Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylbbr | Structured version Visualization version GIF version |
Description: A mixed syllogism
inference from two biconditionals.
Note on the various syllogism-like statements in set.mm. The hypothetical syllogism syl 17 infers an implication from two implications (and there are 3syl 18 and 4syl 19 for chaining more inferences). There are four inferences inferring an implication from one implication and one biconditional: sylbi 220, sylib 221, sylbir 238, sylibr 237; four inferences inferring an implication from two biconditionals: sylbb 222, sylbbr 239, sylbb1 240, sylbb2 241; four inferences inferring a biconditional from two biconditionals: bitri 278, bitr2i 279, bitr3i 280, bitr4i 281 (and more for chaining more biconditionals). There are also closed forms and deduction versions of these, like, among many others, syld 47, syl5 34, syl6 35, mpbid 235, bitrd 282, syl5bb 286, bitrdi 290 and variants. (Contributed by BJ, 21-Apr-2019.) |
Ref | Expression |
---|---|
sylbbr.1 | ⊢ (𝜑 ↔ 𝜓) |
sylbbr.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
sylbbr | ⊢ (𝜒 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbbr.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
2 | 1 | biimpri 231 | . 2 ⊢ (𝜒 → 𝜓) |
3 | sylbbr.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
4 | 2, 3 | sylibr 237 | 1 ⊢ (𝜒 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 |
This theorem is referenced by: bitri 278 euelss 4224 dfnfc2 4822 ndmima 5938 unfi 8741 axcclem 9917 cshw1 14231 fsumcom2 15177 fprodcom2 15386 pmtr3ncomlem1 18668 mdetunilem7 21318 cmpcov2 22090 hausflf2 22698 umgredg 27030 vtxdginducedm1 27432 2pthfrgrrn 28166 eqdif 30388 cusgredgex2 32600 conway 33556 f1omptsnlem 35033 igenval2 35784 mpobi123f 35880 brtrclfv2 40801 clsk1indlem3 41119 or2expropbilem1 43990 |
Copyright terms: Public domain | W3C validator |