![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqsstrrdi | Structured version Visualization version GIF version |
Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
eqsstrrdi.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
eqsstrrdi.2 | ⊢ 𝐵 ⊆ 𝐶 |
Ref | Expression |
---|---|
eqsstrrdi | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstrrdi.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
2 | 1 | eqcomd 2741 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
3 | eqsstrrdi.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
4 | 2, 3 | eqsstrdi 4050 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ⊆ wss 3963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-ss 3980 |
This theorem is referenced by: eqimsscd 4053 mptss 6062 ffvresb 7145 tposss 8251 sbthlem5 9126 rankxpl 9913 winafp 10735 wunex2 10776 iooval2 13417 telfsumo 15835 structcnvcnv 17187 ressbasssg 17282 ressbasssOLD 17285 tsrdir 18662 idresefmnd 18925 idrespermg 19444 symgsssg 19500 gsumzoppg 19977 lidlssbas 21241 dsmmsubg 21781 cnclsi 23296 txss12 23629 txbasval 23630 kqsat 23755 kqcldsat 23757 fmss 23970 cfilucfil 24588 tngtopn 24687 dvaddf 25994 dvmulf 25995 dvcof 26001 dvmptres3 26009 dvmptres2 26015 dvmptcmul 26017 dvmptcj 26021 dvcnvlem 26029 dvcnv 26030 dvcnvrelem1 26071 dvcnvrelem2 26072 plyrem 26362 ulmss 26455 ulmdvlem1 26458 ulmdvlem3 26460 ulmdv 26461 isppw 27172 dchrelbas2 27296 pw2bday 28433 chsupsn 31442 pjss1coi 32192 off2 32658 resspos 32941 resstos 32942 submomnd 33070 suborng 33325 elrspunidl 33436 evl1deg2 33582 submatres 33767 madjusmdetlem2 33789 madjusmdetlem3 33790 omsmon 34280 signstfvn 34563 elmsta 35533 mthmpps 35567 dissneqlem 37323 exrecfnlem 37362 prjcrv0 42620 hbtlem6 43118 ofoaf 43345 dvmulcncf 45881 dvdivcncf 45883 itgsubsticclem 45931 |
Copyright terms: Public domain | W3C validator |