MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  precsexlem6 Structured version   Visualization version   GIF version

Theorem precsexlem6 27898
Description: Lemma for surreal reciprocal. Show that 𝐿 is non-strictly increasing in its argument. (Contributed by Scott Fenton, 15-Mar-2025.)
Hypotheses
Ref Expression
precsexlem.1 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
precsexlem.2 𝐿 = (1st𝐹)
precsexlem.3 𝑅 = (2nd𝐹)
Assertion
Ref Expression
precsexlem6 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝐼𝐽) → (𝐿𝐼) ⊆ (𝐿𝐽))
Distinct variable groups:   𝐴,𝑎,𝑙,𝑝,𝑟,𝑥,𝑥𝐿,𝑥𝑅,𝑦𝑅   𝐹,𝑙,𝑝   𝐼,𝑎,𝑙,𝑝,𝑟,𝑥,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝐿,𝑎,𝑙,𝑥𝐿,𝑥𝑅,𝑦𝐿   𝑅,𝑎,𝑙,𝑟,𝑥𝐿,𝑥𝑅,𝑦𝑅
Allowed substitution hints:   𝐴(𝑦𝐿)   𝑅(𝑥,𝑝,𝑦𝐿)   𝐹(𝑥,𝑟,𝑎,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐽(𝑥,𝑟,𝑝,𝑎,𝑙,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐿(𝑥,𝑟,𝑝,𝑦𝑅)

Proof of Theorem precsexlem6
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnawordex 8641 . . 3 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼𝐽 ↔ ∃𝑘 ∈ ω (𝐼 +o 𝑘) = 𝐽))
2 oveq2 7420 . . . . . . . . . 10 (𝑘 = ∅ → (𝐼 +o 𝑘) = (𝐼 +o ∅))
32fveq2d 6895 . . . . . . . . 9 (𝑘 = ∅ → (𝐿‘(𝐼 +o 𝑘)) = (𝐿‘(𝐼 +o ∅)))
43sseq2d 4014 . . . . . . . 8 (𝑘 = ∅ → ((𝐿𝐼) ⊆ (𝐿‘(𝐼 +o 𝑘)) ↔ (𝐿𝐼) ⊆ (𝐿‘(𝐼 +o ∅))))
5 oveq2 7420 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐼 +o 𝑘) = (𝐼 +o 𝑗))
65fveq2d 6895 . . . . . . . . 9 (𝑘 = 𝑗 → (𝐿‘(𝐼 +o 𝑘)) = (𝐿‘(𝐼 +o 𝑗)))
76sseq2d 4014 . . . . . . . 8 (𝑘 = 𝑗 → ((𝐿𝐼) ⊆ (𝐿‘(𝐼 +o 𝑘)) ↔ (𝐿𝐼) ⊆ (𝐿‘(𝐼 +o 𝑗))))
8 oveq2 7420 . . . . . . . . . 10 (𝑘 = suc 𝑗 → (𝐼 +o 𝑘) = (𝐼 +o suc 𝑗))
98fveq2d 6895 . . . . . . . . 9 (𝑘 = suc 𝑗 → (𝐿‘(𝐼 +o 𝑘)) = (𝐿‘(𝐼 +o suc 𝑗)))
109sseq2d 4014 . . . . . . . 8 (𝑘 = suc 𝑗 → ((𝐿𝐼) ⊆ (𝐿‘(𝐼 +o 𝑘)) ↔ (𝐿𝐼) ⊆ (𝐿‘(𝐼 +o suc 𝑗))))
11 nna0 8608 . . . . . . . . . 10 (𝐼 ∈ ω → (𝐼 +o ∅) = 𝐼)
1211fveq2d 6895 . . . . . . . . 9 (𝐼 ∈ ω → (𝐿‘(𝐼 +o ∅)) = (𝐿𝐼))
1312eqimsscd 4039 . . . . . . . 8 (𝐼 ∈ ω → (𝐿𝐼) ⊆ (𝐿‘(𝐼 +o ∅)))
14 nnacl 8615 . . . . . . . . . . . 12 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝐼 +o 𝑗) ∈ ω)
15 ssun1 4172 . . . . . . . . . . . . 13 (𝐿‘(𝐼 +o 𝑗)) ⊆ ((𝐿‘(𝐼 +o 𝑗)) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘(𝐼 +o 𝑗))𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅‘(𝐼 +o 𝑗))𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}))
16 precsexlem.1 . . . . . . . . . . . . . 14 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
17 precsexlem.2 . . . . . . . . . . . . . 14 𝐿 = (1st𝐹)
18 precsexlem.3 . . . . . . . . . . . . . 14 𝑅 = (2nd𝐹)
