![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqsstrrdi | Structured version Visualization version GIF version |
Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
eqsstrrdi.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
eqsstrrdi.2 | ⊢ 𝐵 ⊆ 𝐶 |
Ref | Expression |
---|---|
eqsstrrdi | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstrrdi.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
2 | 1 | eqcomd 2746 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
3 | eqsstrrdi.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
4 | 2, 3 | eqsstrdi 4063 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ss 3993 |
This theorem is referenced by: eqimsscd 4066 mptss 6071 ffvresb 7159 tposss 8268 sbthlem5 9153 rankxpl 9944 winafp 10766 wunex2 10807 iooval2 13440 telfsumo 15850 structcnvcnv 17200 ressbasssg 17295 ressbasssOLD 17298 tsrdir 18674 idresefmnd 18934 idrespermg 19453 symgsssg 19509 gsumzoppg 19986 lidlssbas 21246 dsmmsubg 21786 cnclsi 23301 txss12 23634 txbasval 23635 kqsat 23760 kqcldsat 23762 fmss 23975 cfilucfil 24593 tngtopn 24692 dvaddf 25999 dvmulf 26000 dvcof 26006 dvmptres3 26014 dvmptres2 26020 dvmptcmul 26022 dvmptcj 26026 dvcnvlem 26034 dvcnv 26035 dvcnvrelem1 26076 dvcnvrelem2 26077 plyrem 26365 ulmss 26458 ulmdvlem1 26461 ulmdvlem3 26463 ulmdv 26464 isppw 27175 dchrelbas2 27299 pw2bday 28436 chsupsn 31445 pjss1coi 32195 off2 32660 resspos 32939 resstos 32940 submomnd 33060 suborng 33310 elrspunidl 33421 evl1deg2 33567 submatres 33752 madjusmdetlem2 33774 madjusmdetlem3 33775 omsmon 34263 signstfvn 34546 elmsta 35516 mthmpps 35550 dissneqlem 37306 exrecfnlem 37345 prjcrv0 42588 hbtlem6 43086 ofoaf 43317 dvmulcncf 45846 dvdivcncf 45848 itgsubsticclem 45896 |
Copyright terms: Public domain | W3C validator |