MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqimsscd Structured version   Visualization version   GIF version

Theorem eqimsscd 4035
Description: Equality implies inclusion, deduction version. (Contributed by SN, 15-Feb-2025.)
Hypothesis
Ref Expression
eqimssd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
eqimsscd (𝜑𝐵𝐴)

Proof of Theorem eqimsscd
StepHypRef Expression
1 eqimssd.1 . 2 (𝜑𝐴 = 𝐵)
2 ssid 4000 . 2 𝐴𝐴
31, 2eqsstrrdi 4033 1 (𝜑𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wss 3944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-v 3471  df-in 3951  df-ss 3961
This theorem is referenced by:  precsexlem6  28084  precsexlem7  28085  mhphf  41742
  Copyright terms: Public domain W3C validator