Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmco2lem7 Structured version   Visualization version   GIF version

Theorem cycpmco2lem7 33125
Description: Lemma for cycpmco2 33126. (Contributed by Thierry Arnoux, 4-Jan-2024.)
Hypotheses
Ref Expression
cycpmco2.c 𝑀 = (toCyc‘𝐷)
cycpmco2.s 𝑆 = (SymGrp‘𝐷)
cycpmco2.d (𝜑𝐷𝑉)
cycpmco2.w (𝜑𝑊 ∈ dom 𝑀)
cycpmco2.i (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
cycpmco2.j (𝜑𝐽 ∈ ran 𝑊)
cycpmco2.e 𝐸 = ((𝑊𝐽) + 1)
cycpmco2.1 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
cycpmco2lem7.1 (𝜑𝐾 ∈ ran 𝑊)
cycpmco2lem7.2 (𝜑𝐾𝐽)
cycpmco2lem7.3 (𝜑 → (𝑈𝐾) ∈ (0..^𝐸))
Assertion
Ref Expression
cycpmco2lem7 (𝜑 → ((𝑀𝑈)‘𝐾) = ((𝑀𝑊)‘𝐾))

Proof of Theorem cycpmco2lem7
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 cycpmco2.c . . . 4 𝑀 = (toCyc‘𝐷)
2 cycpmco2.d . . . 4 (𝜑𝐷𝑉)
3 cycpmco2.1 . . . . 5 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
4 ssrab2 4103 . . . . . . 7 {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ⊆ Word 𝐷
5 cycpmco2.w . . . . . . . 8 (𝜑𝑊 ∈ dom 𝑀)
6 cycpmco2.s . . . . . . . . . . 11 𝑆 = (SymGrp‘𝐷)
7 eqid 2740 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
81, 6, 7tocycf 33110 . . . . . . . . . 10 (𝐷𝑉𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
92, 8syl 17 . . . . . . . . 9 (𝜑𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
109fdmd 6757 . . . . . . . 8 (𝜑 → dom 𝑀 = {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
115, 10eleqtrd 2846 . . . . . . 7 (𝜑𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
124, 11sselid 4006 . . . . . 6 (𝜑𝑊 ∈ Word 𝐷)
13 cycpmco2.i . . . . . . . 8 (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
1413eldifad 3988 . . . . . . 7 (𝜑𝐼𝐷)
1514s1cld 14651 . . . . . 6 (𝜑 → ⟨“𝐼”⟩ ∈ Word 𝐷)
16 splcl 14800 . . . . . 6 ((𝑊 ∈ Word 𝐷 ∧ ⟨“𝐼”⟩ ∈ Word 𝐷) → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) ∈ Word 𝐷)
1712, 15, 16syl2anc 583 . . . . 5 (𝜑 → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) ∈ Word 𝐷)
183, 17eqeltrid 2848 . . . 4 (𝜑𝑈 ∈ Word 𝐷)
19 cycpmco2.j . . . . 5 (𝜑𝐽 ∈ ran 𝑊)
20 cycpmco2.e . . . . 5 𝐸 = ((𝑊𝐽) + 1)
