐸 − 1)) → (𝑊‘(𝑊𝐾)) = (𝑊‘(𝑊𝐽)))
96 f1ocnvfv2 7262 . . . . . . . . . . . 12 ((𝑊:dom 𝑊1-1-onto→ran 𝑊𝐾 ∈ ran 𝑊) → (𝑊‘(𝑊𝐾)) = 𝐾)
9760, 48, 96syl2anc 585 . . . . . . . . . . 11 (𝜑 → (𝑊‘(𝑊𝐾)) = 𝐾)
9897adantr 482 . . . . . . . . . 10 ((𝜑 ∧ (𝑈𝐾) = (𝐸 − 1)) → (𝑊‘(𝑊𝐾)) = 𝐾)
99 f1ocnvfv2 7262 . . . . . . . . . . . 12 ((𝑊:dom 𝑊1-1-onto→ran 𝑊𝐽 ∈ ran 𝑊) → (𝑊‘(𝑊𝐽)) = 𝐽)
10060, 19, 99syl2anc 585 . . . . . . . . . . 11 (𝜑 → (𝑊‘(𝑊𝐽)) = 𝐽)
101100adantr 482 . . . . . . . . . 10 ((𝜑 ∧ (𝑈𝐾) = (𝐸 − 1)) → (𝑊‘(𝑊𝐽)) = 𝐽)
10295, 98, 1013eqtr3d 2781 . . . . . . . . 9 ((𝜑 ∧ (𝑈𝐾) = (𝐸 − 1)) → 𝐾 = 𝐽)
103 cycpmco2lem7.2 . . . . . . . . . 10 (𝜑𝐾𝐽)
104103adantr 482 . . . . . . . . 9 ((𝜑 ∧ (𝑈𝐾) = (𝐸 − 1)) → 𝐾𝐽)
105102, 104pm2.21ddne 3027 . . . . . . . 8 ((𝜑 ∧ (𝑈𝐾) = (𝐸 − 1)) → (𝑈𝐾) ∈ (0..^(𝐸 − 1)))
106 0zd 12557 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℤ)
107 nn0p1nn 12498 . . . . . . . . . . . . . 14 ((𝑊𝐽) ∈ ℕ0 → ((𝑊𝐽) + 1) ∈ ℕ)
10886, 107syl 17 . . . . . . . . . . . . 13 (𝜑 → ((𝑊𝐽) + 1) ∈ ℕ)
10920, 108eqeltrid 2838 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℕ)
110 0p1e1 12321 . . . . . . . . . . . . . 14 (0 + 1) = 1
111110fveq2i 6884 . . . . . . . . . . . . 13 (ℤ‘(0 + 1)) = (ℤ‘1)
112 nnuz 12852 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
113111, 112eqtr4i 2764 . . . . . . . . . . . 12 (ℤ‘(0 + 1)) = ℕ
114109, 113eleqtrrdi 2845 . . . . . . . . . . 11 (𝜑𝐸 ∈ (ℤ‘(0 + 1)))
115 fzosplitsnm1 13694 . . . . . . . . . . 11 ((0 ∈ ℤ ∧ 𝐸 ∈ (ℤ‘(0 + 1))) → (0..^𝐸) = ((0..^(𝐸 − 1)) ∪ {(𝐸 − 1)}))
116106, 114, 115syl2anc 585 . . . . . . . . . 10 (𝜑 → (0..^𝐸) = ((0..^(𝐸 − 1)) ∪ {(𝐸 − 1)}))
11745, 116eleqtrd 2836 . . . . . . . . 9 (𝜑 → (𝑈𝐾) ∈ ((0..^(𝐸 − 1)) ∪ {(𝐸 − 1)}))
118 fvex 6894 . . . . . . . . . 10 (𝑈𝐾) ∈ V
119 elunsn 31715 . . . . . . . . . 10 ((𝑈𝐾) ∈ V → ((𝑈𝐾) ∈ ((0..^(𝐸 − 1)) ∪ {(𝐸 − 1)}) ↔ ((𝑈𝐾) ∈ (0..^(𝐸 − 1)) ∨ (𝑈𝐾) = (𝐸 − 1))))
120118, 119ax-mp 5 . . . . . . . . 9 ((𝑈𝐾) ∈ ((0..^(𝐸 − 1)) ∪ {(𝐸 − 1)}) ↔ ((𝑈𝐾) ∈ (0..^(𝐸 − 1)) ∨ (𝑈𝐾) = (𝐸 − 1)))
121117, 120sylib 217 . . . . . . . 8 (𝜑 → ((𝑈𝐾) ∈ (0..^(𝐸 − 1)) ∨ (𝑈𝐾) = (𝐸 − 1)))
