Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqimssd Structured version   Visualization version   GIF version

Theorem eqimssd 40685
Description: Equality implies inclusion, deduction version. (Contributed by SN, 6-Nov-2024.)
Hypothesis
Ref Expression
eqimssd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
eqimssd (𝜑𝐴𝐵)

Proof of Theorem eqimssd
StepHypRef Expression
1 eqimssd.1 . 2 (𝜑𝐴 = 𝐵)
2 ssid 3970 . 2 𝐵𝐵
31, 2eqsstrdi 4002 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wss 3914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3449  df-in 3921  df-ss 3931
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator