Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqsstrrdi | Structured version Visualization version GIF version |
Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
eqsstrrdi.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
eqsstrrdi.2 | ⊢ 𝐵 ⊆ 𝐶 |
Ref | Expression |
---|---|
eqsstrrdi | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstrrdi.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
2 | 1 | eqcomd 2744 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
3 | eqsstrrdi.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
4 | 2, 3 | eqsstrdi 3975 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3432 df-in 3894 df-ss 3904 |
This theorem is referenced by: mptss 5944 ffvresb 6991 tposss 8031 sbthlem5 8862 rankxpl 9621 winafp 10441 wunex2 10482 iooval2 13100 telfsumo 15502 structcnvcnv 16842 ressbasss 16938 tsrdir 18310 idresefmnd 18526 idrespermg 19007 symgsssg 19063 gsumzoppg 19533 dsmmsubg 20938 opsrtoslem2 21251 cnclsi 22411 txss12 22744 txbasval 22745 kqsat 22870 kqcldsat 22872 fmss 23085 cfilucfil 23703 tngtopn 23802 dvaddf 25094 dvmulf 25095 dvcof 25100 dvmptres3 25108 dvmptres2 25114 dvmptcmul 25116 dvmptcj 25120 dvcnvlem 25128 dvcnv 25129 dvcnvrelem1 25169 dvcnvrelem2 25170 plyrem 25453 ulmss 25544 ulmdvlem1 25547 ulmdvlem3 25549 ulmdv 25550 isppw 26251 dchrelbas2 26373 chsupsn 29761 pjss1coi 30511 off2 30964 resspos 31230 resstos 31231 submomnd 31322 suborng 31500 elrspunidl 31592 submatres 31742 madjusmdetlem2 31764 madjusmdetlem3 31765 omsmon 32251 signstfvn 32534 elmsta 33496 mthmpps 33530 dissneqlem 35497 exrecfnlem 35536 prjcrv0 40456 hbtlem6 40940 dvmulcncf 43425 dvdivcncf 43427 itgsubsticclem 43475 lidlssbas 45436 |
Copyright terms: Public domain | W3C validator |