Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmtrcnelor Structured version   Visualization version   GIF version

Theorem pmtrcnelor 31647
Description: Composing a permutation 𝐹 with a transposition which results in moving one or two less points. (Contributed by Thierry Arnoux, 16-Nov-2023.)
Hypotheses
Ref Expression
pmtrcnel.s 𝑆 = (SymGrp‘𝐷)
pmtrcnel.t 𝑇 = (pmTrsp‘𝐷)
pmtrcnel.b 𝐵 = (Base‘𝑆)
pmtrcnel.j 𝐽 = (𝐹𝐼)
pmtrcnel.d (𝜑𝐷𝑉)
pmtrcnel.f (𝜑𝐹𝐵)
pmtrcnel.i (𝜑𝐼 ∈ dom (𝐹 ∖ I ))
pmtrcnel.e 𝐸 = dom (𝐹 ∖ I )
pmtrcnel.a 𝐴 = dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )
Assertion
Ref Expression
pmtrcnelor (𝜑 → (𝐴 = (𝐸 ∖ {𝐼, 𝐽}) ∨ 𝐴 = (𝐸 ∖ {𝐼})))

Proof of Theorem pmtrcnelor
StepHypRef Expression
1 pmtrcnel.s . . . . . . 7 𝑆 = (SymGrp‘𝐷)
2 pmtrcnel.t . . . . . . 7 𝑇 = (pmTrsp‘𝐷)
3 pmtrcnel.b . . . . . . 7 𝐵 = (Base‘𝑆)
4 pmtrcnel.j . . . . . . 7 𝐽 = (𝐹𝐼)
5 pmtrcnel.d . . . . . . 7 (𝜑𝐷𝑉)
6 pmtrcnel.f . . . . . . 7 (𝜑𝐹𝐵)
7 pmtrcnel.i . . . . . . 7 (𝜑𝐼 ∈ dom (𝐹 ∖ I ))
81, 2, 3, 4, 5, 6, 7pmtrcnel 31645 . . . . . 6 (𝜑 → dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ⊆ (dom (𝐹 ∖ I ) ∖ {𝐼}))
9 pmtrcnel.a . . . . . 6 𝐴 = dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )
10 pmtrcnel.e . . . . . . 7 𝐸 = dom (𝐹 ∖ I )
1110difeq1i 4065 . . . . . 6 (𝐸 ∖ {𝐼}) = (dom (𝐹 ∖ I ) ∖ {𝐼})
128, 9, 113sstr4g 3977 . . . . 5 (𝜑𝐴 ⊆ (𝐸 ∖ {𝐼}))
1312ssdifd 4087 . . . 4 (𝜑 → (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) ⊆ ((𝐸 ∖ {𝐼}) ∖ (𝐸 ∖ {𝐼, 𝐽})))
14 difpr 4750 . . . . . 6 (𝐸 ∖ {𝐼, 𝐽}) = ((𝐸 ∖ {𝐼}) ∖ {𝐽})
1514difeq2i 4066 . . . . 5 ((𝐸 ∖ {𝐼}) ∖ (𝐸 ∖ {𝐼, 𝐽})) = ((𝐸 ∖ {𝐼}) ∖ ((𝐸 ∖ {𝐼}) ∖ {𝐽}))
161, 3symgbasf1o 19078 . . . . . . . . . . . . 13 (𝐹𝐵𝐹:𝐷1-1-onto𝐷)
176, 16syl 17 . . . . . . . . . . . 12 (𝜑𝐹:𝐷1-1-onto𝐷)
18 f1omvdmvd 19147 . . . . . . . . . . . 12 ((𝐹:𝐷1-1-onto𝐷𝐼 ∈ dom (𝐹 ∖ I )) → (𝐹𝐼) ∈ (dom (𝐹 ∖ I ) ∖ {𝐼}))
1917, 7, 18syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐹𝐼) ∈ (dom (𝐹 ∖ I ) ∖ {𝐼}))
204, 19eqeltrid 2841 . . . . . . . . . 10 (𝜑𝐽 ∈ (dom (𝐹 ∖ I ) ∖ {𝐼}))
2120eldifad 3910 . . . . . . . . 9 (𝜑𝐽 ∈ dom (𝐹 ∖ I ))
2221, 10eleqtrrdi 2848 . . . . . . . 8 (𝜑𝐽𝐸)
234a1i 11 . . . . . . . . 9 (𝜑𝐽 = (𝐹𝐼))
24 f1of 6767 . . . . . . . . . . . 12 (𝐹:𝐷1-1-onto𝐷𝐹:𝐷𝐷)
2517, 24syl 17 . . . . . . . . . . 11 (𝜑𝐹:𝐷𝐷)
2625ffnd 6652 . . . . . . . . . 10 (𝜑𝐹 Fn 𝐷)
27 difss 4078 . . . . . . . . . . . . 13 (𝐹 ∖ I ) ⊆ 𝐹
28 dmss 5844 . . . . . . . . . . . . 13 ((𝐹 ∖ I ) ⊆ 𝐹 → dom (𝐹 ∖ I ) ⊆ dom 𝐹)
