| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqsstrrdi | Structured version Visualization version GIF version | ||
| Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| eqsstrrdi.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
| eqsstrrdi.2 | ⊢ 𝐵 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| eqsstrrdi | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrrdi.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
| 2 | 1 | eqcomd 2737 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3 | eqsstrrdi.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
| 4 | 2, 3 | eqsstrdi 3974 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ⊆ wss 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ss 3914 |
| This theorem is referenced by: eqimsscd 3987 mptss 5986 ffvresb 7053 tposss 8152 sbthlem5 8999 rankxpl 9763 winafp 10583 wunex2 10624 iooval2 13273 telfsumo 15704 structcnvcnv 17059 ressbasssg 17143 ressbasssOLD 17146 resspos 18330 resstos 18331 tsrdir 18505 idresefmnd 18802 idrespermg 19318 symgsssg 19374 gsumzoppg 19851 submomnd 20039 suborng 20786 lidlssbas 21145 dsmmsubg 21675 cnclsi 23182 txss12 23515 txbasval 23516 kqsat 23641 kqcldsat 23643 fmss 23856 cfilucfil 24469 tngtopn 24560 dvaddf 25867 dvmulf 25868 dvcof 25874 dvmptres3 25882 dvmptres2 25888 dvmptcmul 25890 dvmptcj 25894 dvcnvlem 25902 dvcnv 25903 dvcnvrelem1 25944 dvcnvrelem2 25945 plyrem 26235 ulmss 26328 ulmdvlem1 26331 ulmdvlem3 26333 ulmdv 26334 isppw 27046 dchrelbas2 27170 chsupsn 31385 pjss1coi 32135 off2 32615 elrgspnsubrunlem2 33207 elrspunidl 33385 evl1deg2 33532 submatres 33811 madjusmdetlem2 33833 madjusmdetlem3 33834 omsmon 34303 signstfvn 34574 elmsta 35584 mthmpps 35618 dissneqlem 37374 exrecfnlem 37413 prjcrv0 42666 hbtlem6 43162 ofoaf 43388 dvmulcncf 45963 dvdivcncf 45965 itgsubsticclem 46013 |
| Copyright terms: Public domain | W3C validator |