Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqsstrrdi | Structured version Visualization version GIF version |
Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
eqsstrrdi.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
eqsstrrdi.2 | ⊢ 𝐵 ⊆ 𝐶 |
Ref | Expression |
---|---|
eqsstrrdi | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstrrdi.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
2 | 1 | eqcomd 2744 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
3 | eqsstrrdi.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
4 | 2, 3 | eqsstrdi 3975 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 |
This theorem is referenced by: mptss 5950 ffvresb 6998 tposss 8043 sbthlem5 8874 rankxpl 9633 winafp 10453 wunex2 10494 iooval2 13112 telfsumo 15514 structcnvcnv 16854 ressbasss 16950 tsrdir 18322 idresefmnd 18538 idrespermg 19019 symgsssg 19075 gsumzoppg 19545 dsmmsubg 20950 opsrtoslem2 21263 cnclsi 22423 txss12 22756 txbasval 22757 kqsat 22882 kqcldsat 22884 fmss 23097 cfilucfil 23715 tngtopn 23814 dvaddf 25106 dvmulf 25107 dvcof 25112 dvmptres3 25120 dvmptres2 25126 dvmptcmul 25128 dvmptcj 25132 dvcnvlem 25140 dvcnv 25141 dvcnvrelem1 25181 dvcnvrelem2 25182 plyrem 25465 ulmss 25556 ulmdvlem1 25559 ulmdvlem3 25561 ulmdv 25562 isppw 26263 dchrelbas2 26385 chsupsn 29775 pjss1coi 30525 off2 30978 resspos 31244 resstos 31245 submomnd 31336 suborng 31514 elrspunidl 31606 submatres 31756 madjusmdetlem2 31778 madjusmdetlem3 31779 omsmon 32265 signstfvn 32548 elmsta 33510 mthmpps 33544 dissneqlem 35511 exrecfnlem 35550 prjcrv0 40470 hbtlem6 40954 dvmulcncf 43466 dvdivcncf 43468 itgsubsticclem 43516 lidlssbas 45480 |
Copyright terms: Public domain | W3C validator |