| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqsstrrdi | Structured version Visualization version GIF version | ||
| Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| eqsstrrdi.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
| eqsstrrdi.2 | ⊢ 𝐵 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| eqsstrrdi | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrrdi.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
| 2 | 1 | eqcomd 2735 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3 | eqsstrrdi.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
| 4 | 2, 3 | eqsstrdi 3991 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3931 |
| This theorem is referenced by: eqimsscd 4004 mptss 6013 ffvresb 7097 tposss 8206 sbthlem5 9055 rankxpl 9828 winafp 10650 wunex2 10691 iooval2 13339 telfsumo 15768 structcnvcnv 17123 ressbasssg 17207 ressbasssOLD 17210 tsrdir 18563 idresefmnd 18826 idrespermg 19341 symgsssg 19397 gsumzoppg 19874 lidlssbas 21123 dsmmsubg 21652 cnclsi 23159 txss12 23492 txbasval 23493 kqsat 23618 kqcldsat 23620 fmss 23833 cfilucfil 24447 tngtopn 24538 dvaddf 25845 dvmulf 25846 dvcof 25852 dvmptres3 25860 dvmptres2 25866 dvmptcmul 25868 dvmptcj 25872 dvcnvlem 25880 dvcnv 25881 dvcnvrelem1 25922 dvcnvrelem2 25923 plyrem 26213 ulmss 26306 ulmdvlem1 26309 ulmdvlem3 26311 ulmdv 26312 isppw 27024 dchrelbas2 27148 chsupsn 31342 pjss1coi 32092 off2 32565 resspos 32892 resstos 32893 submomnd 33024 elrgspnsubrunlem2 33199 suborng 33293 elrspunidl 33399 evl1deg2 33546 submatres 33796 madjusmdetlem2 33818 madjusmdetlem3 33819 omsmon 34289 signstfvn 34560 elmsta 35535 mthmpps 35569 dissneqlem 37328 exrecfnlem 37367 prjcrv0 42621 hbtlem6 43118 ofoaf 43344 dvmulcncf 45923 dvdivcncf 45925 itgsubsticclem 45973 |
| Copyright terms: Public domain | W3C validator |