Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mhphf Structured version   Visualization version   GIF version

Theorem mhphf 42585
Description: A homogeneous polynomial defines a homogeneous function. Equivalently, an algebraic form is a homogeneous function. (An algebraic form is the function corresponding to a homogeneous polynomial, which in this case is the (𝑄𝑋) which corresponds to 𝑋). (Contributed by SN, 28-Jul-2024.) (Proof shortened by SN, 8-Mar-2025.)
Hypotheses
Ref Expression
mhphf.q 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
mhphf.h 𝐻 = (𝐼 mHomP 𝑈)
mhphf.u 𝑈 = (𝑆s 𝑅)
mhphf.k 𝐾 = (Base‘𝑆)
mhphf.m · = (.r𝑆)
mhphf.e = (.g‘(mulGrp‘𝑆))
mhphf.s (𝜑𝑆 ∈ CRing)
mhphf.r (𝜑𝑅 ∈ (SubRing‘𝑆))
mhphf.l (𝜑𝐿𝑅)
mhphf.x (𝜑𝑋 ∈ (𝐻𝑁))
mhphf.a (𝜑𝐴 ∈ (𝐾m 𝐼))
Assertion
Ref Expression
mhphf (𝜑 → ((𝑄𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴)))

Proof of Theorem mhphf
Dummy variables 𝑏 𝑖 𝑘 𝑗 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhphf.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ (𝐾m 𝐼))
2 elmapi 8822 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ (𝐾m 𝐼) → 𝐴:𝐼𝐾)
31, 2syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐴:𝐼𝐾)
43ffnd 6689 . . . . . . . . . . . . . . 15 (𝜑𝐴 Fn 𝐼)
51, 4fndmexd 7880 . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ V)
65adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 𝐼 ∈ V)
7 mhphf.l . . . . . . . . . . . . . 14 (𝜑𝐿𝑅)
87adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 𝐿𝑅)
94adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 𝐴 Fn 𝐼)
10 eqidd 2730 . . . . . . . . . . . . 13 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → (𝐴𝑖) = (𝐴𝑖))
116, 8, 9, 10ofc1 7681 . . . . . . . . . . . 12 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖) = (𝐿 · (𝐴𝑖)))
1211oveq2d 7403 . . . . . . . . . . 11 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖)) = ((𝑏𝑖) (𝐿 · (𝐴𝑖))))
13 mhphf.s . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ CRing)
14 eqid 2729 . . . . . . . . . . . . . . 15 (mulGrp‘𝑆) = (mulGrp‘𝑆)
1514crngmgp 20150 . . . . . . . . . . . . . 14 (𝑆 ∈ CRing → (mulGrp‘𝑆) ∈ CMnd)
1613, 15syl 17 . . . . . . . . . . . . 13 (𝜑 → (mulGrp‘𝑆) ∈ CMnd)
1716ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → (mulGrp‘𝑆) ∈ CMnd)
18 elrabi 3654 . . . . . . . . . . . . . . 15 (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} → 𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
19 eqid 2729 . . . . . . . . . . . . . . . 16 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
2019psrbagf 21827 . . . . . . . . . . . . . . 15 (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑏:𝐼⟶ℕ0)
2118, 20syl 17 . . . . . . . . . . . . . 14 (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} → 𝑏:𝐼⟶ℕ0)
2221adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 𝑏:𝐼⟶ℕ0)
2322ffvelcdmda 7056 . . . . . . . . . . . 12 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → (𝑏𝑖) ∈ ℕ0)
24 mhphf.r . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ (SubRing‘𝑆))
25 mhphf.k . . . . . . . . . . . . . . . 16 𝐾 = (Base‘𝑆)
2625subrgss 20481 . . . . . . . . . . . . . . 15 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐾)
2724, 26syl 17 . . . . . . . . . . . . . 14 (𝜑𝑅𝐾)
2827, 7sseldd 3947 . . . . . . . . . . . . 13 (𝜑𝐿𝐾)
2928ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → 𝐿𝐾)
303adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 𝐴:𝐼𝐾)
3130ffvelcdmda 7056 . . . . . . . . . . . 12 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → (𝐴𝑖) ∈ 𝐾)
3214, 25mgpbas 20054 . . . . . . . . . . . . 13 𝐾 = (Base‘(mulGrp‘𝑆))
33 mhphf.e . . . . . . . . . . . . 13 = (.g‘(mulGrp‘𝑆))
34 mhphf.m . . . . . . . . . . . . . 14 · = (.r𝑆)
3514, 34mgpplusg 20053 . . . . . . . . . . . . 13 · = (+g‘(mulGrp‘𝑆))
3632, 33, 35mulgnn0di 19755 . . . . . . . . . . . 12 (((mulGrp‘𝑆) ∈ CMnd ∧ ((𝑏𝑖) ∈ ℕ0𝐿𝐾 ∧ (𝐴𝑖) ∈ 𝐾)) → ((𝑏𝑖) (𝐿 · (𝐴𝑖))) = (((𝑏𝑖) 𝐿) · ((𝑏𝑖) (𝐴𝑖))))
3717, 23, 29, 31, 36syl13anc 1374 . . . . . . . . . . 11 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → ((𝑏𝑖) (𝐿 · (𝐴𝑖))) = (((𝑏𝑖) 𝐿) · ((𝑏𝑖) (𝐴𝑖))))
3812, 37eqtrd 2764 . . . . . . . . . 10 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖)) = (((𝑏𝑖) 𝐿) · ((𝑏𝑖) (𝐴𝑖))))