12282, 105, 121mpjaodan 958 . . . . . . 7 (𝜑 → (𝑈𝐾) ∈ (0..^(𝐸 − 1)))
123 elfzom1elp1fzo 13686 . . . . . . 7 ((𝐸 ∈ ℤ ∧ (𝑈𝐾) ∈ (0..^(𝐸 − 1))) → ((𝑈𝐾) + 1) ∈ (0..^𝐸))
12481, 122, 123syl2anc 585 . . . . . 6 (𝜑 → ((𝑈𝐾) + 1) ∈ (0..^𝐸))
12576, 124eqeltrrd 2835 . . . . 5 (𝜑 → ((𝑊𝐾) + 1) ∈ (0..^𝐸))
12612, 69, 38, 15, 125splfv1 14692 . . . 4 (𝜑 → ((𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)‘((𝑊𝐾) + 1)) = (𝑊‘((𝑊𝐾) + 1)))
12780, 126eqtrd 2773 . . 3 (𝜑 → (𝑈‘((𝑊𝐾) + 1)) = (𝑊‘((𝑊𝐾) + 1)))
128 1zzd 12580 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
12981, 128zsubcld 12658 . . . . . . . 8 (𝜑 → (𝐸 − 1) ∈ ℤ)
130 lencl 14470 . . . . . . . . . . 11 (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈ ℕ0)
131 nn0fz0 13586 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℕ0 ↔ (♯‘𝑊) ∈ (0...(♯‘𝑊)))
132131biimpi 215 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
13312, 130, 1323syl 18 . . . . . . . . . 10 (𝜑 → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
134133elfzelzd 13489 . . . . . . . . 9 (𝜑 → (♯‘𝑊) ∈ ℤ)
135134, 128zsubcld 12658 . . . . . . . 8 (𝜑 → ((♯‘𝑊) − 1) ∈ ℤ)
136109nnred 12214 . . . . . . . . 9 (𝜑𝐸 ∈ ℝ)
137134zred 12653 . . . . . . . . 9 (𝜑 → (♯‘𝑊) ∈ ℝ)
138 1red 11202 . . . . . . . . 9 (𝜑 → 1 ∈ ℝ)
139 elfzle2 13492 . . . . . . . . . 10 (𝐸 ∈ (0...(♯‘𝑊)) → 𝐸 ≤ (♯‘𝑊))
14038, 139syl 17 . . . . . . . . 9 (𝜑𝐸 ≤ (♯‘𝑊))
141136, 137, 138, 140lesub1dd 11817 . . . . . . . 8 (𝜑 → (𝐸 − 1) ≤ ((♯‘𝑊) − 1))
142 eluz 12823 . . . . . . . . 9 (((𝐸 − 1) ∈ ℤ ∧ ((♯‘𝑊) − 1) ∈ ℤ) → (((♯‘𝑊) − 1) ∈ (ℤ‘(𝐸 − 1)) ↔ (𝐸 − 1) ≤ ((♯‘𝑊) − 1)))
143142biimpar 479 . . . . . . . 8 ((((𝐸 − 1) ∈ ℤ ∧ ((♯‘𝑊) − 1) ∈ ℤ) ∧ (𝐸 − 1) ≤ ((♯‘𝑊) − 1)) → ((♯‘𝑊) − 1) ∈ (ℤ‘(𝐸 − 1)))
144129, 135, 141, 143syl21anc 837 . . . . . . 7 (𝜑 → ((♯‘𝑊) − 1) ∈ (ℤ‘(𝐸 − 1)))
145 fzoss2 13647 . . . . . . 7 (((♯‘𝑊) − 1) ∈ (ℤ‘(𝐸 − 1)) → (0..^(𝐸 − 1)) ⊆ (0..^((♯‘𝑊) − 1)))
146144, 145syl 17 . . . . . 6 (𝜑 → (0..^(𝐸 − 1)) ⊆ (0..^((♯‘𝑊) − 1)))
147146, 122sseldd 3981 . . . . 5 (𝜑 → (𝑈𝐾) ∈ (0..^((♯‘𝑊) − 1)))