2927, 28ax-mp 5 . . . . . . . . . . . 12 dom (𝐹 ∖ I ) ⊆ dom 𝐹
3029, 7sselid 3930 . . . . . . . . . . 11 (𝜑𝐼 ∈ dom 𝐹)
3125fdmd 6662 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = 𝐷)
3230, 31eleqtrd 2839 . . . . . . . . . 10 (𝜑𝐼𝐷)
33 fnelnfp 7105 . . . . . . . . . . 11 ((𝐹 Fn 𝐷𝐼𝐷) → (𝐼 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝐼) ≠ 𝐼))
3433biimpa 477 . . . . . . . . . 10 (((𝐹 Fn 𝐷𝐼𝐷) ∧ 𝐼 ∈ dom (𝐹 ∖ I )) → (𝐹𝐼) ≠ 𝐼)
3526, 32, 7, 34syl21anc 835 . . . . . . . . 9 (𝜑 → (𝐹𝐼) ≠ 𝐼)
3623, 35eqnetrd 3008 . . . . . . . 8 (𝜑𝐽𝐼)
37 eldifsn 4734 . . . . . . . 8 (𝐽 ∈ (𝐸 ∖ {𝐼}) ↔ (𝐽𝐸𝐽𝐼))
3822, 36, 37sylanbrc 583 . . . . . . 7 (𝜑𝐽 ∈ (𝐸 ∖ {𝐼}))
3938snssd 4756 . . . . . 6 (𝜑 → {𝐽} ⊆ (𝐸 ∖ {𝐼}))
40 dfss4 4205 . . . . . 6 ({𝐽} ⊆ (𝐸 ∖ {𝐼}) ↔ ((𝐸 ∖ {𝐼}) ∖ ((𝐸 ∖ {𝐼}) ∖ {𝐽})) = {𝐽})
4139, 40sylib 217 . . . . 5 (𝜑 → ((𝐸 ∖ {𝐼}) ∖ ((𝐸 ∖ {𝐼}) ∖ {𝐽})) = {𝐽})
4215, 41eqtrid 2788 . . . 4 (𝜑 → ((𝐸 ∖ {𝐼}) ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽})
4313, 42sseqtrd 3972 . . 3 (𝜑 → (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) ⊆ {𝐽})
44 sssn 4773 . . 3 ((𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) ⊆ {𝐽} ↔ ((𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = ∅ ∨ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}))
4543, 44sylib 217 . 2 (𝜑 → ((𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = ∅ ∨ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}))
46 simpr 485 . . . . 5 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = ∅) → (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = ∅)
471, 2, 3, 4, 5, 6, 7pmtrcnel2 31646 . . . . . . . 8 (𝜑 → (dom (𝐹 ∖ I ) ∖ {𝐼, 𝐽}) ⊆ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ))
4810difeq1i 4065 . . . . . . . 8 (𝐸 ∖ {𝐼, 𝐽}) = (dom (𝐹 ∖ I ) ∖ {𝐼, 𝐽})
4947, 48, 93sstr4g 3977 . . . . . . 7 (𝜑 → (𝐸 ∖ {𝐼, 𝐽}) ⊆ 𝐴)
50 ssdif0 4310 . . . . . . 7 ((𝐸 ∖ {𝐼, 𝐽}) ⊆ 𝐴 ↔ ((𝐸 ∖ {𝐼, 𝐽}) ∖ 𝐴) = ∅)
5149, 50sylib 217 . . . . . 6 (𝜑 → ((𝐸 ∖ {𝐼, 𝐽}) ∖ 𝐴) = ∅)
5251adantr 481 . . . . 5 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = ∅) → ((𝐸 ∖ {𝐼, 𝐽}) ∖ 𝐴) = ∅)
53 eqdif 31154 . . . . 5 (((𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = ∅ ∧ ((𝐸 ∖ {𝐼, 𝐽}) ∖ 𝐴) = ∅) → 𝐴 = (𝐸 ∖ {𝐼, 𝐽}))
5446, 52, 53syl2anc 584 . . . 4 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = ∅) → 𝐴 = (𝐸 ∖ {𝐼, 𝐽}))
5554ex 413 . . 3 (𝜑 → ((𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = ∅ → 𝐴 = (𝐸 ∖ {𝐼, 𝐽})))