211, 6, 2, 5, 13, 19, 20, 3cycpmco2f1 33117 . . . 4 (𝜑𝑈:dom 𝑈1-1𝐷)
22 id 22 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊𝑤 = 𝑊)
23 dmeq 5928 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊)
24 eqidd 2741 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊𝐷 = 𝐷)
2522, 23, 24f1eq123d 6854 . . . . . . . . . . . . . . 15 (𝑤 = 𝑊 → (𝑤:dom 𝑤1-1𝐷𝑊:dom 𝑊1-1𝐷))
2625elrab 3708 . . . . . . . . . . . . . 14 (𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
2711, 26sylib 218 . . . . . . . . . . . . 13 (𝜑 → (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
2827simprd 495 . . . . . . . . . . . 12 (𝜑𝑊:dom 𝑊1-1𝐷)
29 f1cnv 6886 . . . . . . . . . . . 12 (𝑊:dom 𝑊1-1𝐷𝑊:ran 𝑊1-1-onto→dom 𝑊)
30 f1of 6862 . . . . . . . . . . . 12 (𝑊:ran 𝑊1-1-onto→dom 𝑊𝑊:ran 𝑊⟶dom 𝑊)
3128, 29, 303syl 18 . . . . . . . . . . 11 (𝜑𝑊:ran 𝑊⟶dom 𝑊)
3231, 19ffvelcdmd 7119 . . . . . . . . . 10 (𝜑 → (𝑊𝐽) ∈ dom 𝑊)
33 wrddm 14569 . . . . . . . . . . 11 (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊)))
3412, 33syl 17 . . . . . . . . . 10 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
3532, 34eleqtrd 2846 . . . . . . . . 9 (𝜑 → (𝑊𝐽) ∈ (0..^(♯‘𝑊)))
36 fzofzp1 13814 . . . . . . . . 9 ((𝑊𝐽) ∈ (0..^(♯‘𝑊)) → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
3735, 36syl 17 . . . . . . . 8 (𝜑 → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
3820, 37eqeltrid 2848 . . . . . . 7 (𝜑𝐸 ∈ (0...(♯‘𝑊)))
39 elfzuz3 13581 . . . . . . 7 (𝐸 ∈ (0...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ𝐸))
40 fzoss2 13744 . . . . . . 7 ((♯‘𝑊) ∈ (ℤ𝐸) → (0..^𝐸) ⊆ (0..^(♯‘𝑊)))
4138, 39, 403syl 18 . . . . . 6 (𝜑 → (0..^𝐸) ⊆ (0..^(♯‘𝑊)))
421, 6, 2, 5, 13, 19, 20, 3cycpmco2lem3 33121 . . . . . . 7 (𝜑 → ((♯‘𝑈) − 1) = (♯‘𝑊))
4342oveq2d 7464 . . . . . 6 (𝜑 → (0..^((♯‘𝑈) − 1)) = (0..^(♯‘𝑊)))
4441, 43sseqtrrd 4050 . . . . 5 (𝜑 → (0..^𝐸) ⊆ (0..^((♯‘𝑈) − 1)))
45 cycpmco2lem7.3 . . . . 5 (𝜑 → (𝑈𝐾) ∈ (0..^𝐸))
4644, 45sseldd 4009 . . . 4 (𝜑 → (𝑈𝐾) ∈ (0..^((♯‘𝑈) − 1)))
471, 2, 18, 21, 46cycpmfv1 33106 . . 3 (𝜑 → ((𝑀𝑈)‘(𝑈‘(𝑈𝐾))) = (𝑈‘((𝑈𝐾) + 1)))
48 cycpmco2lem7.1 . . . 4 (𝜑𝐾 ∈ ran 𝑊)
49 f1f1orn 6873 . . . . . . 7 (𝑈:dom 𝑈1-1𝐷𝑈:dom 𝑈1-1-onto→ran 𝑈)
