Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmtrcnelor Structured version   Visualization version   GIF version

Theorem pmtrcnelor 33033
Description: Composing a permutation 𝐹 with a transposition which results in moving one or two less points. (Contributed by Thierry Arnoux, 16-Nov-2023.)
Hypotheses
Ref Expression
pmtrcnel.s 𝑆 = (SymGrp‘𝐷)
pmtrcnel.t 𝑇 = (pmTrsp‘𝐷)
pmtrcnel.b 𝐵 = (Base‘𝑆)
pmtrcnel.j 𝐽 = (𝐹𝐼)
pmtrcnel.d (𝜑𝐷𝑉)
pmtrcnel.f (𝜑𝐹𝐵)
pmtrcnel.i (𝜑𝐼 ∈ dom (𝐹 ∖ I ))
pmtrcnel.e 𝐸 = dom (𝐹 ∖ I )
pmtrcnel.a 𝐴 = dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )
Assertion
Ref Expression
pmtrcnelor (𝜑 → (𝐴 = (𝐸 ∖ {𝐼, 𝐽}) ∨ 𝐴 = (𝐸 ∖ {𝐼})))

Proof of Theorem pmtrcnelor
StepHypRef Expression
1 pmtrcnel.s . . . . . . 7 𝑆 = (SymGrp‘𝐷)
2 pmtrcnel.t . . . . . . 7 𝑇 = (pmTrsp‘𝐷)
3 pmtrcnel.b . . . . . . 7 𝐵 = (Base‘𝑆)
4 pmtrcnel.j . . . . . . 7 𝐽 = (𝐹𝐼)
5 pmtrcnel.d . . . . . . 7 (𝜑𝐷𝑉)
6 pmtrcnel.f . . . . . . 7 (𝜑𝐹𝐵)
7 pmtrcnel.i . . . . . . 7 (𝜑𝐼 ∈ dom (𝐹 ∖ I ))
81, 2, 3, 4, 5, 6, 7pmtrcnel 33031 . . . . . 6 (𝜑 → dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ⊆ (dom (𝐹 ∖ I ) ∖ {𝐼}))
9 pmtrcnel.a . . . . . 6 𝐴 = dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )
10 pmtrcnel.e . . . . . . 7 𝐸 = dom (𝐹 ∖ I )
1110difeq1i 4073 . . . . . 6 (𝐸 ∖ {𝐼}) = (dom (𝐹 ∖ I ) ∖ {𝐼})
128, 9, 113sstr4g 3989 . . . . 5 (𝜑𝐴 ⊆ (𝐸 ∖ {𝐼}))
1312ssdifd 4096 . . . 4 (𝜑 → (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) ⊆ ((𝐸 ∖ {𝐼}) ∖ (𝐸 ∖ {𝐼, 𝐽})))
14 difpr 4754 . . . . . 6 (𝐸 ∖ {𝐼, 𝐽}) = ((𝐸 ∖ {𝐼}) ∖ {𝐽})
1514difeq2i 4074 . . . . 5 ((𝐸 ∖ {𝐼}) ∖ (𝐸 ∖ {𝐼, 𝐽})) = ((𝐸 ∖ {𝐼}) ∖ ((𝐸 ∖ {𝐼}) ∖ {𝐽}))
161, 3symgbasf1o 19254 . . . . . . . . . . . . 13 (𝐹𝐵𝐹:𝐷1-1-onto𝐷)
176, 16syl 17 . . . . . . . . . . . 12 (𝜑𝐹:𝐷1-1-onto𝐷)
18 f1omvdmvd 19322 . . . . . . . . . . . 12 ((𝐹:𝐷1-1-onto𝐷𝐼 ∈ dom (𝐹 ∖ I )) → (𝐹𝐼) ∈ (dom (𝐹 ∖ I ) ∖ {𝐼}))
1917, 7, 18syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐹𝐼) ∈ (dom (𝐹 ∖ I ) ∖ {𝐼}))
204, 19eqeltrid 2832 . . . . . . . . . 10 (𝜑𝐽 ∈ (dom (𝐹 ∖ I ) ∖ {𝐼}))
2120eldifad 3915 . . . . . . . . 9 (𝜑𝐽 ∈ dom (𝐹 ∖ I ))
2221, 10eleqtrrdi 2839 . . . . . . . 8 (𝜑𝐽𝐸)
234a1i 11 . . . . . . . . 9 (𝜑𝐽 = (𝐹𝐼))
24 f1of 6764 . . . . . . . . . . . 12 (𝐹:𝐷1-1-onto𝐷𝐹:𝐷𝐷)
2517, 24syl 17 . . . . . . . . . . 11 (𝜑𝐹:𝐷𝐷)
