MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqimssd Structured version   Visualization version   GIF version

Theorem eqimssd 4065
Description: Equality implies inclusion, deduction version. (Contributed by SN, 6-Nov-2024.)
Hypothesis
Ref Expression
eqimssd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
eqimssd (𝜑𝐴𝐵)

Proof of Theorem eqimssd
StepHypRef Expression
1 eqimssd.1 . 2 (𝜑𝐴 = 𝐵)
2 ssid 4031 . 2 𝐵𝐵
31, 2eqsstrdi 4063 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wss 3976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-cleq 2732  df-ss 3993
This theorem is referenced by:  eqimss  4067  fssrescdmd  7160  f1ocoima  7339  sraassab  21911  evls1maplmhm  22402  r1peuqusdeg1  35611  selvvvval  42540
  Copyright terms: Public domain W3C validator