Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqdif Structured version   Visualization version   GIF version

Theorem eqdif 30767
Description: If both set differences of two sets are empty, those sets are equal. (Contributed by Thierry Arnoux, 16-Nov-2023.)
Assertion
Ref Expression
eqdif (((𝐴𝐵) = ∅ ∧ (𝐵𝐴) = ∅) → 𝐴 = 𝐵)

Proof of Theorem eqdif
StepHypRef Expression
1 eqss 3932 . 2 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
2 ssdif0 4294 . . 3 (𝐴𝐵 ↔ (𝐴𝐵) = ∅)
3 ssdif0 4294 . . 3 (𝐵𝐴 ↔ (𝐵𝐴) = ∅)
42, 3anbi12i 626 . 2 ((𝐴𝐵𝐵𝐴) ↔ ((𝐴𝐵) = ∅ ∧ (𝐵𝐴) = ∅))
51, 4sylbbr 235 1 (((𝐴𝐵) = ∅ ∧ (𝐵𝐴) = ∅) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  cdif 3880  wss 3883  c0 4253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900  df-nul 4254
This theorem is referenced by:  pmtrcnelor  31262
  Copyright terms: Public domain W3C validator