2625ffnd 6653 . . . . . . . . . 10 (𝜑𝐹 Fn 𝐷)
27 difss 4087 . . . . . . . . . . . . 13 (𝐹 ∖ I ) ⊆ 𝐹
28 dmss 5845 . . . . . . . . . . . . 13 ((𝐹 ∖ I ) ⊆ 𝐹 → dom (𝐹 ∖ I ) ⊆ dom 𝐹)
2927, 28ax-mp 5 . . . . . . . . . . . 12 dom (𝐹 ∖ I ) ⊆ dom 𝐹
3029, 7sselid 3933 . . . . . . . . . . 11 (𝜑𝐼 ∈ dom 𝐹)
3125fdmd 6662 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = 𝐷)
3230, 31eleqtrd 2830 . . . . . . . . . 10 (𝜑𝐼𝐷)
33 fnelnfp 7113 . . . . . . . . . . 11 ((𝐹 Fn 𝐷𝐼𝐷) → (𝐼 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝐼) ≠ 𝐼))
3433biimpa 476 . . . . . . . . . 10 (((𝐹 Fn 𝐷𝐼𝐷) ∧ 𝐼 ∈ dom (𝐹 ∖ I )) → (𝐹𝐼) ≠ 𝐼)
3526, 32, 7, 34syl21anc 837 . . . . . . . . 9 (𝜑 → (𝐹𝐼) ≠ 𝐼)
3623, 35eqnetrd 2992 . . . . . . . 8 (𝜑𝐽𝐼)
37 eldifsn 4737 . . . . . . . 8 (𝐽 ∈ (𝐸 ∖ {𝐼}) ↔ (𝐽𝐸𝐽𝐼))
3822, 36, 37sylanbrc 583 . . . . . . 7 (𝜑𝐽 ∈ (𝐸 ∖ {𝐼}))
3938snssd 4760 . . . . . 6 (𝜑 → {𝐽} ⊆ (𝐸 ∖ {𝐼}))
40 dfss4 4220 . . . . . 6 ({𝐽} ⊆ (𝐸 ∖ {𝐼}) ↔ ((𝐸 ∖ {𝐼}) ∖ ((𝐸 ∖ {𝐼}) ∖ {𝐽})) = {𝐽})
4139, 40sylib 218 . . . . 5 (𝜑 → ((𝐸 ∖ {𝐼}) ∖ ((𝐸 ∖ {𝐼}) ∖ {𝐽})) = {𝐽})
4215, 41eqtrid 2776 . . . 4 (𝜑 → ((𝐸 ∖ {𝐼}) ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽})
4313, 42sseqtrd 3972 . . 3 (𝜑 → (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) ⊆ {𝐽})
44 sssn 4777 . . 3 ((𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) ⊆ {𝐽} ↔ ((𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = ∅ ∨ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}))
4543, 44sylib 218 . 2 (𝜑 → ((𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = ∅ ∨ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}))
46 simpr 484 . . . . 5 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = ∅) → (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = ∅)
471, 2, 3, 4, 5, 6, 7pmtrcnel2 33032 . . . . . . . 8 (𝜑 → (dom (𝐹 ∖ I ) ∖ {𝐼, 𝐽}) ⊆ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ))
4810difeq1i 4073 . . . . . . . 8 (𝐸 ∖ {𝐼, 𝐽}) = (dom (𝐹 ∖ I ) ∖ {𝐼, 𝐽})
4947, 48, 93sstr4g 3989 . . . . . . 7 (𝜑 → (𝐸 ∖ {𝐼, 𝐽}) ⊆ 𝐴)
50 ssdif0 4317 . . . . . . 7 ((𝐸 ∖ {𝐼, 𝐽}) ⊆ 𝐴 ↔ ((𝐸 ∖ {𝐼, 𝐽}) ∖ 𝐴) = ∅)
5149, 50sylib 218 . . . . . 6 (𝜑 → ((𝐸 ∖ {𝐼, 𝐽}) ∖ 𝐴) = ∅)
5251adantr 480 . . . . 5 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = ∅) → ((𝐸 ∖ {𝐼, 𝐽}) ∖ 𝐴) = ∅)
