MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  precsexlem6 Structured version   Visualization version   GIF version

Theorem precsexlem6 28236
Description: Lemma for surreal reciprocal. Show that 𝐿 is non-strictly increasing in its argument. (Contributed by Scott Fenton, 15-Mar-2025.)
Hypotheses
Ref Expression
precsexlem.1 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
precsexlem.2 𝐿 = (1st𝐹)
precsexlem.3 𝑅 = (2nd𝐹)
Assertion
Ref Expression
precsexlem6 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝐼𝐽) → (𝐿𝐼) ⊆ (𝐿𝐽))
Distinct variable groups:   𝐴,𝑎,𝑙,𝑝,𝑟,𝑥,𝑥𝐿,𝑥𝑅,𝑦𝑅   𝐹,𝑙,𝑝   𝐼,𝑎,𝑙,𝑝,𝑟,𝑥,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝐿,𝑎,𝑙,𝑥𝐿,𝑥𝑅,𝑦𝐿   𝑅,𝑎,𝑙,𝑟,𝑥𝐿,𝑥𝑅,𝑦𝑅
Allowed substitution hints:   𝐴(𝑦𝐿)   𝑅(𝑥,𝑝,𝑦𝐿)   𝐹(𝑥,𝑟,𝑎,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐽(𝑥,𝑟,𝑝,𝑎,𝑙,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐿(𝑥,𝑟,𝑝,𝑦𝑅)

Proof of Theorem precsexlem6
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnawordex 8675 . . 3 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼𝐽 ↔ ∃𝑘 ∈ ω (𝐼 +o 𝑘) = 𝐽))
2 oveq2 7439 . . . . . . . . . 10 (𝑘 = ∅ → (𝐼 +o 𝑘) = (𝐼 +o ∅))
32fveq2d 6910 . . . . . . . . 9 (𝑘 = ∅ → (𝐿‘(𝐼 +o 𝑘)) = (𝐿‘(𝐼 +o ∅)))
43sseq2d 4016 . . . . . . . 8 (𝑘 = ∅ → ((𝐿𝐼) ⊆ (𝐿‘(𝐼 +o 𝑘)) ↔ (𝐿𝐼) ⊆ (𝐿‘(𝐼 +o ∅))))
5 oveq2 7439 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐼 +o 𝑘) = (𝐼 +o 𝑗))
65fveq2d 6910 . . . . . . . . 9 (𝑘 = 𝑗 → (𝐿‘(𝐼 +o 𝑘)) = (𝐿‘(𝐼 +o 𝑗)))
76sseq2d 4016 . . . . . . . 8 (𝑘 = 𝑗 → ((𝐿𝐼) ⊆ (𝐿‘(𝐼 +o 𝑘)) ↔ (𝐿𝐼) ⊆ (𝐿‘(𝐼 +o 𝑗))))
8 oveq2 7439 . . . . . . . . . 10 (𝑘 = suc 𝑗 → (𝐼 +o 𝑘) = (𝐼 +o suc 𝑗))
98fveq2d 6910 . . . . . . . . 9 (𝑘 = suc 𝑗 → (𝐿‘(𝐼 +o 𝑘)) = (𝐿‘(𝐼 +o suc 𝑗)))
109sseq2d 4016 . . . . . . . 8 (𝑘 = suc 𝑗 → ((𝐿𝐼) ⊆ (𝐿‘(𝐼 +o 𝑘)) ↔ (𝐿𝐼) ⊆ (𝐿‘(𝐼 +o suc 𝑗))))
11 nna0 8642 . . . . . . . . . 10 (𝐼 ∈ ω → (𝐼 +o ∅) = 𝐼)
1211fveq2d 6910 . . . . . . . . 9 (𝐼 ∈ ω → (𝐿‘(𝐼 +o ∅)) = (𝐿𝐼))
1312eqimsscd 4041 . . . . . . . 8 (𝐼 ∈ ω → (𝐿𝐼) ⊆ (𝐿‘(𝐼 +o ∅)))
14 nnacl 8649 . . . . . . . . . . . 12 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝐼 +o 𝑗) ∈ ω)
15 ssun1 4178 . . . . . . . . . . . . 13 (𝐿‘(𝐼 +o 𝑗)) ⊆ ((𝐿‘(𝐼 +o 𝑗)) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘(𝐼 +o 𝑗))𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅‘(𝐼 +o 𝑗))𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}))
16 precsexlem.1 . . . . . . . . . . . . . 14 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
17 precsexlem.2 . . . . . . . . . . . . . 14 𝐿 = (1st𝐹)
18 precsexlem.3 . . . . . . . . . . . . . 14 𝑅 = (2nd𝐹)
