| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqsstrrdi | Structured version Visualization version GIF version | ||
| Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| eqsstrrdi.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
| eqsstrrdi.2 | ⊢ 𝐵 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| eqsstrrdi | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrrdi.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
| 2 | 1 | eqcomd 2739 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3 | eqsstrrdi.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
| 4 | 2, 3 | eqsstrdi 3975 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-ss 3915 |
| This theorem is referenced by: eqimsscd 3988 mptss 5998 ffvresb 7067 tposss 8166 sbthlem5 9015 rankxpl 9779 winafp 10599 wunex2 10640 iooval2 13285 telfsumo 15716 structcnvcnv 17071 ressbasssg 17155 ressbasssOLD 17158 resspos 18343 resstos 18344 tsrdir 18518 idresefmnd 18815 idrespermg 19331 symgsssg 19387 gsumzoppg 19864 submomnd 20052 suborng 20800 lidlssbas 21159 dsmmsubg 21689 cnclsi 23207 txss12 23540 txbasval 23541 kqsat 23666 kqcldsat 23668 fmss 23881 cfilucfil 24494 tngtopn 24585 dvaddf 25892 dvmulf 25893 dvcof 25899 dvmptres3 25907 dvmptres2 25913 dvmptcmul 25915 dvmptcj 25919 dvcnvlem 25927 dvcnv 25928 dvcnvrelem1 25969 dvcnvrelem2 25970 plyrem 26260 ulmss 26353 ulmdvlem1 26356 ulmdvlem3 26358 ulmdv 26359 isppw 27071 dchrelbas2 27195 chsupsn 31414 pjss1coi 32164 off2 32645 elrgspnsubrunlem2 33258 elrspunidl 33437 evl1deg2 33586 submatres 33891 madjusmdetlem2 33913 madjusmdetlem3 33914 omsmon 34383 signstfvn 34654 elmsta 35664 mthmpps 35698 dissneqlem 37457 exrecfnlem 37496 prjcrv0 42791 hbtlem6 43286 ofoaf 43512 dvmulcncf 46085 dvdivcncf 46087 itgsubsticclem 46135 |
| Copyright terms: Public domain | W3C validator |