14875, 147eqeltrrd 2835 . . . 4 (𝜑 → (𝑊𝐾) ∈ (0..^((♯‘𝑊) − 1)))
1491, 2, 12, 28, 148cycpmfv1 32243 . . 3 (𝜑 → ((𝑀𝑊)‘(𝑊‘(𝑊𝐾))) = (𝑊‘((𝑊𝐾) + 1)))
15097fveq2d 6885 . . 3 (𝜑 → ((𝑀𝑊)‘(𝑊‘(𝑊𝐾))) = ((𝑀𝑊)‘𝐾))
151127, 149, 1503eqtr2rd 2780 . 2 (𝜑 → ((𝑀𝑊)‘𝐾) = (𝑈‘((𝑊𝐾) + 1)))
15278, 151eqtr4d 2776 1 (𝜑 → ((𝑀𝑈)‘𝐾) = ((𝑀𝑊)‘𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 846   = wceq 1542  wcel 2107  wne 2941  {crab 3433  Vcvv 3475  cdif 3943  cun 3944  wss 3946  {csn 4624  cotp 4632   class class class wbr 5144  ccnv 5671  dom cdm 5672  ran crn 5673  wf 6531  1-1wf1 6532  1-1-ontowf1o 6534  cfv 6535  (class class class)co 7396  0cc0 11097  1c1 11098   + caddc 11100  cle 11236  cmin 11431  cn 12199  0cn0 12459  cz 12545  cuz 12809  ...cfz 13471  ..^cfzo 13614  chash 14277  Word cword 14451  ⟨“cs1 14532   splice csplice 14686  Basecbs 17131  SymGrpcsymg 19218  toCycctocyc 32236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-cnex 11153  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174  ax-pre-sup 11175
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-ot 4633  df-uni 4905  df-int 4947  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-om 7843  df-1st 7962  df-2nd 7963  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-1o 8453  df-er 8691  df-map 8810  df-en 8928  df-dom 8929  df-sdom 8930  df-fin 8931  df-sup 9424  df-inf 9425  df-card 9921  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-div 11859  df-nn 12200  df-2 12262  df-3 12263  df-4 12264  df-5 12265  df-6 12266  df-7 12267  df-8 12268  df-9 12269  df-n0 12460  df-z 12546  df-uz 12810  df-rp 12962  df-fz 13472  df-fzo 13615  df-fl 13744  df-mod 13822  df-hash 14278  df-word 14452  df-concat 14508  df-s1 14533  df-substr 14578  df-pfx 14608  df-splice 14687  df-csh 14726  df-struct 17067  df-sets 17084  df-slot 17102  df-ndx 17114  df-base 17132  df-ress 17161  df-plusg 17197  df-tset 17203  df-efmnd 18737  df-symg 19219  df-tocyc 32237
This theorem is referenced by:  cycpmco2  32263
  Copyright terms: Public domain W3C validator