| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylbbr | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism
inference from two biconditionals.
Note on the various syllogism-like statements in set.mm. The hypothetical syllogism syl 17 infers an implication from two implications (and there are 3syl 18 and 4syl 19 for chaining more inferences). There are four inferences inferring an implication from one implication and one biconditional: sylbi 217, sylib 218, sylbir 235, sylibr 234; four inferences inferring an implication from two biconditionals: sylbb 219, sylbbr 236, sylbb1 237, sylbb2 238; four inferences inferring a biconditional from two biconditionals: bitri 275, bitr2i 276, bitr3i 277, bitr4i 278 (and more for chaining more biconditionals). There are also closed forms and deduction versions of these, like, among many others, syld 47, syl5 34, syl6 35, mpbid 232, bitrd 279, bitrid 283, bitrdi 287 and variants. (Contributed by BJ, 21-Apr-2019.) |
| Ref | Expression |
|---|---|
| sylbbr.1 | ⊢ (𝜑 ↔ 𝜓) |
| sylbbr.2 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| sylbbr | ⊢ (𝜒 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbbr.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 2 | 1 | biimpri 228 | . 2 ⊢ (𝜒 → 𝜓) |
| 3 | sylbbr.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 4 | 2, 3 | sylibr 234 | 1 ⊢ (𝜒 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bitri 275 euelss 4291 dfnfc2 4889 ndmima 6063 unfi 9112 axcclem 10386 cshw1 14763 fsumcom2 15716 fprodcom2 15926 pmtr3ncomlem1 19387 mdetunilem7 22538 cmpcov2 23310 hausflf2 23918 conway 27745 umgredg 29118 vtxdginducedm1 29524 2pthfrgrrn 30261 eqdif 32498 cusgredgex2 35103 f1omptsnlem 37317 igenval2 38053 mpobi123f 38149 dmqsblocks 38838 brtrclfv2 43709 clsk1indlem3 44025 permaxpow 44992 permaxpr 44993 or2expropbilem1 47026 grtriproplem 47931 mo0sn 48797 |
| Copyright terms: Public domain | W3C validator |