![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylbbr | Structured version Visualization version GIF version |
Description: A mixed syllogism
inference from two biconditionals.
Note on the various syllogism-like statements in set.mm. The hypothetical syllogism syl 17 infers an implication from two implications (and there are 3syl 18 and 4syl 19 for chaining more inferences). There are four inferences inferring an implication from one implication and one biconditional: sylbi 217, sylib 218, sylbir 235, sylibr 234; four inferences inferring an implication from two biconditionals: sylbb 219, sylbbr 236, sylbb1 237, sylbb2 238; four inferences inferring a biconditional from two biconditionals: bitri 275, bitr2i 276, bitr3i 277, bitr4i 278 (and more for chaining more biconditionals). There are also closed forms and deduction versions of these, like, among many others, syld 47, syl5 34, syl6 35, mpbid 232, bitrd 279, bitrid 283, bitrdi 287 and variants. (Contributed by BJ, 21-Apr-2019.) |
Ref | Expression |
---|---|
sylbbr.1 | ⊢ (𝜑 ↔ 𝜓) |
sylbbr.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
sylbbr | ⊢ (𝜒 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbbr.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
2 | 1 | biimpri 228 | . 2 ⊢ (𝜒 → 𝜓) |
3 | sylbbr.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
4 | 2, 3 | sylibr 234 | 1 ⊢ (𝜒 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: bitri 275 euelss 4351 dfnfc2 4953 ndmima 6133 unfi 9238 axcclem 10526 cshw1 14870 fsumcom2 15822 fprodcom2 16032 pmtr3ncomlem1 19515 mdetunilem7 22645 cmpcov2 23419 hausflf2 24027 conway 27862 umgredg 29173 vtxdginducedm1 29579 2pthfrgrrn 30314 eqdif 32549 cusgredgex2 35090 f1omptsnlem 37302 igenval2 38026 mpobi123f 38122 brtrclfv2 43689 clsk1indlem3 44005 or2expropbilem1 46947 grtriproplem 47790 mo0sn 48547 |
Copyright terms: Public domain | W3C validator |