MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylbbr Structured version   Visualization version   GIF version

Theorem sylbbr 236
Description: A mixed syllogism inference from two biconditionals.

Note on the various syllogism-like statements in set.mm. The hypothetical syllogism syl 17 infers an implication from two implications (and there are 3syl 18 and 4syl 19 for chaining more inferences). There are four inferences inferring an implication from one implication and one biconditional: sylbi 217, sylib 218, sylbir 235, sylibr 234; four inferences inferring an implication from two biconditionals: sylbb 219, sylbbr 236, sylbb1 237, sylbb2 238; four inferences inferring a biconditional from two biconditionals: bitri 275, bitr2i 276, bitr3i 277, bitr4i 278 (and more for chaining more biconditionals). There are also closed forms and deduction versions of these, like, among many others, syld 47, syl5 34, syl6 35, mpbid 232, bitrd 279, bitrid 283, bitrdi 287 and variants. (Contributed by BJ, 21-Apr-2019.)

Hypotheses
Ref Expression
sylbbr.1 (𝜑𝜓)
sylbbr.2 (𝜓𝜒)
Assertion
Ref Expression
sylbbr (𝜒𝜑)

Proof of Theorem sylbbr
StepHypRef Expression
1 sylbbr.2 . . 3 (𝜓𝜒)
21biimpri 228 . 2 (𝜒𝜓)
3 sylbbr.1 . 2 (𝜑𝜓)
42, 3sylibr 234 1 (𝜒𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  bitri  275  euelss  4291  dfnfc2  4889  ndmima  6063  unfi  9112  axcclem  10386  cshw1  14763  fsumcom2  15716  fprodcom2  15926  pmtr3ncomlem1  19387  mdetunilem7  22538  cmpcov2  23310  hausflf2  23918  conway  27745  umgredg  29118  vtxdginducedm1  29524  2pthfrgrrn  30261  eqdif  32498  cusgredgex2  35103  f1omptsnlem  37317  igenval2  38053  mpobi123f  38149  dmqsblocks  38838  brtrclfv2  43709  clsk1indlem3  44025  permaxpow  44992  permaxpr  44993  or2expropbilem1  47026  grtriproplem  47931  mo0sn  48797
  Copyright terms: Public domain W3C validator