Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmtrcnelor Structured version   Visualization version   GIF version

Theorem pmtrcnelor 32293
Description: Composing a permutation 𝐹 with a transposition which results in moving one or two less points. (Contributed by Thierry Arnoux, 16-Nov-2023.)
Hypotheses
Ref Expression
pmtrcnel.s 𝑆 = (SymGrp‘𝐷)
pmtrcnel.t 𝑇 = (pmTrsp‘𝐷)
pmtrcnel.b 𝐵 = (Base‘𝑆)
pmtrcnel.j 𝐽 = (𝐹𝐼)
pmtrcnel.d (𝜑𝐷𝑉)
pmtrcnel.f (𝜑𝐹𝐵)
pmtrcnel.i (𝜑𝐼 ∈ dom (𝐹 ∖ I ))
pmtrcnel.e 𝐸 = dom (𝐹 ∖ I )
pmtrcnel.a 𝐴 = dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )
Assertion
Ref Expression
pmtrcnelor (𝜑 → (𝐴 = (𝐸 ∖ {𝐼, 𝐽}) ∨ 𝐴 = (𝐸 ∖ {𝐼})))

Proof of Theorem pmtrcnelor
StepHypRef Expression
1 pmtrcnel.s . . . . . . 7 𝑆 = (SymGrp‘𝐷)
2 pmtrcnel.t . . . . . . 7 𝑇 = (pmTrsp‘𝐷)
3 pmtrcnel.b . . . . . . 7 𝐵 = (Base‘𝑆)
4 pmtrcnel.j . . . . . . 7 𝐽 = (𝐹𝐼)
5 pmtrcnel.d . . . . . . 7 (𝜑𝐷𝑉)
6 pmtrcnel.f . . . . . . 7 (𝜑𝐹𝐵)
7 pmtrcnel.i . . . . . . 7 (𝜑𝐼 ∈ dom (𝐹 ∖ I ))
81, 2, 3, 4, 5, 6, 7pmtrcnel 32291 . . . . . 6 (𝜑 → dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ⊆ (dom (𝐹 ∖ I ) ∖ {𝐼}))
9 pmtrcnel.a . . . . . 6 𝐴 = dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )
10 pmtrcnel.e . . . . . . 7 𝐸 = dom (𝐹 ∖ I )
1110difeq1i 4118 . . . . . 6 (𝐸 ∖ {𝐼}) = (dom (𝐹 ∖ I ) ∖ {𝐼})
128, 9, 113sstr4g 4027 . . . . 5 (𝜑𝐴 ⊆ (𝐸 ∖ {𝐼}))
1312ssdifd 4140 . . . 4 (𝜑 → (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) ⊆ ((𝐸 ∖ {𝐼}) ∖ (𝐸 ∖ {𝐼, 𝐽})))
14 difpr 4806 . . . . . 6 (𝐸 ∖ {𝐼, 𝐽}) = ((𝐸 ∖ {𝐼}) ∖ {𝐽})
1514difeq2i 4119 . . . . 5 ((𝐸 ∖ {𝐼}) ∖ (𝐸 ∖ {𝐼, 𝐽})) = ((𝐸 ∖ {𝐼}) ∖ ((𝐸 ∖ {𝐼}) ∖ {𝐽}))
161, 3symgbasf1o 19244 . . . . . . . . . . . . 13 (𝐹𝐵𝐹:𝐷1-1-onto𝐷)
176, 16syl 17 . . . . . . . . . . . 12 (𝜑𝐹:𝐷1-1-onto𝐷)
18 f1omvdmvd 19313 . . . . . . . . . . . 12 ((𝐹:𝐷1-1-onto𝐷𝐼 ∈ dom (𝐹 ∖ I )) → (𝐹𝐼) ∈ (dom (𝐹 ∖ I ) ∖ {𝐼}))
1917, 7, 18syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐹𝐼) ∈ (dom (𝐹 ∖ I ) ∖ {𝐼}))
204, 19eqeltrid 2837 . . . . . . . . . 10 (𝜑𝐽 ∈ (dom (𝐹 ∖ I ) ∖ {𝐼}))
2120eldifad 3960 . . . . . . . . 9 (𝜑𝐽 ∈ dom (𝐹 ∖ I ))
2221, 10eleqtrrdi 2844 . . . . . . . 8 (𝜑𝐽𝐸)
234a1i 11 . . . . . . . . 9 (𝜑𝐽 = (𝐹𝐼))
24 f1of 6833 . . . . . . . . . . . 12 (𝐹:𝐷1-1-onto𝐷𝐹:𝐷𝐷)
2517, 24syl 17 . . . . . . . . . . 11 (𝜑𝐹:𝐷𝐷)
2625ffnd 6718 . . . . . . . . . 10 (𝜑𝐹 Fn 𝐷)
27 difss 4131 . . . . . . . . . . . . 13 (𝐹 ∖ I ) ⊆ 𝐹