3938mpteq2dva 5200 . . . . . . . . 9 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑖𝐼 ↦ ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖))) = (𝑖𝐼 ↦ (((𝑏𝑖) 𝐿) · ((𝑏𝑖) (𝐴𝑖)))))
4039oveq2d 7403 . . . . . . . 8 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖)))) = ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ (((𝑏𝑖) 𝐿) · ((𝑏𝑖) (𝐴𝑖))))))
41 eqid 2729 . . . . . . . . . 10 (1r𝑆) = (1r𝑆)
4214, 41ringidval 20092 . . . . . . . . 9 (1r𝑆) = (0g‘(mulGrp‘𝑆))
4313adantr 480 . . . . . . . . . 10 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 𝑆 ∈ CRing)
4443, 15syl 17 . . . . . . . . 9 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (mulGrp‘𝑆) ∈ CMnd)
4513crngringd 20155 . . . . . . . . . . . 12 (𝜑𝑆 ∈ Ring)
4614ringmgp 20148 . . . . . . . . . . . 12 (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd)
4745, 46syl 17 . . . . . . . . . . 11 (𝜑 → (mulGrp‘𝑆) ∈ Mnd)
4847ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → (mulGrp‘𝑆) ∈ Mnd)
4932, 33, 48, 23, 29mulgnn0cld 19027 . . . . . . . . 9 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → ((𝑏𝑖) 𝐿) ∈ 𝐾)
5032, 33, 48, 23, 31mulgnn0cld 19027 . . . . . . . . 9 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → ((𝑏𝑖) (𝐴𝑖)) ∈ 𝐾)
51 eqidd 2730 . . . . . . . . 9 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑖𝐼 ↦ ((𝑏𝑖) 𝐿)) = (𝑖𝐼 ↦ ((𝑏𝑖) 𝐿)))
52 eqidd 2730 . . . . . . . . 9 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))) = (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))
535mptexd 7198 . . . . . . . . . . 11 (𝜑 → (𝑖𝐼 ↦ ((𝑏𝑖) 𝐿)) ∈ V)
5453adantr 480 . . . . . . . . . 10 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑖𝐼 ↦ ((𝑏𝑖) 𝐿)) ∈ V)
55 fvexd 6873 . . . . . . . . . 10 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (1r𝑆) ∈ V)
56 funmpt 6554 . . . . . . . . . . 11 Fun (𝑖𝐼 ↦ ((𝑏𝑖) 𝐿))
5756a1i 11 . . . . . . . . . 10 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → Fun (𝑖𝐼 ↦ ((𝑏𝑖) 𝐿)))
5819psrbagfsupp 21828 . . . . . . . . . . . 12 (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑏 finSupp 0)
5918, 58syl 17 . . . . . . . . . . 11 (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} → 𝑏 finSupp 0)
6059adantl 481 . . . . . . . . . 10 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 𝑏 finSupp 0)
6122feqmptd 6929 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 𝑏 = (𝑖𝐼 ↦ (𝑏𝑖)))
6261oveq1d 7402 . . . . . . . . . . . 12 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑏 supp 0) = ((𝑖𝐼 ↦ (𝑏𝑖)) supp 0))
6362eqimsscd 4004 . . . . . . . . . . 11 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((𝑖𝐼 ↦ (𝑏𝑖)) supp 0) ⊆ (𝑏 supp 0))
6432, 42, 33mulg0 19006 . . . . . . . . . . . 12 (𝑘𝐾 → (0 𝑘) = (1r𝑆))
6564adantl 481 . . . . . . . . . . 11 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑘𝐾) → (0 𝑘) = (1r𝑆))
66 0zd 12541 . . . . . . . . . . 11 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 0 ∈ ℤ)
6763, 65, 23, 29, 66suppssov1 8176 . . . . . . . . . 10 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((𝑖𝐼 ↦ ((𝑏𝑖) 𝐿)) supp (1r𝑆)) ⊆ (𝑏 supp 0))
6854, 55, 57, 60, 67fsuppsssuppgd 9333 . . . . . . . . 9 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑖𝐼 ↦ ((𝑏𝑖) 𝐿)) finSupp (1r𝑆))
695mptexd 7198 . . . . . . . . . . 11 (𝜑 → (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))) ∈ V)
7069adantr 480 . . . . . . . . . 10 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))) ∈ V)
71 funmpt 6554 . . . . . . . . . . 11 Fun (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))
7271a1i 11 . . . . . . . . . 10 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → Fun (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))
7363, 65, 23, 31, 66suppssov1 8176 . . . . . . . . . 10 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))) supp (1r𝑆)) ⊆ (𝑏 supp 0))
7470, 55, 72, 60, 73fsuppsssuppgd 9333 . . . . . . . . 9 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))) finSupp (1r𝑆))
7532, 42, 35, 44, 6, 49, 50, 51, 52, 68, 74gsummptfsadd 19854 . . . . . . . 8 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ (((𝑏𝑖) 𝐿) · ((𝑏𝑖) (𝐴𝑖))))) = (((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) 𝐿))) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))))
76 eqid 2729 . . . . . . . . . 10 {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} = {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}
77 mhphf.h . . . . . . . . . . 11 𝐻 = (𝐼 mHomP 𝑈)
78 mhphf.x . . . . . . . . . . 11 (𝜑𝑋 ∈ (𝐻𝑁))
7977, 78mhprcl 22030 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
8019, 76, 32, 33, 5, 47, 28, 79mhphflem 42584 . . . . . . . . 9 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) 𝐿))) = (𝑁 𝐿))
8180oveq1d 7402 . . . . . . . 8 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) 𝐿))) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))) = ((𝑁 𝐿) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))))
8240, 75, 813eqtrd 2768 . . . . . . 7 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖)))) = ((𝑁 𝐿) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))))
8382oveq2d 7403 . . . . . 6 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖))))) = ((𝑋𝑏) · ((𝑁 𝐿) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))))
84 eqid 2729 . . . . . . . . . . 11 (𝐼 mPoly 𝑈) = (𝐼 mPoly 𝑈)
85 eqid 2729 . . . . . . . . . . 11 (Base‘𝑈) = (Base‘𝑈)
86 eqid 2729 . . . . . . . . . . 11 (Base‘(𝐼 mPoly 𝑈)) = (Base‘(𝐼 mPoly 𝑈))
8777, 84, 86, 78mhpmpl 22031 . . . . . . . . . . 11 (𝜑𝑋 ∈ (Base‘(𝐼 mPoly 𝑈)))
8884, 85, 86, 19, 87mplelf 21907 . . . . . . . . . 10 (𝜑𝑋:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑈))
89 mhphf.u . . . . . . . . . . . . 13 𝑈 = (𝑆s 𝑅)
9089subrgbas 20490 . . . . . . . . . . . 12 (𝑅 ∈ (SubRing‘𝑆) → 𝑅 = (Base‘𝑈))
9190, 26eqsstrrd 3982 . . . . . . . . . . 11 (𝑅 ∈ (SubRing‘𝑆) → (Base‘𝑈) ⊆ 𝐾)
9224, 91syl 17 . . . . . . . . . 10 (𝜑 → (Base‘𝑈) ⊆ 𝐾)
9388, 92fssd 6705 . . . . . . . . 9 (𝜑𝑋:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶𝐾)
9493ffvelcdmda 7056 . . . . . . . 8 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑋𝑏) ∈ 𝐾)
9518, 94sylan2 593 . . . . . . 7 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑋𝑏) ∈ 𝐾)
9632, 33, 47, 79, 28mulgnn0cld 19027 . . . . . . . 8 (𝜑 → (𝑁 𝐿) ∈ 𝐾)
9796adantr 480 . . . . . . 7 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑁 𝐿) ∈ 𝐾)
985adantr 480 . . . . . . . . 9 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐼 ∈ V)
9913adantr 480 . . . . . . . . 9 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑆 ∈ CRing)
1001adantr 480 . . . . . . . . 9 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐴 ∈ (𝐾m 𝐼))
101 simpr 484 . . . . . . . . 9 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
10219, 25, 14, 33, 98, 99, 100, 101evlsvvvallem 42549 . . . . . . . 8 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))) ∈ 𝐾)
10318, 102sylan2 593 . . . . . . 7 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))) ∈ 𝐾)
10425, 34, 43, 95, 97, 103crng12d 20167 . . . . . 6 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((𝑋𝑏) · ((𝑁 𝐿) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))) = ((𝑁 𝐿) · ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))))
10583, 104eqtrd 2764 . . . . 5 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖))))) = ((𝑁 𝐿) · ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))))
106105mpteq2dva 5200 . . . 4 (𝜑 → (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖)))))) = (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑁 𝐿) · ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))))))
107106oveq2d 7403 . . 3 (𝜑 → (𝑆 Σg (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖))))))) = (𝑆 Σg (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑁 𝐿) · ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))))))
108 eqid 2729 . . . 4 (0g𝑆) = (0g𝑆)
109 ovex 7420 . . . . . . 7 (ℕ0m 𝐼) ∈ V
110109rabex 5294 . . . . . 6 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V
111110rabex 5294 . . . . 5 {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∈ V
112111a1i 11 . . . 4 (𝜑 → {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∈ V)
11345adantr 480 . . . . . 6 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑆 ∈ Ring)
11425, 34, 113, 94, 102ringcld 20169 . . . . 5 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))) ∈ 𝐾)
11518, 114sylan2 593 . . . 4 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))) ∈ 𝐾)
116 ssrab2 4043 . . . . . 6 {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ⊆ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
117 mptss 6013 . . . . . 6 ({𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ⊆ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))) ