![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > indifbi | Structured version Visualization version GIF version |
Description: Two ways to express equality relative to a class 𝐴. (Contributed by Thierry Arnoux, 23-Jun-2024.) |
Ref | Expression |
---|---|
indifbi | ⊢ ((𝐴 ∩ 𝐵) = (𝐴 ∩ 𝐶) ↔ (𝐴 ∖ 𝐵) = (𝐴 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 4228 | . . 3 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
2 | inss1 4228 | . . 3 ⊢ (𝐴 ∩ 𝐶) ⊆ 𝐴 | |
3 | rcompleq 4295 | . . 3 ⊢ (((𝐴 ∩ 𝐵) ⊆ 𝐴 ∧ (𝐴 ∩ 𝐶) ⊆ 𝐴) → ((𝐴 ∩ 𝐵) = (𝐴 ∩ 𝐶) ↔ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ (𝐴 ∩ 𝐶)))) | |
4 | 1, 2, 3 | mp2an 689 | . 2 ⊢ ((𝐴 ∩ 𝐵) = (𝐴 ∩ 𝐶) ↔ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ (𝐴 ∩ 𝐶))) |
5 | difin 4261 | . . 3 ⊢ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ 𝐵) | |
6 | difin 4261 | . . 3 ⊢ (𝐴 ∖ (𝐴 ∩ 𝐶)) = (𝐴 ∖ 𝐶) | |
7 | 5, 6 | eqeq12i 2749 | . 2 ⊢ ((𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ (𝐴 ∩ 𝐶)) ↔ (𝐴 ∖ 𝐵) = (𝐴 ∖ 𝐶)) |
8 | 4, 7 | bitri 275 | 1 ⊢ ((𝐴 ∩ 𝐵) = (𝐴 ∩ 𝐶) ↔ (𝐴 ∖ 𝐵) = (𝐴 ∖ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1540 ∖ cdif 3945 ∩ cin 3947 ⊆ wss 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-dif 3951 df-in 3955 df-ss 3965 |
This theorem is referenced by: fressupp 32178 |
Copyright terms: Public domain | W3C validator |