1916, 17, 18precsexlem4 28234 . . . . . . . . . . . . 13 ((𝐼 +o 𝑗) ∈ ω → (𝐿‘suc (𝐼 +o 𝑗)) = ((𝐿‘(𝐼 +o 𝑗)) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘(𝐼 +o 𝑗))𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅‘(𝐼 +o 𝑗))𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
2015, 19sseqtrrid 4027 . . . . . . . . . . . 12 ((𝐼 +o 𝑗) ∈ ω → (𝐿‘(𝐼 +o 𝑗)) ⊆ (𝐿‘suc (𝐼 +o 𝑗)))
2114, 20syl 17 . . . . . . . . . . 11 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝐿‘(𝐼 +o 𝑗)) ⊆ (𝐿‘suc (𝐼 +o 𝑗)))
22 nnasuc 8644 . . . . . . . . . . . 12 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝐼 +o suc 𝑗) = suc (𝐼 +o 𝑗))
2322fveq2d 6910 . . . . . . . . . . 11 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝐿‘(𝐼 +o suc 𝑗)) = (𝐿‘suc (𝐼 +o 𝑗)))
2421, 23sseqtrrd 4021 . . . . . . . . . 10 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝐿‘(𝐼 +o 𝑗)) ⊆ (𝐿‘(𝐼 +o suc 𝑗)))
25 sstr2 3990 . . . . . . . . . 10 ((𝐿𝐼) ⊆ (𝐿‘(𝐼 +o 𝑗)) → ((𝐿‘(𝐼 +o 𝑗)) ⊆ (𝐿‘(𝐼 +o suc 𝑗)) → (𝐿𝐼) ⊆ (𝐿‘(𝐼 +o suc 𝑗))))
2624, 25syl5com 31 . . . . . . . . 9 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → ((𝐿𝐼) ⊆ (𝐿‘(𝐼 +o 𝑗)) → (𝐿𝐼) ⊆ (𝐿‘(𝐼 +o suc 𝑗))))
2726expcom 413 . . . . . . . 8 (𝑗 ∈ ω → (𝐼 ∈ ω → ((𝐿𝐼) ⊆ (𝐿‘(𝐼 +o 𝑗)) → (𝐿𝐼) ⊆ (𝐿‘(𝐼 +o suc 𝑗)))))
284, 7, 10, 13, 27finds2 7920 . . . . . . 7 (𝑘 ∈ ω → (𝐼 ∈ ω → (𝐿𝐼) ⊆ (𝐿‘(𝐼 +o 𝑘))))
2928impcom 407 . . . . . 6 ((𝐼 ∈ ω ∧ 𝑘 ∈ ω) → (𝐿𝐼) ⊆ (𝐿‘(𝐼 +o 𝑘)))
30 fveq2 6906 . . . . . . 7 ((𝐼 +o 𝑘) = 𝐽 → (𝐿‘(𝐼 +o 𝑘)) = (𝐿𝐽))
3130sseq2d 4016 . . . . . 6 ((𝐼 +o 𝑘) = 𝐽 → ((𝐿𝐼) ⊆ (𝐿‘(𝐼 +o 𝑘)) ↔ (𝐿𝐼) ⊆ (𝐿𝐽)))
3229, 31syl5ibcom 245 . . . . 5 ((𝐼 ∈ ω ∧ 𝑘 ∈ ω) → ((𝐼 +o 𝑘) = 𝐽 → (𝐿𝐼) ⊆ (𝐿𝐽)))
3332rexlimdva 3155 . . . 4 (𝐼 ∈ ω → (∃𝑘 ∈ ω (𝐼 +o 𝑘) = 𝐽 → (𝐿𝐼) ⊆ (𝐿𝐽)))
3433adantr 480 . . 3 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (∃𝑘 ∈ ω (𝐼 +o 𝑘) = 𝐽 → (𝐿𝐼) ⊆ (𝐿𝐽)))
351, 34sylbid 240 . 2 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼𝐽 → (𝐿𝐼) ⊆ (𝐿𝐽)))
36353impia 1118 1 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝐼𝐽) → (𝐿𝐼) ⊆ (𝐿𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  {cab 2714  wrex 3070  {crab 3436  Vcvv 3480  csb 3899  cun 3949  wss 3951  c0 4333  {csn 4626  cop 4632   class class class wbr 5143  cmpt 5225  ccom 5689  suc csuc 6386  cfv 6561  (class class class)co 7431  ωcom 7887  1st c1st 8012  2nd c2nd 8013  reccrdg 8449   +o coa 8503   <s cslt 27685   0s c0s 27867   1s c1s 27868   L cleft 27884   R cright 27885   +s cadds 27992   -s csubs 28052   ·s cmuls 28132   /su cdivs 28213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-oadd 8510
This theorem is referenced by:  precsexlem10  28240
  Copyright terms: Public domain W3C validator