Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqdif | Structured version Visualization version GIF version |
Description: If both set differences of two sets are empty, those sets are equal. (Contributed by Thierry Arnoux, 16-Nov-2023.) |
Ref | Expression |
---|---|
eqdif | ⊢ (((𝐴 ∖ 𝐵) = ∅ ∧ (𝐵 ∖ 𝐴) = ∅) → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqss 3936 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
2 | ssdif0 4297 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) | |
3 | ssdif0 4297 | . . 3 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ∖ 𝐴) = ∅) | |
4 | 2, 3 | anbi12i 627 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ ((𝐴 ∖ 𝐵) = ∅ ∧ (𝐵 ∖ 𝐴) = ∅)) |
5 | 1, 4 | sylbbr 235 | 1 ⊢ (((𝐴 ∖ 𝐵) = ∅ ∧ (𝐵 ∖ 𝐴) = ∅) → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∖ cdif 3884 ⊆ wss 3887 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 df-nul 4257 |
This theorem is referenced by: pmtrcnelor 31360 |
Copyright terms: Public domain | W3C validator |