| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > indifbi | Structured version Visualization version GIF version | ||
| Description: Two ways to express equality relative to a class 𝐴. (Contributed by Thierry Arnoux, 23-Jun-2024.) |
| Ref | Expression |
|---|---|
| indifbi | ⊢ ((𝐴 ∩ 𝐵) = (𝐴 ∩ 𝐶) ↔ (𝐴 ∖ 𝐵) = (𝐴 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 4217 | . . 3 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 2 | inss1 4217 | . . 3 ⊢ (𝐴 ∩ 𝐶) ⊆ 𝐴 | |
| 3 | rcompleq 4285 | . . 3 ⊢ (((𝐴 ∩ 𝐵) ⊆ 𝐴 ∧ (𝐴 ∩ 𝐶) ⊆ 𝐴) → ((𝐴 ∩ 𝐵) = (𝐴 ∩ 𝐶) ↔ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ (𝐴 ∩ 𝐶)))) | |
| 4 | 1, 2, 3 | mp2an 692 | . 2 ⊢ ((𝐴 ∩ 𝐵) = (𝐴 ∩ 𝐶) ↔ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ (𝐴 ∩ 𝐶))) |
| 5 | difin 4252 | . . 3 ⊢ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ 𝐵) | |
| 6 | difin 4252 | . . 3 ⊢ (𝐴 ∖ (𝐴 ∩ 𝐶)) = (𝐴 ∖ 𝐶) | |
| 7 | 5, 6 | eqeq12i 2754 | . 2 ⊢ ((𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ (𝐴 ∩ 𝐶)) ↔ (𝐴 ∖ 𝐵) = (𝐴 ∖ 𝐶)) |
| 8 | 4, 7 | bitri 275 | 1 ⊢ ((𝐴 ∩ 𝐵) = (𝐴 ∩ 𝐶) ↔ (𝐴 ∖ 𝐵) = (𝐴 ∖ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∖ cdif 3928 ∩ cin 3930 ⊆ wss 3931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-in 3938 df-ss 3948 |
| This theorem is referenced by: fressupp 32670 |
| Copyright terms: Public domain | W3C validator |