MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  precsexlem6 Structured version   Visualization version   GIF version

Theorem precsexlem6 28155
Description: Lemma for surreal reciprocal. Show that 𝐿 is non-strictly increasing in its argument. (Contributed by Scott Fenton, 15-Mar-2025.)
Hypotheses
Ref Expression
precsexlem.1 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
precsexlem.2 𝐿 = (1st𝐹)
precsexlem.3 𝑅 = (2nd𝐹)
Assertion
Ref Expression
precsexlem6 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝐼𝐽) → (𝐿𝐼) ⊆ (𝐿𝐽))
Distinct variable groups:   𝐴,𝑎,𝑙,𝑝,𝑟,𝑥,𝑥𝐿,𝑥𝑅,𝑦𝑅   𝐹,𝑙,𝑝   𝐼,𝑎,𝑙,𝑝,𝑟,𝑥,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝐿,𝑎,𝑙,𝑥𝐿,𝑥𝑅,𝑦𝐿   𝑅,𝑎,𝑙,𝑟,𝑥𝐿,𝑥𝑅,𝑦𝑅
Allowed substitution hints:   𝐴(𝑦𝐿)   𝑅(𝑥,𝑝,𝑦𝐿)   𝐹(𝑥,𝑟,𝑎,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐽(𝑥,𝑟,𝑝,𝑎,𝑙,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐿(𝑥,𝑟,𝑝,𝑦𝑅)

Proof of Theorem precsexlem6
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnawordex 8578 . . 3 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼𝐽 ↔ ∃𝑘 ∈ ω (𝐼 +o 𝑘) = 𝐽))
2 oveq2 7377 . . . . . . . . . 10 (𝑘 = ∅ → (𝐼 +o 𝑘) = (𝐼 +o ∅))
32fveq2d 6844 . . . . . . . . 9 (𝑘 = ∅ → (𝐿‘(𝐼 +o 𝑘)) = (𝐿‘(𝐼 +o ∅)))
43sseq2d 3976 . . . . . . . 8 (𝑘 = ∅ → ((𝐿𝐼) ⊆ (𝐿‘(𝐼 +o 𝑘)) ↔ (𝐿𝐼) ⊆ (𝐿‘(𝐼 +o ∅))))
5 oveq2 7377 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐼 +o 𝑘) = (𝐼 +o 𝑗))
65fveq2d 6844 . . . . . . . . 9 (𝑘 = 𝑗 → (𝐿‘(𝐼 +o 𝑘)) = (𝐿‘(𝐼 +o 𝑗)))
76sseq2d 3976 . . . . . . . 8 (𝑘 = 𝑗 → ((𝐿𝐼) ⊆ (𝐿‘(𝐼 +o 𝑘)) ↔ (𝐿𝐼) ⊆ (𝐿‘(𝐼 +o 𝑗))))
8 oveq2 7377 . . . . . . . . . 10 (𝑘 = suc 𝑗 → (𝐼 +o 𝑘) = (𝐼 +o suc 𝑗))
98fveq2d 6844 . . . . . . . . 9 (𝑘 = suc 𝑗 → (𝐿‘(𝐼 +o 𝑘)) = (𝐿‘(𝐼 +o suc 𝑗)))
109sseq2d 3976 . . . . . . . 8 (𝑘 = suc 𝑗 → ((𝐿𝐼) ⊆ (𝐿‘(𝐼 +o 𝑘)) ↔ (𝐿𝐼) ⊆ (𝐿‘(𝐼 +o suc 𝑗))))
11 nna0 8545 . . . . . . . . . 10 (𝐼 ∈ ω → (𝐼 +o ∅) = 𝐼)
1211fveq2d 6844 . . . . . . . . 9 (𝐼 ∈ ω → (𝐿‘(𝐼 +o ∅)) = (𝐿𝐼))
1312eqimsscd 4001 . . . . . . . 8 (𝐼 ∈ ω → (𝐿𝐼) ⊆ (𝐿‘(𝐼 +o ∅)))
14 nnacl 8552 . . . . . . . . . . . 12 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝐼 +o 𝑗) ∈ ω)
15 ssun1 4137 . . . . . . . . . . . . 13 (𝐿‘(𝐼 +o 𝑗)) ⊆ ((𝐿‘(𝐼 +o 𝑗)) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘(𝐼 +o 𝑗))𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅‘(𝐼 +o 𝑗))𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}))
16 precsexlem.1 . . . . . . . . . . . . . 14 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
17 precsexlem.2 . . . . . . . . . . . . . 14 𝐿 = (1st𝐹)
18 precsexlem.3 . . . . . . . . . . . . . 14 𝑅 = (2nd𝐹)