1916, 17, 18precsexlem4 27896 . . . . . . . . . . . . 13 ((𝐼 +o 𝑗) ∈ ω → (𝐿‘suc (𝐼 +o 𝑗)) = ((𝐿‘(𝐼 +o 𝑗)) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘(𝐼 +o 𝑗))𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅‘(𝐼 +o 𝑗))𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
2015, 19sseqtrrid 4035 . . . . . . . . . . . 12 ((𝐼 +o 𝑗) ∈ ω → (𝐿‘(𝐼 +o 𝑗)) ⊆ (𝐿‘suc (𝐼 +o 𝑗)))
2114, 20syl 17 . . . . . . . . . . 11 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝐿‘(𝐼 +o 𝑗)) ⊆ (𝐿‘suc (𝐼 +o 𝑗)))
22 nnasuc 8610 . . . . . . . . . . . 12 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝐼 +o suc 𝑗) = suc (𝐼 +o 𝑗))
2322fveq2d 6895 . . . . . . . . . . 11 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝐿‘(𝐼 +o suc 𝑗)) = (𝐿‘suc (𝐼 +o 𝑗)))
2421, 23sseqtrrd 4023 . . . . . . . . . 10 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝐿‘(𝐼 +o 𝑗)) ⊆ (𝐿‘(𝐼 +o suc 𝑗)))
25 sstr2 3989 . . . . . . . . . 10 ((𝐿𝐼) ⊆ (𝐿‘(𝐼 +o 𝑗)) → ((𝐿‘(𝐼 +o 𝑗)) ⊆ (𝐿‘(𝐼 +o suc 𝑗)) → (𝐿𝐼) ⊆ (𝐿‘(𝐼 +o suc 𝑗))))
2624, 25syl5com 31 . . . . . . . . 9 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → ((𝐿𝐼) ⊆ (𝐿‘(𝐼 +o 𝑗)) → (𝐿𝐼) ⊆ (𝐿‘(𝐼 +o suc 𝑗))))
2726expcom 413 . . . . . . . 8 (𝑗 ∈ ω → (𝐼 ∈ ω → ((𝐿𝐼) ⊆ (𝐿‘(𝐼 +o 𝑗)) → (𝐿𝐼) ⊆ (𝐿‘(𝐼 +o suc 𝑗)))))
284, 7, 10, 13, 27finds2 7895 . . . . . . 7 (𝑘 ∈ ω → (𝐼 ∈ ω → (𝐿𝐼) ⊆ (𝐿‘(𝐼 +o 𝑘))))
2928impcom 407 . . . . . 6 ((𝐼 ∈ ω ∧ 𝑘 ∈ ω) → (𝐿𝐼) ⊆ (𝐿‘(𝐼 +o 𝑘)))
30 fveq2 6891 . . . . . . 7 ((𝐼 +o 𝑘) = 𝐽 → (𝐿‘(𝐼 +o 𝑘)) = (𝐿𝐽))
3130sseq2d 4014 . . . . . 6 ((𝐼 +o 𝑘) = 𝐽 → ((𝐿𝐼) ⊆ (𝐿‘(𝐼 +o 𝑘)) ↔ (𝐿𝐼) ⊆ (𝐿𝐽)))
3229, 31syl5ibcom 244 . . . . 5 ((𝐼 ∈ ω ∧ 𝑘 ∈ ω) → ((𝐼 +o 𝑘) = 𝐽 → (𝐿𝐼) ⊆ (𝐿𝐽)))
3332rexlimdva 3154 . . . 4 (𝐼 ∈ ω → (∃𝑘 ∈ ω (𝐼 +o 𝑘) = 𝐽 → (𝐿𝐼) ⊆ (𝐿𝐽)))
3433adantr 480 . . 3 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (∃𝑘 ∈ ω (𝐼 +o 𝑘) = 𝐽 → (𝐿𝐼) ⊆ (𝐿𝐽)))
351, 34sylbid 239 . 2 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼𝐽 → (𝐿𝐼) ⊆ (𝐿𝐽)))
36353impia 1116 1 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝐼𝐽) → (𝐿𝐼) ⊆ (𝐿𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105  {cab 2708  wrex 3069  {crab 3431  Vcvv 3473  csb 3893  cun 3946  wss 3948  c0 4322  {csn 4628  cop 4634   class class class wbr 5148  cmpt 5231  ccom 5680  suc csuc 6366  cfv 6543  (class class class)co 7412  ωcom 7859  1st c1st 7977  2nd c2nd 7978  reccrdg 8413   +o coa 8467   <s cslt 27381   0s c0s 27561   1s c1s 27562   L cleft 27578   R cright 27579   +s cadds 27682   -s csubs 27735   ·s cmuls 27802   /su cdivs 27875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-oadd 8474
This theorem is referenced by:  precsexlem10  27902
  Copyright terms: Public domain W3C validator