![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqsstrrdi | Structured version Visualization version GIF version |
Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
eqsstrrdi.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
eqsstrrdi.2 | ⊢ 𝐵 ⊆ 𝐶 |
Ref | Expression |
---|---|
eqsstrrdi | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstrrdi.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
2 | 1 | eqcomd 2731 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
3 | eqsstrrdi.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
4 | 2, 3 | eqsstrdi 4031 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ⊆ wss 3944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1774 df-cleq 2717 df-ss 3961 |
This theorem is referenced by: eqimsscd 4034 mptss 6047 ffvresb 7134 tposss 8233 sbthlem5 9112 rankxpl 9900 winafp 10722 wunex2 10763 iooval2 13392 telfsumo 15784 structcnvcnv 17125 ressbasssg 17220 ressbasssOLD 17223 tsrdir 18599 idresefmnd 18859 idrespermg 19378 symgsssg 19434 gsumzoppg 19911 lidlssbas 21121 dsmmsubg 21694 opsrtoslem2 22022 cnclsi 23220 txss12 23553 txbasval 23554 kqsat 23679 kqcldsat 23681 fmss 23894 cfilucfil 24512 tngtopn 24611 dvaddf 25917 dvmulf 25918 dvcof 25924 dvmptres3 25932 dvmptres2 25938 dvmptcmul 25940 dvmptcj 25944 dvcnvlem 25952 dvcnv 25953 dvcnvrelem1 25994 dvcnvrelem2 25995 plyrem 26285 ulmss 26378 ulmdvlem1 26381 ulmdvlem3 26383 ulmdv 26384 isppw 27091 dchrelbas2 27215 chsupsn 31295 pjss1coi 32045 off2 32508 resspos 32782 resstos 32783 submomnd 32880 suborng 33129 elrspunidl 33240 submatres 33538 madjusmdetlem2 33560 madjusmdetlem3 33561 omsmon 34049 signstfvn 34332 elmsta 35289 mthmpps 35323 dissneqlem 36950 exrecfnlem 36989 prjcrv0 42192 hbtlem6 42695 ofoaf 42926 dvmulcncf 45451 dvdivcncf 45453 itgsubsticclem 45501 |
Copyright terms: Public domain | W3C validator |