53 eqdif 32463 . . . . 5 (((𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = ∅ ∧ ((𝐸 ∖ {𝐼, 𝐽}) ∖ 𝐴) = ∅) → 𝐴 = (𝐸 ∖ {𝐼, 𝐽}))
5446, 52, 53syl2anc 584 . . . 4 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = ∅) → 𝐴 = (𝐸 ∖ {𝐼, 𝐽}))
5554ex 412 . . 3 (𝜑 → ((𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = ∅ → 𝐴 = (𝐸 ∖ {𝐼, 𝐽})))
5612adantr 480 . . . . 5 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → 𝐴 ⊆ (𝐸 ∖ {𝐼}))
5714, 49eqsstrrid 3975 . . . . . . . 8 (𝜑 → ((𝐸 ∖ {𝐼}) ∖ {𝐽}) ⊆ 𝐴)
5857adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → ((𝐸 ∖ {𝐼}) ∖ {𝐽}) ⊆ 𝐴)
59 ssundif 4439 . . . . . . 7 ((𝐸 ∖ {𝐼}) ⊆ ({𝐽} ∪ 𝐴) ↔ ((𝐸 ∖ {𝐼}) ∖ {𝐽}) ⊆ 𝐴)
6058, 59sylibr 234 . . . . . 6 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → (𝐸 ∖ {𝐼}) ⊆ ({𝐽} ∪ 𝐴))
61 ssidd 3959 . . . . . . . . 9 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → {𝐽} ⊆ {𝐽})
62 simpr 484 . . . . . . . . 9 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽})
6361, 62sseqtrrd 3973 . . . . . . . 8 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → {𝐽} ⊆ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})))
6463difss2d 4090 . . . . . . 7 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → {𝐽} ⊆ 𝐴)
65 ssequn1 4137 . . . . . . 7 ({𝐽} ⊆ 𝐴 ↔ ({𝐽} ∪ 𝐴) = 𝐴)
6664, 65sylib 218 . . . . . 6 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → ({𝐽} ∪ 𝐴) = 𝐴)
6760, 66sseqtrd 3972 . . . . 5 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → (𝐸 ∖ {𝐼}) ⊆ 𝐴)
6856, 67eqssd 3953 . . . 4 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → 𝐴 = (𝐸 ∖ {𝐼}))
6968ex 412 . . 3 (𝜑 → ((𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽} → 𝐴 = (𝐸 ∖ {𝐼})))
7055, 69orim12d 966 . 2 (𝜑 → (((𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = ∅ ∨ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → (𝐴 = (𝐸 ∖ {𝐼, 𝐽}) ∨ 𝐴 = (𝐸 ∖ {𝐼}))))
7145, 70mpd 15 1 (𝜑 → (𝐴 = (𝐸 ∖ {𝐼, 𝐽}) ∨ 𝐴 = (𝐸 ∖ {𝐼})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  cdif 3900  cun 3901  wss 3903  c0 4284  {csn 4577  {cpr 4579   I cid 5513  dom cdm 5619  ccom 5623   Fn wfn 6477  wf 6478  1-1-ontowf1o 6481  cfv 6482  Basecbs 17120  SymGrpcsymg 19248  pmTrspcpmtr 19320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-tset 17180  df-efmnd 18743  df-symg 19249  df-pmtr 19321
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator