MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  precsexlem6 Structured version   Visualization version   GIF version

Theorem precsexlem6 28166
Description: Lemma for surreal reciprocal. Show that 𝐿 is non-strictly increasing in its argument. (Contributed by Scott Fenton, 15-Mar-2025.)
Hypotheses
Ref Expression
precsexlem.1 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
precsexlem.2 𝐿 = (1st𝐹)
precsexlem.3 𝑅 = (2nd𝐹)
Assertion
Ref Expression
precsexlem6 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝐼𝐽) → (𝐿𝐼) ⊆ (𝐿𝐽))
Distinct variable groups:   𝐴,𝑎,𝑙,𝑝,𝑟,𝑥,𝑥𝐿,𝑥𝑅,𝑦𝑅   𝐹,𝑙,𝑝   𝐼,𝑎,𝑙,𝑝,𝑟,𝑥,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝐿,𝑎,𝑙,𝑥𝐿,𝑥𝑅,𝑦𝐿   𝑅,𝑎,𝑙,𝑟,𝑥𝐿,𝑥𝑅,𝑦𝑅
Allowed substitution hints:   𝐴(𝑦𝐿)   𝑅(𝑥,𝑝,𝑦𝐿)   𝐹(𝑥,𝑟,𝑎,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐽(𝑥,𝑟,𝑝,𝑎,𝑙,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐿(𝑥,𝑟,𝑝,𝑦𝑅)

Proof of Theorem precsexlem6
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnawordex 8649 . . 3 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼𝐽 ↔ ∃𝑘 ∈ ω (𝐼 +o 𝑘) = 𝐽))
2 oveq2 7413 . . . . . . . . . 10 (𝑘 = ∅ → (𝐼 +o 𝑘) = (𝐼 +o ∅))
32fveq2d 6880 . . . . . . . . 9 (𝑘 = ∅ → (𝐿‘(𝐼 +o 𝑘)) = (𝐿‘(𝐼 +o ∅)))
43sseq2d 3991 . . . . . . . 8 (𝑘 = ∅ → ((𝐿𝐼) ⊆ (𝐿‘(𝐼 +o 𝑘)) ↔ (𝐿𝐼) ⊆ (𝐿‘(𝐼 +o ∅))))
5 oveq2 7413 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐼 +o 𝑘) = (𝐼 +o 𝑗))
65fveq2d 6880 . . . . . . . . 9 (𝑘 = 𝑗 → (𝐿‘(𝐼 +o 𝑘)) = (𝐿‘(𝐼 +o 𝑗)))
76sseq2d 3991 . . . . . . . 8 (𝑘 = 𝑗 → ((𝐿𝐼) ⊆ (𝐿‘(𝐼 +o 𝑘)) ↔ (𝐿𝐼) ⊆ (𝐿‘(𝐼 +o 𝑗))))
8 oveq2 7413 . . . . . . . . . 10 (𝑘 = suc 𝑗 → (𝐼 +o 𝑘) = (𝐼 +o suc 𝑗))
98fveq2d 6880 . . . . . . . . 9 (𝑘 = suc 𝑗 → (𝐿‘(𝐼 +o 𝑘)) = (𝐿‘(𝐼 +o suc 𝑗)))
109sseq2d 3991 . . . . . . . 8 (𝑘 = suc 𝑗 → ((𝐿𝐼) ⊆ (𝐿‘(𝐼 +o 𝑘)) ↔ (𝐿𝐼) ⊆ (𝐿‘(𝐼 +o suc 𝑗))))
11 nna0 8616 . . . . . . . . . 10 (𝐼 ∈ ω → (𝐼 +o ∅) = 𝐼)
1211fveq2d 6880 . . . . . . . . 9 (𝐼 ∈ ω → (𝐿‘(𝐼 +o ∅)) = (𝐿𝐼))
1312eqimsscd 4016 . . . . . . . 8 (𝐼 ∈ ω → (𝐿𝐼) ⊆ (𝐿‘(𝐼 +o ∅)))
14 nnacl 8623 . . . . . . . . . . . 12 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝐼 +o 𝑗) ∈ ω)
15 ssun1 4153 . . . . . . . . . . . . 13 (𝐿‘(𝐼 +o 𝑗)) ⊆ ((𝐿‘(𝐼 +o 𝑗)) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘(𝐼 +o 𝑗))𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅‘(𝐼 +o 𝑗))𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}))
16 precsexlem.1 . . . . . . . . . . . . . 14 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
17 precsexlem.2 . . . . . . . . . . . . . 14 𝐿 = (1st𝐹)
18 precsexlem.3 . . . . . . . . . . . . . 14 𝑅 = (2nd𝐹)
