| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqsstrrdi | Structured version Visualization version GIF version | ||
| Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| eqsstrrdi.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
| eqsstrrdi.2 | ⊢ 𝐵 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| eqsstrrdi | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrrdi.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
| 2 | 1 | eqcomd 2735 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3 | eqsstrrdi.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
| 4 | 2, 3 | eqsstrdi 3988 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3928 |
| This theorem is referenced by: eqimsscd 4001 mptss 6002 ffvresb 7079 tposss 8183 sbthlem5 9032 rankxpl 9804 winafp 10626 wunex2 10667 iooval2 13315 telfsumo 15744 structcnvcnv 17099 ressbasssg 17183 ressbasssOLD 17186 tsrdir 18539 idresefmnd 18802 idrespermg 19317 symgsssg 19373 gsumzoppg 19850 lidlssbas 21099 dsmmsubg 21628 cnclsi 23135 txss12 23468 txbasval 23469 kqsat 23594 kqcldsat 23596 fmss 23809 cfilucfil 24423 tngtopn 24514 dvaddf 25821 dvmulf 25822 dvcof 25828 dvmptres3 25836 dvmptres2 25842 dvmptcmul 25844 dvmptcj 25848 dvcnvlem 25856 dvcnv 25857 dvcnvrelem1 25898 dvcnvrelem2 25899 plyrem 26189 ulmss 26282 ulmdvlem1 26285 ulmdvlem3 26287 ulmdv 26288 isppw 27000 dchrelbas2 27124 chsupsn 31315 pjss1coi 32065 off2 32538 resspos 32865 resstos 32866 submomnd 32997 elrgspnsubrunlem2 33172 suborng 33266 elrspunidl 33372 evl1deg2 33519 submatres 33769 madjusmdetlem2 33791 madjusmdetlem3 33792 omsmon 34262 signstfvn 34533 elmsta 35508 mthmpps 35542 dissneqlem 37301 exrecfnlem 37340 prjcrv0 42594 hbtlem6 43091 ofoaf 43317 dvmulcncf 45896 dvdivcncf 45898 itgsubsticclem 45946 |
| Copyright terms: Public domain | W3C validator |