1916, 17, 18precsexlem4 28153 . . . . . . . . . . . . 13 ((𝐼 +o 𝑗) ∈ ω → (𝐿‘suc (𝐼 +o 𝑗)) = ((𝐿‘(𝐼 +o 𝑗)) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘(𝐼 +o 𝑗))𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅‘(𝐼 +o 𝑗))𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
2015, 19sseqtrrid 3987 . . . . . . . . . . . 12 ((𝐼 +o 𝑗) ∈ ω → (𝐿‘(𝐼 +o 𝑗)) ⊆ (𝐿‘suc (𝐼 +o 𝑗)))
2114, 20syl 17 . . . . . . . . . . 11 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝐿‘(𝐼 +o 𝑗)) ⊆ (𝐿‘suc (𝐼 +o 𝑗)))
22 nnasuc 8547 . . . . . . . . . . . 12 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝐼 +o suc 𝑗) = suc (𝐼 +o 𝑗))
2322fveq2d 6844 . . . . . . . . . . 11 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝐿‘(𝐼 +o suc 𝑗)) = (𝐿‘suc (𝐼 +o 𝑗)))
2421, 23sseqtrrd 3981 . . . . . . . . . 10 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝐿‘(𝐼 +o 𝑗)) ⊆ (𝐿‘(𝐼 +o suc 𝑗)))
25 sstr2 3950 . . . . . . . . . 10 ((𝐿𝐼) ⊆ (𝐿‘(𝐼 +o 𝑗)) → ((𝐿‘(𝐼 +o 𝑗)) ⊆ (𝐿‘(𝐼 +o suc 𝑗)) → (𝐿𝐼) ⊆ (𝐿‘(𝐼 +o suc 𝑗))))
2624, 25syl5com 31 . . . . . . . . 9 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → ((𝐿𝐼) ⊆ (𝐿‘(𝐼 +o 𝑗)) → (𝐿𝐼) ⊆ (𝐿‘(𝐼 +o suc 𝑗))))
2726expcom 413 . . . . . . . 8 (𝑗 ∈ ω → (𝐼 ∈ ω → ((𝐿𝐼) ⊆ (𝐿‘(𝐼 +o 𝑗)) → (𝐿𝐼) ⊆ (𝐿‘(𝐼 +o suc 𝑗)))))
284, 7, 10, 13, 27finds2 7854 . . . . . . 7 (𝑘 ∈ ω → (𝐼 ∈ ω → (𝐿𝐼) ⊆ (𝐿‘(𝐼 +o 𝑘))))
2928impcom 407 . . . . . 6 ((𝐼 ∈ ω ∧ 𝑘 ∈ ω) → (𝐿𝐼) ⊆ (𝐿‘(𝐼 +o 𝑘)))
30 fveq2 6840 . . . . . . 7 ((𝐼 +o 𝑘) = 𝐽 → (𝐿‘(𝐼 +o 𝑘)) = (𝐿𝐽))
3130sseq2d 3976 . . . . . 6 ((𝐼 +o 𝑘) = 𝐽 → ((𝐿𝐼) ⊆ (𝐿‘(𝐼 +o 𝑘)) ↔ (𝐿𝐼) ⊆ (𝐿𝐽)))
3229, 31syl5ibcom 245 . . . . 5 ((𝐼 ∈ ω ∧ 𝑘 ∈ ω) → ((𝐼 +o 𝑘) = 𝐽 → (𝐿𝐼) ⊆ (𝐿𝐽)))
3332rexlimdva 3134 . . . 4 (𝐼 ∈ ω → (∃𝑘 ∈ ω (𝐼 +o 𝑘) = 𝐽 → (𝐿𝐼) ⊆ (𝐿𝐽)))
3433adantr 480 . . 3 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (∃𝑘 ∈ ω (𝐼 +o 𝑘) = 𝐽 → (𝐿𝐼) ⊆ (𝐿𝐽)))
351, 34sylbid 240 . 2 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼𝐽 → (𝐿𝐼) ⊆ (𝐿𝐽)))
36353impia 1117 1 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝐼𝐽) → (𝐿𝐼) ⊆ (𝐿𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  {crab 3402  Vcvv 3444  csb 3859  cun 3909  wss 3911  c0 4292  {csn 4585  cop 4591   class class class wbr 5102  cmpt 5183  ccom 5635  suc csuc 6322  cfv 6499  (class class class)co 7369  ωcom 7822  1st c1st 7945  2nd c2nd 7946  reccrdg 8354   +o coa 8408   <s cslt 27586   0s c0s 27772   1s c1s 27773   L cleft 27791   R cright 27792   +s cadds 27907   -s csubs 27967   ·s cmuls 28050   /su cdivs 28131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-oadd 8415
This theorem is referenced by:  precsexlem10  28159
  Copyright terms: Public domain W3C validator