5021, 49syl 17 . . . . . 6 (𝜑𝑈:dom 𝑈1-1-onto→ran 𝑈)
51 ssun1 4201 . . . . . . . 8 ran 𝑊 ⊆ (ran 𝑊 ∪ {𝐼})
521, 6, 2, 5, 13, 19, 20, 3cycpmco2rn 33118 . . . . . . . 8 (𝜑 → ran 𝑈 = (ran 𝑊 ∪ {𝐼}))
5351, 52sseqtrrid 4062 . . . . . . 7 (𝜑 → ran 𝑊 ⊆ ran 𝑈)
5453sselda 4008 . . . . . 6 ((𝜑𝐾 ∈ ran 𝑊) → 𝐾 ∈ ran 𝑈)
55 f1ocnvfv2 7313 . . . . . 6 ((𝑈:dom 𝑈1-1-onto→ran 𝑈𝐾 ∈ ran 𝑈) → (𝑈‘(𝑈𝐾)) = 𝐾)
5650, 54, 55syl2an2r 684 . . . . 5 ((𝜑𝐾 ∈ ran 𝑊) → (𝑈‘(𝑈𝐾)) = 𝐾)
5756fveq2d 6924 . . . 4 ((𝜑𝐾 ∈ ran 𝑊) → ((𝑀𝑈)‘(𝑈‘(𝑈𝐾))) = ((𝑀𝑈)‘𝐾))
5848, 57mpdan 686 . . 3 (𝜑 → ((𝑀𝑈)‘(𝑈‘(𝑈𝐾))) = ((𝑀𝑈)‘𝐾))
59 f1f1orn 6873 . . . . . . . 8 (𝑊:dom 𝑊1-1𝐷𝑊:dom 𝑊1-1-onto→ran 𝑊)
6028, 59syl 17 . . . . . . 7 (𝜑𝑊:dom 𝑊1-1-onto→ran 𝑊)
6141, 34sseqtrrd 4050 . . . . . . . 8 (𝜑 → (0..^𝐸) ⊆ dom 𝑊)
6261, 45sseldd 4009 . . . . . . 7 (𝜑 → (𝑈𝐾) ∈ dom 𝑊)
63 f1ocnvfv1 7312 . . . . . . 7 ((𝑊:dom 𝑊1-1-onto→ran 𝑊 ∧ (𝑈𝐾) ∈ dom 𝑊) → (𝑊‘(𝑊‘(𝑈𝐾))) = (𝑈𝐾))
6460, 62, 63syl2anc 583 . . . . . 6 (𝜑 → (𝑊‘(𝑊‘(𝑈𝐾))) = (𝑈𝐾))
653fveq1i 6921 . . . . . . . . 9 (𝑈‘(𝑈𝐾)) = ((𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)‘(𝑈𝐾))
66 fz0ssnn0 13679 . . . . . . . . . . . 12 (0...(♯‘𝑊)) ⊆ ℕ0
6766, 38sselid 4006 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℕ0)
68 nn0fz0 13682 . . . . . . . . . . 11 (𝐸 ∈ ℕ0𝐸 ∈ (0...𝐸))
6967, 68sylib 218 . . . . . . . . . 10 (𝜑𝐸 ∈ (0...𝐸))
7012, 69, 38, 15, 45splfv1 14803 . . . . . . . . 9 (𝜑 → ((𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)‘(𝑈𝐾)) = (𝑊‘(𝑈𝐾)))
7165, 70eqtrid 2792 . . . . . . . 8 (𝜑 → (𝑈‘(𝑈𝐾)) = (𝑊‘(𝑈𝐾)))
7248, 56mpdan 686 . . . . . . . 8 (𝜑 → (𝑈‘(𝑈𝐾)) = 𝐾)
7371, 72eqtr3d 2782 . . . . . . 7 (𝜑 → (𝑊‘(𝑈𝐾)) = 𝐾)
7473fveq2d 6924 . . . . . 6 (𝜑 → (𝑊‘(𝑊‘(𝑈𝐾))) = (𝑊𝐾))
7564, 74eqtr3d 2782 . . . . 5 (𝜑 → (𝑈𝐾) = (𝑊𝐾))
7675oveq1d 7463 . . . 4 (𝜑 → ((𝑈𝐾) + 1) = ((𝑊𝐾) + 1))
7776fveq2d 6924 . . 3 (𝜑 → (𝑈‘((𝑈𝐾) + 1)) = (𝑈‘((𝑊𝐾) + 1)))
7847, 58, 773eqtr3d 2788 . 2 (𝜑 → ((𝑀𝑈)‘𝐾) = (𝑈‘((𝑊𝐾) + 1)))
793a1i 11 . . . . 5 (𝜑𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩))
8079fveq1d 6922 . . . 4 (𝜑 → (𝑈‘((𝑊𝐾) + 1)) = ((𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)‘((𝑊𝐾) + 1)))
