| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqsstrrdi | Structured version Visualization version GIF version | ||
| Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| eqsstrrdi.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
| eqsstrrdi.2 | ⊢ 𝐵 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| eqsstrrdi | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrrdi.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
| 2 | 1 | eqcomd 2735 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3 | eqsstrrdi.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
| 4 | 2, 3 | eqsstrdi 3980 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3920 |
| This theorem is referenced by: eqimsscd 3993 mptss 5993 ffvresb 7059 tposss 8160 sbthlem5 9008 rankxpl 9771 winafp 10591 wunex2 10632 iooval2 13281 telfsumo 15709 structcnvcnv 17064 ressbasssg 17148 ressbasssOLD 17151 resspos 18335 resstos 18336 tsrdir 18510 idresefmnd 18773 idrespermg 19290 symgsssg 19346 gsumzoppg 19823 submomnd 20011 suborng 20761 lidlssbas 21120 dsmmsubg 21650 cnclsi 23157 txss12 23490 txbasval 23491 kqsat 23616 kqcldsat 23618 fmss 23831 cfilucfil 24445 tngtopn 24536 dvaddf 25843 dvmulf 25844 dvcof 25850 dvmptres3 25858 dvmptres2 25864 dvmptcmul 25866 dvmptcj 25870 dvcnvlem 25878 dvcnv 25879 dvcnvrelem1 25920 dvcnvrelem2 25921 plyrem 26211 ulmss 26304 ulmdvlem1 26307 ulmdvlem3 26309 ulmdv 26310 isppw 27022 dchrelbas2 27146 chsupsn 31357 pjss1coi 32107 off2 32584 elrgspnsubrunlem2 33188 elrspunidl 33365 evl1deg2 33512 submatres 33773 madjusmdetlem2 33795 madjusmdetlem3 33796 omsmon 34266 signstfvn 34537 elmsta 35521 mthmpps 35555 dissneqlem 37314 exrecfnlem 37353 prjcrv0 42606 hbtlem6 43102 ofoaf 43328 dvmulcncf 45906 dvdivcncf 45908 itgsubsticclem 45956 |
| Copyright terms: Public domain | W3C validator |