1916, 17, 18precsexlem4 28164 . . . . . . . . . . . . 13 ((𝐼 +o 𝑗) ∈ ω → (𝐿‘suc (𝐼 +o 𝑗)) = ((𝐿‘(𝐼 +o 𝑗)) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘(𝐼 +o 𝑗))𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅‘(𝐼 +o 𝑗))𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
2015, 19sseqtrrid 4002 . . . . . . . . . . . 12 ((𝐼 +o 𝑗) ∈ ω → (𝐿‘(𝐼 +o 𝑗)) ⊆ (𝐿‘suc (𝐼 +o 𝑗)))
2114, 20syl 17 . . . . . . . . . . 11 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝐿‘(𝐼 +o 𝑗)) ⊆ (𝐿‘suc (𝐼 +o 𝑗)))
22 nnasuc 8618 . . . . . . . . . . . 12 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝐼 +o suc 𝑗) = suc (𝐼 +o 𝑗))
2322fveq2d 6880 . . . . . . . . . . 11 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝐿‘(𝐼 +o suc 𝑗)) = (𝐿‘suc (𝐼 +o 𝑗)))
2421, 23sseqtrrd 3996 . . . . . . . . . 10 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝐿‘(𝐼 +o 𝑗)) ⊆ (𝐿‘(𝐼 +o suc 𝑗)))
25 sstr2 3965 . . . . . . . . . 10 ((𝐿𝐼) ⊆ (𝐿‘(𝐼 +o 𝑗)) → ((𝐿‘(𝐼 +o 𝑗)) ⊆ (𝐿‘(𝐼 +o suc 𝑗)) → (𝐿𝐼) ⊆ (𝐿‘(𝐼 +o suc 𝑗))))
2624, 25syl5com 31 . . . . . . . . 9 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → ((𝐿𝐼) ⊆ (𝐿‘(𝐼 +o 𝑗)) → (𝐿𝐼) ⊆ (𝐿‘(𝐼 +o suc 𝑗))))
2726expcom 413 . . . . . . . 8 (𝑗 ∈ ω → (𝐼 ∈ ω → ((𝐿𝐼) ⊆ (𝐿‘(𝐼 +o 𝑗)) → (𝐿𝐼) ⊆ (𝐿‘(𝐼 +o suc 𝑗)))))
284, 7, 10, 13, 27finds2 7894 . . . . . . 7 (𝑘 ∈ ω → (𝐼 ∈ ω → (𝐿𝐼) ⊆ (𝐿‘(𝐼 +o 𝑘))))
2928impcom 407 . . . . . 6 ((𝐼 ∈ ω ∧ 𝑘 ∈ ω) → (𝐿𝐼) ⊆ (𝐿‘(𝐼 +o 𝑘)))
30 fveq2 6876 . . . . . . 7 ((𝐼 +o 𝑘) = 𝐽 → (𝐿‘(𝐼 +o 𝑘)) = (𝐿𝐽))
3130sseq2d 3991 . . . . . 6 ((𝐼 +o 𝑘) = 𝐽 → ((𝐿𝐼) ⊆ (𝐿‘(𝐼 +o 𝑘)) ↔ (𝐿𝐼) ⊆ (𝐿𝐽)))
3229, 31syl5ibcom 245 . . . . 5 ((𝐼 ∈ ω ∧ 𝑘 ∈ ω) → ((𝐼 +o 𝑘) = 𝐽 → (𝐿𝐼) ⊆ (𝐿𝐽)))
3332rexlimdva 3141 . . . 4 (𝐼 ∈ ω → (∃𝑘 ∈ ω (𝐼 +o 𝑘) = 𝐽 → (𝐿𝐼) ⊆ (𝐿𝐽)))
3433adantr 480 . . 3 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (∃𝑘 ∈ ω (𝐼 +o 𝑘) = 𝐽 → (𝐿𝐼) ⊆ (𝐿𝐽)))
351, 34sylbid 240 . 2 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼𝐽 → (𝐿𝐼) ⊆ (𝐿𝐽)))
36353impia 1117 1 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝐼𝐽) → (𝐿𝐼) ⊆ (𝐿𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  {cab 2713  wrex 3060  {crab 3415  Vcvv 3459  csb 3874  cun 3924  wss 3926  c0 4308  {csn 4601  cop 4607   class class class wbr 5119  cmpt 5201  ccom 5658  suc csuc 6354  cfv 6531  (class class class)co 7405  ωcom 7861  1st c1st 7986  2nd c2nd 7987  reccrdg 8423   +o coa 8477   <s cslt 27604   0s c0s 27786   1s c1s 27787   L cleft 27805   R cright 27806   +s cadds 27918   -s csubs 27978   ·s cmuls 28061   /su cdivs 28142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-oadd 8484
This theorem is referenced by:  precsexlem10  28170
  Copyright terms: Public domain W3C validator