| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqdif | Structured version Visualization version GIF version | ||
| Description: If both set differences of two sets are empty, those sets are equal. (Contributed by Thierry Arnoux, 16-Nov-2023.) |
| Ref | Expression |
|---|---|
| eqdif | ⊢ (((𝐴 ∖ 𝐵) = ∅ ∧ (𝐵 ∖ 𝐴) = ∅) → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqss 3950 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 2 | ssdif0 4316 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) | |
| 3 | ssdif0 4316 | . . 3 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ∖ 𝐴) = ∅) | |
| 4 | 2, 3 | anbi12i 628 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ ((𝐴 ∖ 𝐵) = ∅ ∧ (𝐵 ∖ 𝐴) = ∅)) |
| 5 | 1, 4 | sylbbr 236 | 1 ⊢ (((𝐴 ∖ 𝐵) = ∅ ∧ (𝐵 ∖ 𝐴) = ∅) → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∖ cdif 3899 ⊆ wss 3902 ∅c0 4283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3905 df-ss 3919 df-nul 4284 |
| This theorem is referenced by: pmtrcnelor 33055 |
| Copyright terms: Public domain | W3C validator |