| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylbbr | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism
inference from two biconditionals.
Note on the various syllogism-like statements in set.mm. The hypothetical syllogism syl 17 infers an implication from two implications (and there are 3syl 18 and 4syl 19 for chaining more inferences). There are four inferences inferring an implication from one implication and one biconditional: sylbi 217, sylib 218, sylbir 235, sylibr 234; four inferences inferring an implication from two biconditionals: sylbb 219, sylbbr 236, sylbb1 237, sylbb2 238; four inferences inferring a biconditional from two biconditionals: bitri 275, bitr2i 276, bitr3i 277, bitr4i 278 (and more for chaining more biconditionals). There are also closed forms and deduction versions of these, like, among many others, syld 47, syl5 34, syl6 35, mpbid 232, bitrd 279, bitrid 283, bitrdi 287 and variants. (Contributed by BJ, 21-Apr-2019.) |
| Ref | Expression |
|---|---|
| sylbbr.1 | ⊢ (𝜑 ↔ 𝜓) |
| sylbbr.2 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| sylbbr | ⊢ (𝜒 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbbr.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 2 | 1 | biimpri 228 | . 2 ⊢ (𝜒 → 𝜓) |
| 3 | sylbbr.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 4 | 2, 3 | sylibr 234 | 1 ⊢ (𝜒 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bitri 275 euelss 4298 dfnfc2 4896 ndmima 6077 unfi 9141 axcclem 10417 cshw1 14794 fsumcom2 15747 fprodcom2 15957 pmtr3ncomlem1 19410 mdetunilem7 22512 cmpcov2 23284 hausflf2 23892 conway 27718 umgredg 29072 vtxdginducedm1 29478 2pthfrgrrn 30218 eqdif 32455 cusgredgex2 35117 f1omptsnlem 37331 igenval2 38067 mpobi123f 38163 dmqsblocks 38852 brtrclfv2 43723 clsk1indlem3 44039 permaxpow 45006 permaxpr 45007 or2expropbilem1 47037 grtriproplem 47942 mo0sn 48808 |
| Copyright terms: Public domain | W3C validator |