| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqsstrrdi | Structured version Visualization version GIF version | ||
| Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| eqsstrrdi.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
| eqsstrrdi.2 | ⊢ 𝐵 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| eqsstrrdi | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrrdi.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
| 2 | 1 | eqcomd 2736 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3 | eqsstrrdi.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
| 4 | 2, 3 | eqsstrdi 3994 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-ss 3934 |
| This theorem is referenced by: eqimsscd 4007 mptss 6016 ffvresb 7100 tposss 8209 sbthlem5 9061 rankxpl 9835 winafp 10657 wunex2 10698 iooval2 13346 telfsumo 15775 structcnvcnv 17130 ressbasssg 17214 ressbasssOLD 17217 tsrdir 18570 idresefmnd 18833 idrespermg 19348 symgsssg 19404 gsumzoppg 19881 lidlssbas 21130 dsmmsubg 21659 cnclsi 23166 txss12 23499 txbasval 23500 kqsat 23625 kqcldsat 23627 fmss 23840 cfilucfil 24454 tngtopn 24545 dvaddf 25852 dvmulf 25853 dvcof 25859 dvmptres3 25867 dvmptres2 25873 dvmptcmul 25875 dvmptcj 25879 dvcnvlem 25887 dvcnv 25888 dvcnvrelem1 25929 dvcnvrelem2 25930 plyrem 26220 ulmss 26313 ulmdvlem1 26316 ulmdvlem3 26318 ulmdv 26319 isppw 27031 dchrelbas2 27155 chsupsn 31349 pjss1coi 32099 off2 32572 resspos 32899 resstos 32900 submomnd 33031 elrgspnsubrunlem2 33206 suborng 33300 elrspunidl 33406 evl1deg2 33553 submatres 33803 madjusmdetlem2 33825 madjusmdetlem3 33826 omsmon 34296 signstfvn 34567 elmsta 35542 mthmpps 35576 dissneqlem 37335 exrecfnlem 37374 prjcrv0 42628 hbtlem6 43125 ofoaf 43351 dvmulcncf 45930 dvdivcncf 45932 itgsubsticclem 45980 |
| Copyright terms: Public domain | W3C validator |