MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqimsscd Structured version   Visualization version   GIF version

Theorem eqimsscd 4039
Description: Equality implies inclusion, deduction version. (Contributed by SN, 15-Feb-2025.)
Hypothesis
Ref Expression
eqimssd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
eqimsscd (𝜑𝐵𝐴)

Proof of Theorem eqimsscd
StepHypRef Expression
1 eqimssd.1 . 2 (𝜑𝐴 = 𝐵)
2 ssid 4004 . 2 𝐴𝐴
31, 2eqsstrrdi 4037 1 (𝜑𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wss 3948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-v 3475  df-in 3955  df-ss 3965
This theorem is referenced by:  precsexlem6  27898  precsexlem7  27899  mhphf  41472
  Copyright terms: Public domain W3C validator