28 dmss 5902 . . . . . . . . . . . . 13 ((𝐹 ∖ I ) ⊆ 𝐹 → dom (𝐹 ∖ I ) ⊆ dom 𝐹)
2927, 28ax-mp 5 . . . . . . . . . . . 12 dom (𝐹 ∖ I ) ⊆ dom 𝐹
3029, 7sselid 3980 . . . . . . . . . . 11 (𝜑𝐼 ∈ dom 𝐹)
3125fdmd 6728 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = 𝐷)
3230, 31eleqtrd 2835 . . . . . . . . . 10 (𝜑𝐼𝐷)
33 fnelnfp 7177 . . . . . . . . . . 11 ((𝐹 Fn 𝐷𝐼𝐷) → (𝐼 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝐼) ≠ 𝐼))
3433biimpa 477 . . . . . . . . . 10 (((𝐹 Fn 𝐷𝐼𝐷) ∧ 𝐼 ∈ dom (𝐹 ∖ I )) → (𝐹𝐼) ≠ 𝐼)
3526, 32, 7, 34syl21anc 836 . . . . . . . . 9 (𝜑 → (𝐹𝐼) ≠ 𝐼)
3623, 35eqnetrd 3008 . . . . . . . 8 (𝜑𝐽𝐼)
37 eldifsn 4790 . . . . . . . 8 (𝐽 ∈ (𝐸 ∖ {𝐼}) ↔ (𝐽𝐸𝐽𝐼))
3822, 36, 37sylanbrc 583 . . . . . . 7 (𝜑𝐽 ∈ (𝐸 ∖ {𝐼}))
3938snssd 4812 . . . . . 6 (𝜑 → {𝐽} ⊆ (𝐸 ∖ {𝐼}))
40 dfss4 4258 . . . . . 6 ({𝐽} ⊆ (𝐸 ∖ {𝐼}) ↔ ((𝐸 ∖ {𝐼}) ∖ ((𝐸 ∖ {𝐼}) ∖ {𝐽})) = {𝐽})
4139, 40sylib 217 . . . . 5 (𝜑 → ((𝐸 ∖ {𝐼}) ∖ ((𝐸 ∖ {𝐼}) ∖ {𝐽})) = {𝐽})
4215, 41eqtrid 2784 . . . 4 (𝜑 → ((𝐸 ∖ {𝐼}) ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽})
4313, 42sseqtrd 4022 . . 3 (𝜑 → (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) ⊆ {𝐽})
44 sssn 4829 . . 3 ((𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) ⊆ {𝐽} ↔ ((𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = ∅ ∨ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}))
4543, 44sylib 217 . 2 (𝜑 → ((𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = ∅ ∨ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}))
46 simpr 485 . . . . 5 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = ∅) → (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = ∅)
471, 2, 3, 4, 5, 6, 7pmtrcnel2 32292 . . . . . . . 8 (𝜑 → (dom (𝐹 ∖ I ) ∖ {𝐼, 𝐽}) ⊆ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ))
4810difeq1i 4118 . . . . . . . 8 (𝐸 ∖ {𝐼, 𝐽}) = (dom (𝐹 ∖ I ) ∖ {𝐼, 𝐽})
4947, 48, 93sstr4g 4027 . . . . . . 7 (𝜑 → (𝐸 ∖ {𝐼, 𝐽}) ⊆ 𝐴)
50 ssdif0 4363 . . . . . . 7 ((𝐸 ∖ {𝐼, 𝐽}) ⊆ 𝐴 ↔ ((𝐸 ∖ {𝐼, 𝐽}) ∖ 𝐴) = ∅)
5149, 50sylib 217 . . . . . 6 (𝜑 → ((𝐸 ∖ {𝐼, 𝐽}) ∖ 𝐴) = ∅)
5251adantr 481 . . . . 5 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = ∅) → ((𝐸 ∖ {𝐼, 𝐽}) ∖ 𝐴) = ∅)
53 eqdif 31795 . . . . 5 (((𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = ∅ ∧ ((𝐸 ∖ {𝐼, 𝐽}) ∖ 𝐴) = ∅) → 𝐴 = (𝐸 ∖ {𝐼, 𝐽}))
5446, 52, 53syl2anc 584 . . . 4 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = ∅) → 𝐴 = (𝐸 ∖ {𝐼, 𝐽}))
