![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqdif | Structured version Visualization version GIF version |
Description: If both set differences of two sets are empty, those sets are equal. (Contributed by Thierry Arnoux, 16-Nov-2023.) |
Ref | Expression |
---|---|
eqdif | ⊢ (((𝐴 ∖ 𝐵) = ∅ ∧ (𝐵 ∖ 𝐴) = ∅) → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqss 3998 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
2 | ssdif0 4364 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) | |
3 | ssdif0 4364 | . . 3 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ∖ 𝐴) = ∅) | |
4 | 2, 3 | anbi12i 625 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ ((𝐴 ∖ 𝐵) = ∅ ∧ (𝐵 ∖ 𝐴) = ∅)) |
5 | 1, 4 | sylbbr 235 | 1 ⊢ (((𝐴 ∖ 𝐵) = ∅ ∧ (𝐵 ∖ 𝐴) = ∅) → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∖ cdif 3946 ⊆ wss 3949 ∅c0 4323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-v 3474 df-dif 3952 df-in 3956 df-ss 3966 df-nul 4324 |
This theorem is referenced by: pmtrcnelor 32520 |
Copyright terms: Public domain | W3C validator |