| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqimsscd | Structured version Visualization version GIF version | ||
| Description: Equality implies inclusion, deduction version. (Contributed by SN, 15-Feb-2025.) |
| Ref | Expression |
|---|---|
| eqimssd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| eqimsscd | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimssd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | ssid 3952 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
| 3 | 1, 2 | eqsstrrdi 3975 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ⊆ wss 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ss 3914 |
| This theorem is referenced by: mhplss 22070 precsexlem6 28150 precsexlem7 28151 unitscyglem5 42291 mhphf 42689 isubgrvtxuhgr 47963 |
| Copyright terms: Public domain | W3C validator |