![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqimsscd | Structured version Visualization version GIF version |
Description: Equality implies inclusion, deduction version. (Contributed by SN, 15-Feb-2025.) |
Ref | Expression |
---|---|
eqimssd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
eqimsscd | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimssd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | ssid 4004 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
3 | 1, 2 | eqsstrrdi 4037 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-in 3955 df-ss 3965 |
This theorem is referenced by: precsexlem6 27898 precsexlem7 27899 mhphf 41472 |
Copyright terms: Public domain | W3C validator |