Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqsstrrdi | Structured version Visualization version GIF version |
Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
eqsstrrdi.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
eqsstrrdi.2 | ⊢ 𝐵 ⊆ 𝐶 |
Ref | Expression |
---|---|
eqsstrrdi | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstrrdi.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
2 | 1 | eqcomd 2744 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
3 | eqsstrrdi.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
4 | 2, 3 | eqsstrdi 3971 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: mptss 5939 ffvresb 6980 tposss 8014 sbthlem5 8827 rankxpl 9564 winafp 10384 wunex2 10425 iooval2 13041 telfsumo 15442 structcnvcnv 16782 ressbasss 16876 tsrdir 18237 idresefmnd 18453 idrespermg 18934 symgsssg 18990 gsumzoppg 19460 dsmmsubg 20860 opsrtoslem2 21173 cnclsi 22331 txss12 22664 txbasval 22665 kqsat 22790 kqcldsat 22792 fmss 23005 cfilucfil 23621 tngtopn 23720 dvaddf 25011 dvmulf 25012 dvcof 25017 dvmptres3 25025 dvmptres2 25031 dvmptcmul 25033 dvmptcj 25037 dvcnvlem 25045 dvcnv 25046 dvcnvrelem1 25086 dvcnvrelem2 25087 plyrem 25370 ulmss 25461 ulmdvlem1 25464 ulmdvlem3 25466 ulmdv 25467 isppw 26168 dchrelbas2 26290 chsupsn 29676 pjss1coi 30426 off2 30879 resspos 31146 resstos 31147 submomnd 31238 suborng 31416 elrspunidl 31508 submatres 31658 madjusmdetlem2 31680 madjusmdetlem3 31681 omsmon 32165 signstfvn 32448 elmsta 33410 mthmpps 33444 dissneqlem 35438 exrecfnlem 35477 hbtlem6 40870 dvmulcncf 43356 dvdivcncf 43358 itgsubsticclem 43406 lidlssbas 45368 |
Copyright terms: Public domain | W3C validator |