8138elfzelzd 13585 . . . . . . 7 (𝜑𝐸 ∈ ℤ)
82 simpr 484 . . . . . . . 8 ((𝜑 ∧ (𝑈𝐾) ∈ (0..^(𝐸 − 1))) → (𝑈𝐾) ∈ (0..^(𝐸 − 1)))
8320a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝐸 = ((𝑊𝐽) + 1))
8483oveq1d 7463 . . . . . . . . . . . . . 14 (𝜑 → (𝐸 − 1) = (((𝑊𝐽) + 1) − 1))
85 elfzonn0 13761 . . . . . . . . . . . . . . . . 17 ((𝑊𝐽) ∈ (0..^(♯‘𝑊)) → (𝑊𝐽) ∈ ℕ0)
8635, 85syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑊𝐽) ∈ ℕ0)
8786nn0cnd 12615 . . . . . . . . . . . . . . 15 (𝜑 → (𝑊𝐽) ∈ ℂ)
88 1cnd 11285 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℂ)
8987, 88pncand 11648 . . . . . . . . . . . . . 14 (𝜑 → (((𝑊𝐽) + 1) − 1) = (𝑊𝐽))
9084, 89eqtr2d 2781 . . . . . . . . . . . . 13 (𝜑 → (𝑊𝐽) = (𝐸 − 1))
9190adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑈𝐾) = (𝐸 − 1)) → (𝑊𝐽) = (𝐸 − 1))
92 simpr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑈𝐾) = (𝐸 − 1)) → (𝑈𝐾) = (𝐸 − 1))
9375adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑈𝐾) = (𝐸 − 1)) → (𝑈𝐾) = (𝑊𝐾))
9491, 92, 933eqtr2rd 2787 . . . . . . . . . . 11 ((𝜑 ∧ (𝑈𝐾) = (𝐸 − 1)) → (𝑊𝐾) = (𝑊𝐽))
9594fveq2d 6924 . . . . . . . . . 10 ((𝜑 ∧ (𝑈𝐾) = (𝐸 − 1)) → (𝑊‘(𝑊𝐾)) = (𝑊‘(𝑊𝐽)))
96 f1ocnvfv2 7313 . . . . . . . . . . . 12 ((𝑊:dom 𝑊1-1-onto→ran 𝑊𝐾 ∈ ran 𝑊) → (𝑊‘(𝑊𝐾)) = 𝐾)
9760, 48, 96syl2anc 583 . . . . . . . . . . 11 (𝜑 → (𝑊‘(𝑊𝐾)) = 𝐾)
9897adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑈𝐾) = (𝐸 − 1)) → (𝑊‘(𝑊𝐾)) = 𝐾)
99 f1ocnvfv2 7313 . . . . . . . . . . . 12 ((𝑊:dom 𝑊1-1-onto→ran 𝑊𝐽 ∈ ran 𝑊) → (𝑊‘(𝑊𝐽)) = 𝐽)
10060, 19, 99syl2anc 583 . . . . . . . . . . 11 (𝜑 → (𝑊‘(𝑊𝐽)) = 𝐽)
101100adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑈𝐾) = (𝐸 − 1)) → (𝑊‘(𝑊𝐽)) = 𝐽)
10295, 98, 1013eqtr3d 2788 . . . . . . . . 9 ((𝜑 ∧ (𝑈𝐾) = (𝐸 − 1)) → 𝐾 = 𝐽)
103 cycpmco2lem7.2 . . . . . . . . . 10 (𝜑𝐾𝐽)
104103adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑈𝐾) = (𝐸 − 1)) → 𝐾𝐽)
105102, 104pm2.21ddne 3032 . . . . . . . 8 ((𝜑 ∧ (𝑈𝐾) = (𝐸 − 1)) → (𝑈𝐾) ∈ (0..^(𝐸 − 1)))
106 0zd 12651 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℤ)
107 nn0p1nn 12592 . . . . . . . . . . . . . 14 ((𝑊𝐽) ∈ ℕ0 → ((𝑊𝐽) + 1) ∈ ℕ)
