| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqdif | Structured version Visualization version GIF version | ||
| Description: If both set differences of two sets are empty, those sets are equal. (Contributed by Thierry Arnoux, 16-Nov-2023.) |
| Ref | Expression |
|---|---|
| eqdif | ⊢ (((𝐴 ∖ 𝐵) = ∅ ∧ (𝐵 ∖ 𝐴) = ∅) → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqss 3979 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 2 | ssdif0 4346 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) | |
| 3 | ssdif0 4346 | . . 3 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ∖ 𝐴) = ∅) | |
| 4 | 2, 3 | anbi12i 628 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ ((𝐴 ∖ 𝐵) = ∅ ∧ (𝐵 ∖ 𝐴) = ∅)) |
| 5 | 1, 4 | sylbbr 236 | 1 ⊢ (((𝐴 ∖ 𝐵) = ∅ ∧ (𝐵 ∖ 𝐴) = ∅) → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∖ cdif 3928 ⊆ wss 3931 ∅c0 4313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-dif 3934 df-ss 3948 df-nul 4314 |
| This theorem is referenced by: pmtrcnelor 33107 |
| Copyright terms: Public domain | W3C validator |