| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqsstrrdi | Structured version Visualization version GIF version | ||
| Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| eqsstrrdi.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
| eqsstrrdi.2 | ⊢ 𝐵 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| eqsstrrdi | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrrdi.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
| 2 | 1 | eqcomd 2742 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3 | eqsstrrdi.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
| 4 | 2, 3 | eqsstrdi 4008 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 df-ss 3948 |
| This theorem is referenced by: eqimsscd 4021 mptss 6034 ffvresb 7120 tposss 8231 sbthlem5 9106 rankxpl 9894 winafp 10716 wunex2 10757 iooval2 13400 telfsumo 15823 structcnvcnv 17177 ressbasssg 17263 ressbasssOLD 17266 tsrdir 18619 idresefmnd 18882 idrespermg 19397 symgsssg 19453 gsumzoppg 19930 lidlssbas 21179 dsmmsubg 21708 cnclsi 23215 txss12 23548 txbasval 23549 kqsat 23674 kqcldsat 23676 fmss 23889 cfilucfil 24503 tngtopn 24594 dvaddf 25902 dvmulf 25903 dvcof 25909 dvmptres3 25917 dvmptres2 25923 dvmptcmul 25925 dvmptcj 25929 dvcnvlem 25937 dvcnv 25938 dvcnvrelem1 25979 dvcnvrelem2 25980 plyrem 26270 ulmss 26363 ulmdvlem1 26366 ulmdvlem3 26368 ulmdv 26369 isppw 27081 dchrelbas2 27205 chsupsn 31399 pjss1coi 32149 off2 32624 resspos 32951 resstos 32952 submomnd 33083 elrgspnsubrunlem2 33248 suborng 33342 elrspunidl 33448 evl1deg2 33595 submatres 33842 madjusmdetlem2 33864 madjusmdetlem3 33865 omsmon 34335 signstfvn 34606 elmsta 35575 mthmpps 35609 dissneqlem 37363 exrecfnlem 37402 prjcrv0 42623 hbtlem6 43120 ofoaf 43346 dvmulcncf 45921 dvdivcncf 45923 itgsubsticclem 45971 |
| Copyright terms: Public domain | W3C validator |