10886, 107syl 17 . . . . . . . . . . . . 13 (𝜑 → ((𝑊𝐽) + 1) ∈ ℕ)
10920, 108eqeltrid 2848 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℕ)
110 0p1e1 12415 . . . . . . . . . . . . . 14 (0 + 1) = 1
111110fveq2i 6923 . . . . . . . . . . . . 13 (ℤ‘(0 + 1)) = (ℤ‘1)
112 nnuz 12946 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
113111, 112eqtr4i 2771 . . . . . . . . . . . 12 (ℤ‘(0 + 1)) = ℕ
114109, 113eleqtrrdi 2855 . . . . . . . . . . 11 (𝜑𝐸 ∈ (ℤ‘(0 + 1)))
115 fzosplitsnm1 13791 . . . . . . . . . . 11 ((0 ∈ ℤ ∧ 𝐸 ∈ (ℤ‘(0 + 1))) → (0..^𝐸) = ((0..^(𝐸 − 1)) ∪ {(𝐸 − 1)}))
116106, 114, 115syl2anc 583 . . . . . . . . . 10 (𝜑 → (0..^𝐸) = ((0..^(𝐸 − 1)) ∪ {(𝐸 − 1)}))
11745, 116eleqtrd 2846 . . . . . . . . 9 (𝜑 → (𝑈𝐾) ∈ ((0..^(𝐸 − 1)) ∪ {(𝐸 − 1)}))
118 fvex 6933 . . . . . . . . . 10 (𝑈𝐾) ∈ V
119 elunsn 32541 . . . . . . . . . 10 ((𝑈𝐾) ∈ V → ((𝑈𝐾) ∈ ((0..^(𝐸 − 1)) ∪ {(𝐸 − 1)}) ↔ ((𝑈𝐾) ∈ (0..^(𝐸 − 1)) ∨ (𝑈𝐾) = (𝐸 − 1))))
120118, 119ax-mp 5 . . . . . . . . 9 ((𝑈𝐾) ∈ ((0..^(𝐸 − 1)) ∪ {(𝐸 − 1)}) ↔ ((𝑈𝐾) ∈ (0..^(𝐸 − 1)) ∨ (𝑈𝐾) = (𝐸 − 1)))
121117, 120sylib 218 . . . . . . . 8 (𝜑 → ((𝑈𝐾) ∈ (0..^(𝐸 − 1)) ∨ (𝑈𝐾) = (𝐸 − 1)))
12282, 105, 121mpjaodan 959 . . . . . . 7 (𝜑 → (𝑈𝐾) ∈ (0..^(𝐸 − 1)))
123 elfzom1elp1fzo 13783 . . . . . . 7 ((𝐸 ∈ ℤ ∧ (𝑈𝐾) ∈ (0..^(𝐸 − 1))) → ((𝑈𝐾) + 1) ∈ (0..^𝐸))
12481, 122, 123syl2anc 583 . . . . . 6 (𝜑 → ((𝑈𝐾) + 1) ∈ (0..^𝐸))
12576, 124eqeltrrd 2845 . . . . 5 (𝜑 → ((𝑊𝐾) + 1) ∈ (0..^𝐸))
12612, 69, 38, 15, 125splfv1 14803 . . . 4 (𝜑 → ((𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)‘((𝑊𝐾) + 1)) = (𝑊‘((𝑊𝐾) + 1)))
12780, 126eqtrd 2780 . . 3 (𝜑 → (𝑈‘((𝑊𝐾) + 1)) = (𝑊‘((𝑊𝐾) + 1)))
128 1zzd 12674 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
12981, 128zsubcld 12752 . . . . . . . 8 (𝜑 → (𝐸 − 1) ∈ ℤ)
130 lencl 14581 . . . . . . . . . . 11 (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈ ℕ0)
131 nn0fz0 13682 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℕ0 ↔ (♯‘𝑊) ∈ (0...(♯‘𝑊)))
132131biimpi 216 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
13312, 130, 1323syl 18 . . . . . . . . . 10 (𝜑 → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