5612adantr 481 . . . . 5 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → 𝐴 ⊆ (𝐸 ∖ {𝐼}))
5714, 49eqsstrrid 3981 . . . . . . . 8 (𝜑 → ((𝐸 ∖ {𝐼}) ∖ {𝐽}) ⊆ 𝐴)
5857adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → ((𝐸 ∖ {𝐼}) ∖ {𝐽}) ⊆ 𝐴)
59 ssundif 4432 . . . . . . 7 ((𝐸 ∖ {𝐼}) ⊆ ({𝐽} ∪ 𝐴) ↔ ((𝐸 ∖ {𝐼}) ∖ {𝐽}) ⊆ 𝐴)
6058, 59sylibr 233 . . . . . 6 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → (𝐸 ∖ {𝐼}) ⊆ ({𝐽} ∪ 𝐴))
61 ssidd 3955 . . . . . . . . 9 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → {𝐽} ⊆ {𝐽})
62 simpr 485 . . . . . . . . 9 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽})
6361, 62sseqtrrd 3973 . . . . . . . 8 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → {𝐽} ⊆ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})))
6463difss2d 4081 . . . . . . 7 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → {𝐽} ⊆ 𝐴)
65 ssequn1 4127 . . . . . . 7 ({𝐽} ⊆ 𝐴 ↔ ({𝐽} ∪ 𝐴) = 𝐴)
6664, 65sylib 217 . . . . . 6 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → ({𝐽} ∪ 𝐴) = 𝐴)
6760, 66sseqtrd 3972 . . . . 5 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → (𝐸 ∖ {𝐼}) ⊆ 𝐴)
6856, 67eqssd 3949 . . . 4 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → 𝐴 = (𝐸 ∖ {𝐼}))
6968ex 413 . . 3 (𝜑 → ((𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽} → 𝐴 = (𝐸 ∖ {𝐼})))
7055, 69orim12d 962 . 2 (𝜑 → (((𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = ∅ ∨ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → (𝐴 = (𝐸 ∖ {𝐼, 𝐽}) ∨ 𝐴 = (𝐸 ∖ {𝐼}))))
7145, 70mpd 15 1 (𝜑 → (𝐴 = (𝐸 ∖ {𝐼, 𝐽}) ∨ 𝐴 = (𝐸 ∖ {𝐼})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844   = wceq 1540  wcel 2105  wne 2940  cdif 3895  cun 3896  wss 3898  c0 4269  {csn 4573  {cpr 4575   I cid 5517  dom cdm 5620  ccom 5624   Fn wfn 6474  wf 6475  1-1-ontowf1o 6478  cfv 6479  Basecbs 17009  SymGrpcsymg 19070  pmTrspcpmtr 19145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-1st 7899  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-2o 8368  df-er 8569  df-map 8688  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-nn 12075  df-2 12137  df-3 12138  df-4 12139  df-5 12140  df-6 12141  df-7 12142  df-8 12143  df-9 12144  df-n0 12335  df-z 12421  df-uz 12684  df-fz 13341  df-struct 16945  df-sets 16962  df-slot 16980  df-ndx 16992  df-base 17010  df-ress 17039  df-plusg 17072  df-tset 17078  df-efmnd 18604  df-symg 19071  df-pmtr 19146
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator