![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqimssd | Structured version Visualization version GIF version |
Description: Equality implies inclusion, deduction version. (Contributed by SN, 6-Nov-2024.) |
Ref | Expression |
---|---|
eqimssd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
eqimssd | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimssd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | ssid 4031 | . 2 ⊢ 𝐵 ⊆ 𝐵 | |
3 | 1, 2 | eqsstrdi 4063 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ss 3993 |
This theorem is referenced by: eqimss 4067 fssrescdmd 7160 f1ocoima 7339 sraassab 21911 evls1maplmhm 22402 r1peuqusdeg1 35611 selvvvval 42540 |
Copyright terms: Public domain | W3C validator |