134133elfzelzd 13585 . . . . . . . . 9 (𝜑 → (♯‘𝑊) ∈ ℤ)
135134, 128zsubcld 12752 . . . . . . . 8 (𝜑 → ((♯‘𝑊) − 1) ∈ ℤ)
136109nnred 12308 . . . . . . . . 9 (𝜑𝐸 ∈ ℝ)
137134zred 12747 . . . . . . . . 9 (𝜑 → (♯‘𝑊) ∈ ℝ)
138 1red 11291 . . . . . . . . 9 (𝜑 → 1 ∈ ℝ)
139 elfzle2 13588 . . . . . . . . . 10 (𝐸 ∈ (0...(♯‘𝑊)) → 𝐸 ≤ (♯‘𝑊))
14038, 139syl 17 . . . . . . . . 9 (𝜑𝐸 ≤ (♯‘𝑊))
141136, 137, 138, 140lesub1dd 11906 . . . . . . . 8 (𝜑 → (𝐸 − 1) ≤ ((♯‘𝑊) − 1))
142 eluz 12917 . . . . . . . . 9 (((𝐸 − 1) ∈ ℤ ∧ ((♯‘𝑊) − 1) ∈ ℤ) → (((♯‘𝑊) − 1) ∈ (ℤ‘(𝐸 − 1)) ↔ (𝐸 − 1) ≤ ((♯‘𝑊) − 1)))
143142biimpar 477 . . . . . . . 8 ((((𝐸 − 1) ∈ ℤ ∧ ((♯‘𝑊) − 1) ∈ ℤ) ∧ (𝐸 − 1) ≤ ((♯‘𝑊) − 1)) → ((♯‘𝑊) − 1) ∈ (ℤ‘(𝐸 − 1)))
144129, 135, 141, 143syl21anc 837 . . . . . . 7 (𝜑 → ((♯‘𝑊) − 1) ∈ (ℤ‘(𝐸 − 1)))
145 fzoss2 13744 . . . . . . 7 (((♯‘𝑊) − 1) ∈ (ℤ‘(𝐸 − 1)) → (0..^(𝐸 − 1)) ⊆ (0..^((♯‘𝑊) − 1)))
146144, 145syl 17 . . . . . 6 (𝜑 → (0..^(𝐸 − 1)) ⊆ (0..^((♯‘𝑊) − 1)))
147146, 122sseldd 4009 . . . . 5 (𝜑 → (𝑈𝐾) ∈ (0..^((♯‘𝑊) − 1)))
14875, 147eqeltrrd 2845 . . . 4 (𝜑 → (𝑊𝐾) ∈ (0..^((♯‘𝑊) − 1)))
1491, 2, 12, 28, 148cycpmfv1 33106 . . 3 (𝜑 → ((𝑀𝑊)‘(𝑊‘(𝑊𝐾))) = (𝑊‘((𝑊𝐾) + 1)))
15097fveq2d 6924 . . 3 (𝜑 → ((𝑀𝑊)‘(𝑊‘(𝑊𝐾))) = ((𝑀𝑊)‘𝐾))
151127, 149, 1503eqtr2rd 2787 . 2 (𝜑 → ((𝑀𝑊)‘𝐾) = (𝑈‘((𝑊𝐾) + 1)))
15278, 151eqtr4d 2783 1 (𝜑 → ((𝑀𝑈)‘𝐾) = ((𝑀𝑊)‘𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  {crab 3443  Vcvv 3488  cdif 3973  cun 3974  wss 3976  {csn 4648  cotp 4656   class class class wbr 5166  ccnv 5699  dom cdm 5700  ran crn 5701  wf 6569  1-1wf1 6570  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187  cle 11325  cmin 11520  cn 12293  0cn0 12553  cz 12639  cuz 12903  ...cfz 13567  ..^cfzo 13711  chash 14379  Word cword 14562  ⟨“cs1 14643   splice csplice 14797  Basecbs 17258  SymGrpcsymg 19410  toCycctocyc 33099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-substr 14689  df-pfx 14719  df-splice 14798  df-csh 14837  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-tset 17330  df-efmnd 18904  df-symg 19411  df-tocyc 33100
This theorem is referenced by:  cycpmco2  33126
  Copyright terms: Public domain W3C validator