Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqdif Structured version   Visualization version   GIF version

Theorem eqdif 32547
Description: If both set differences of two sets are empty, those sets are equal. (Contributed by Thierry Arnoux, 16-Nov-2023.)
Assertion
Ref Expression
eqdif (((𝐴𝐵) = ∅ ∧ (𝐵𝐴) = ∅) → 𝐴 = 𝐵)

Proof of Theorem eqdif
StepHypRef Expression
1 eqss 4011 . 2 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
2 ssdif0 4372 . . 3 (𝐴𝐵 ↔ (𝐴𝐵) = ∅)
3 ssdif0 4372 . . 3 (𝐵𝐴 ↔ (𝐵𝐴) = ∅)
42, 3anbi12i 628 . 2 ((𝐴𝐵𝐵𝐴) ↔ ((𝐴𝐵) = ∅ ∧ (𝐵𝐴) = ∅))
51, 4sylbbr 236 1 (((𝐴𝐵) = ∅ ∧ (𝐵𝐴) = ∅) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  cdif 3960  wss 3963  c0 4339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-dif 3966  df-ss 3980  df-nul 4340
This theorem is referenced by:  pmtrcnelor  33094
  Copyright terms: Public domain W3C validator