![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqimsscd | Structured version Visualization version GIF version |
Description: Equality implies inclusion, deduction version. (Contributed by SN, 15-Feb-2025.) |
Ref | Expression |
---|---|
eqimssd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
eqimsscd | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimssd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | ssid 4000 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
3 | 1, 2 | eqsstrrdi 4033 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ⊆ wss 3944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-v 3471 df-in 3951 df-ss 3961 |
This theorem is referenced by: precsexlem6 28084 precsexlem7 28085 mhphf 41742 |
Copyright terms: Public domain | W3C validator |