5554ex 413 . . 3 (𝜑 → ((𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = ∅ → 𝐴 = (𝐸 ∖ {𝐼, 𝐽})))
5612adantr 481 . . . . 5 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → 𝐴 ⊆ (𝐸 ∖ {𝐼}))
5714, 49eqsstrrid 4031 . . . . . . . 8 (𝜑 → ((𝐸 ∖ {𝐼}) ∖ {𝐽}) ⊆ 𝐴)
5857adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → ((𝐸 ∖ {𝐼}) ∖ {𝐽}) ⊆ 𝐴)
59 ssundif 4487 . . . . . . 7 ((𝐸 ∖ {𝐼}) ⊆ ({𝐽} ∪ 𝐴) ↔ ((𝐸 ∖ {𝐼}) ∖ {𝐽}) ⊆ 𝐴)
6058, 59sylibr 233 . . . . . 6 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → (𝐸 ∖ {𝐼}) ⊆ ({𝐽} ∪ 𝐴))
61 ssidd 4005 . . . . . . . . 9 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → {𝐽} ⊆ {𝐽})
62 simpr 485 . . . . . . . . 9 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽})
6361, 62sseqtrrd 4023 . . . . . . . 8 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → {𝐽} ⊆ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})))
6463difss2d 4134 . . . . . . 7 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → {𝐽} ⊆ 𝐴)
65 ssequn1 4180 . . . . . . 7 ({𝐽} ⊆ 𝐴 ↔ ({𝐽} ∪ 𝐴) = 𝐴)
6664, 65sylib 217 . . . . . 6 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → ({𝐽} ∪ 𝐴) = 𝐴)
6760, 66sseqtrd 4022 . . . . 5 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → (𝐸 ∖ {𝐼}) ⊆ 𝐴)
6856, 67eqssd 3999 . . . 4 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → 𝐴 = (𝐸 ∖ {𝐼}))
6968ex 413 . . 3 (𝜑 → ((𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽} → 𝐴 = (𝐸 ∖ {𝐼})))
7055, 69orim12d 963 . 2 (𝜑 → (((𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = ∅ ∨ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → (𝐴 = (𝐸 ∖ {𝐼, 𝐽}) ∨ 𝐴 = (𝐸 ∖ {𝐼}))))
7145, 70mpd 15 1 (𝜑 → (𝐴 = (𝐸 ∖ {𝐼, 𝐽}) ∨ 𝐴 = (𝐸 ∖ {𝐼})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2940  cdif 3945  cun 3946  wss 3948  c0 4322  {csn 4628  {cpr 4630   I cid 5573  dom cdm 5676  ccom 5680   Fn wfn 6538  wf 6539  1-1-ontowf1o 6542  cfv 6543  Basecbs 17146  SymGrpcsymg 19236  pmTrspcpmtr 19311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-nn 12215  df-2 12277  df-3 12278  df-4 12279  df-5 12280  df-6 12281  df-7 12282  df-8 12283  df-9 12284  df-n0 12475  df-z 12561  df-uz 12825  df-fz 13487  df-struct 17082  df-sets 17099  df-slot 17117  df-ndx 17129  df-base 17147  df-ress 17176  df-plusg 17212  df-tset 17218  df-efmnd 18752  df-symg 19237  df-pmtr 19312
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator