MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqimsscd Structured version   Visualization version   GIF version

Theorem eqimsscd 4053
Description: Equality implies inclusion, deduction version. (Contributed by SN, 15-Feb-2025.)
Hypothesis
Ref Expression
eqimssd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
eqimsscd (𝜑𝐵𝐴)

Proof of Theorem eqimsscd
StepHypRef Expression
1 eqimssd.1 . 2 (𝜑𝐴 = 𝐵)
2 ssid 4018 . 2 𝐴𝐴
31, 2eqsstrrdi 4051 1 (𝜑𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wss 3963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1777  df-cleq 2727  df-ss 3980
This theorem is referenced by:  mhplss  22177  precsexlem6  28251  precsexlem7  28252  unitscyglem5  42181  mhphf  42584  isubgrvtxuhgr  47788
  Copyright terms: Public domain W3C validator