MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqimssd Structured version   Visualization version   GIF version

Theorem eqimssd 4015
Description: Equality implies inclusion, deduction version. (Contributed by SN, 6-Nov-2024.)
Hypothesis
Ref Expression
eqimssd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
eqimssd (𝜑𝐴𝐵)

Proof of Theorem eqimssd
StepHypRef Expression
1 eqimssd.1 . 2 (𝜑𝐴 = 𝐵)
2 ssid 3981 . 2 𝐵𝐵
31, 2eqsstrdi 4003 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wss 3926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2727  df-ss 3943
This theorem is referenced by:  eqimss  4017  fssrescdmd  7116  f1ocoima  7296  sraassab  21828  evls1maplmhm  22315  fldextrspunlem1  33716  r1peuqusdeg1  35665  selvvvval  42608  stgrnbgr0  47976
  Copyright terms: Public domain W3C validator