![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqimssd | Structured version Visualization version GIF version |
Description: Equality implies inclusion, deduction version. (Contributed by SN, 6-Nov-2024.) |
Ref | Expression |
---|---|
eqimssd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
eqimssd | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimssd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | ssid 4018 | . 2 ⊢ 𝐵 ⊆ 𝐵 | |
3 | 1, 2 | eqsstrdi 4050 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ⊆ wss 3963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-ss 3980 |
This theorem is referenced by: eqimss 4054 fssrescdmd 7146 f1ocoima 7323 sraassab 21906 evls1maplmhm 22397 r1peuqusdeg1 35628 selvvvval 42572 stgrnbgr0 47867 |
Copyright terms: Public domain | W3C validator |