Step | Hyp | Ref
| Expression |
1 | | nnawordex 8641 |
. . 3
⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼 ⊆ 𝐽 ↔ ∃𝑘 ∈ ω (𝐼 +o 𝑘) = 𝐽)) |
2 | | oveq2 7420 |
. . . . . . . . . 10
⊢ (𝑘 = ∅ → (𝐼 +o 𝑘) = (𝐼 +o ∅)) |
3 | 2 | fveq2d 6895 |
. . . . . . . . 9
⊢ (𝑘 = ∅ → (𝐿‘(𝐼 +o 𝑘)) = (𝐿‘(𝐼 +o ∅))) |
4 | 3 | sseq2d 4014 |
. . . . . . . 8
⊢ (𝑘 = ∅ → ((𝐿‘𝐼) ⊆ (𝐿‘(𝐼 +o 𝑘)) ↔ (𝐿‘𝐼) ⊆ (𝐿‘(𝐼 +o ∅)))) |
5 | | oveq2 7420 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑗 → (𝐼 +o 𝑘) = (𝐼 +o 𝑗)) |
6 | 5 | fveq2d 6895 |
. . . . . . . . 9
⊢ (𝑘 = 𝑗 → (𝐿‘(𝐼 +o 𝑘)) = (𝐿‘(𝐼 +o 𝑗))) |
7 | 6 | sseq2d 4014 |
. . . . . . . 8
⊢ (𝑘 = 𝑗 → ((𝐿‘𝐼) ⊆ (𝐿‘(𝐼 +o 𝑘)) ↔ (𝐿‘𝐼) ⊆ (𝐿‘(𝐼 +o 𝑗)))) |
8 | | oveq2 7420 |
. . . . . . . . . 10
⊢ (𝑘 = suc 𝑗 → (𝐼 +o 𝑘) = (𝐼 +o suc 𝑗)) |
9 | 8 | fveq2d 6895 |
. . . . . . . . 9
⊢ (𝑘 = suc 𝑗 → (𝐿‘(𝐼 +o 𝑘)) = (𝐿‘(𝐼 +o suc 𝑗))) |
10 | 9 | sseq2d 4014 |
. . . . . . . 8
⊢ (𝑘 = suc 𝑗 → ((𝐿‘𝐼) ⊆ (𝐿‘(𝐼 +o 𝑘)) ↔ (𝐿‘𝐼) ⊆ (𝐿‘(𝐼 +o suc 𝑗)))) |
11 | | nna0 8608 |
. . . . . . . . . 10
⊢ (𝐼 ∈ ω → (𝐼 +o ∅) = 𝐼) |
12 | 11 | fveq2d 6895 |
. . . . . . . . 9
⊢ (𝐼 ∈ ω → (𝐿‘(𝐼 +o ∅)) = (𝐿‘𝐼)) |
13 | 12 | eqimsscd 4039 |
. . . . . . . 8
⊢ (𝐼 ∈ ω → (𝐿‘𝐼) ⊆ (𝐿‘(𝐼 +o ∅))) |
14 | | nnacl 8615 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝐼 +o 𝑗) ∈
ω) |
15 | | ssun1 4172 |
. . . . . . . . . . . . 13
⊢ (𝐿‘(𝐼 +o 𝑗)) ⊆ ((𝐿‘(𝐼 +o 𝑗)) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘(𝐼 +o 𝑗))𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘(𝐼 +o 𝑗))𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})) |
16 | | precsexlem.1 |
. . . . . . . . . . . . . 14
⊢ 𝐹 = rec((𝑝 ∈ V ↦
⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd
‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})),
(𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))〉), 〈{
0s }, ∅〉) |
17 | | precsexlem.2 |
. . . . . . . . . . . . . 14
⊢ 𝐿 = (1st ∘ 𝐹) |
18 | | precsexlem.3 |
. . . . . . . . . . . . . 14
⊢ 𝑅 = (2nd ∘ 𝐹) |
19 | 16, 17, 18 | precsexlem4 27896 |
. . . . . . . . . . . . 13
⊢ ((𝐼 +o 𝑗) ∈ ω → (𝐿‘suc (𝐼 +o 𝑗)) = ((𝐿‘(𝐼 +o 𝑗)) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘(𝐼 +o 𝑗))𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘(𝐼 +o 𝑗))𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}))) |
20 | 15, 19 | sseqtrrid 4035 |
. . . . . . . . . . . 12
⊢ ((𝐼 +o 𝑗) ∈ ω → (𝐿‘(𝐼 +o 𝑗)) ⊆ (𝐿‘suc (𝐼 +o 𝑗))) |
21 | 14, 20 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝐿‘(𝐼 +o 𝑗)) ⊆ (𝐿‘suc (𝐼 +o 𝑗))) |
22 | | nnasuc 8610 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝐼 +o suc 𝑗) = suc (𝐼 +o 𝑗)) |
23 | 22 | fveq2d 6895 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝐿‘(𝐼 +o suc 𝑗)) = (𝐿‘suc (𝐼 +o 𝑗))) |
24 | 21, 23 | sseqtrrd 4023 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝐿‘(𝐼 +o 𝑗)) ⊆ (𝐿‘(𝐼 +o suc 𝑗))) |
25 | | sstr2 3989 |
. . . . . . . . . 10
⊢ ((𝐿‘𝐼) ⊆ (𝐿‘(𝐼 +o 𝑗)) → ((𝐿‘(𝐼 +o 𝑗)) ⊆ (𝐿‘(𝐼 +o suc 𝑗)) → (𝐿‘𝐼) ⊆ (𝐿‘(𝐼 +o suc 𝑗)))) |
26 | 24, 25 | syl5com 31 |
. . . . . . . . 9
⊢ ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → ((𝐿‘𝐼) ⊆ (𝐿‘(𝐼 +o 𝑗)) → (𝐿‘𝐼) ⊆ (𝐿‘(𝐼 +o suc 𝑗)))) |
27 | 26 | expcom 413 |
. . . . . . . 8
⊢ (𝑗 ∈ ω → (𝐼 ∈ ω → ((𝐿‘𝐼) ⊆ (𝐿‘(𝐼 +o 𝑗)) → (𝐿‘𝐼) ⊆ (𝐿‘(𝐼 +o suc 𝑗))))) |
28 | 4, 7, 10, 13, 27 | finds2 7895 |
. . . . . . 7
⊢ (𝑘 ∈ ω → (𝐼 ∈ ω → (𝐿‘𝐼) ⊆ (𝐿‘(𝐼 +o 𝑘)))) |
29 | 28 | impcom 407 |
. . . . . 6
⊢ ((𝐼 ∈ ω ∧ 𝑘 ∈ ω) → (𝐿‘𝐼) ⊆ (𝐿‘(𝐼 +o 𝑘))) |
30 | | fveq2 6891 |
. . . . . . 7
⊢ ((𝐼 +o 𝑘) = 𝐽 → (𝐿‘(𝐼 +o 𝑘)) = (𝐿‘𝐽)) |
31 | 30 | sseq2d 4014 |
. . . . . 6
⊢ ((𝐼 +o 𝑘) = 𝐽 → ((𝐿‘𝐼) ⊆ (𝐿‘(𝐼 +o 𝑘)) ↔ (𝐿‘𝐼) ⊆ (𝐿‘𝐽))) |
32 | 29, 31 | syl5ibcom 244 |
. . . . 5
⊢ ((𝐼 ∈ ω ∧ 𝑘 ∈ ω) → ((𝐼 +o 𝑘) = 𝐽 → (𝐿‘𝐼) ⊆ (𝐿‘𝐽))) |
33 | 32 | rexlimdva 3154 |
. . . 4
⊢ (𝐼 ∈ ω →
(∃𝑘 ∈ ω
(𝐼 +o 𝑘) = 𝐽 → (𝐿‘𝐼) ⊆ (𝐿‘𝐽))) |
34 | 33 | adantr 480 |
. . 3
⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) →
(∃𝑘 ∈ ω
(𝐼 +o 𝑘) = 𝐽 → (𝐿‘𝐼) ⊆ (𝐿‘𝐽))) |
35 | 1, 34 | sylbid 239 |
. 2
⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼 ⊆ 𝐽 → (𝐿‘𝐼) ⊆ (𝐿‘𝐽))) |
36 | 35 | 3impia 1116 |
1
⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝐼 ⊆ 𝐽) → (𝐿‘𝐼) ⊆ (𝐿‘𝐽)) |