![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylbbr | Structured version Visualization version GIF version |
Description: A mixed syllogism
inference from two biconditionals.
Note on the various syllogism-like statements in set.mm. The hypothetical syllogism syl 17 infers an implication from two implications (and there are 3syl 18 and 4syl 19 for chaining more inferences). There are four inferences inferring an implication from one implication and one biconditional: sylbi 216, sylib 217, sylbir 234, sylibr 233; four inferences inferring an implication from two biconditionals: sylbb 218, sylbbr 235, sylbb1 236, sylbb2 237; four inferences inferring a biconditional from two biconditionals: bitri 275, bitr2i 276, bitr3i 277, bitr4i 278 (and more for chaining more biconditionals). There are also closed forms and deduction versions of these, like, among many others, syld 47, syl5 34, syl6 35, mpbid 231, bitrd 279, bitrid 283, bitrdi 287 and variants. (Contributed by BJ, 21-Apr-2019.) |
Ref | Expression |
---|---|
sylbbr.1 | ⊢ (𝜑 ↔ 𝜓) |
sylbbr.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
sylbbr | ⊢ (𝜒 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbbr.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
2 | 1 | biimpri 227 | . 2 ⊢ (𝜒 → 𝜓) |
3 | sylbbr.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
4 | 2, 3 | sylibr 233 | 1 ⊢ (𝜒 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: bitri 275 euelss 4321 dfnfc2 4933 ndmima 6100 unfi 9169 axcclem 10449 cshw1 14769 fsumcom2 15717 fprodcom2 15925 pmtr3ncomlem1 19336 mdetunilem7 22112 cmpcov2 22886 hausflf2 23494 conway 27290 umgredg 28388 vtxdginducedm1 28790 2pthfrgrrn 29525 eqdif 31745 cusgredgex2 34102 f1omptsnlem 36206 igenval2 36923 mpobi123f 37019 brtrclfv2 42464 clsk1indlem3 42780 or2expropbilem1 45729 mo0sn 47454 |
Copyright terms: Public domain | W3C validator |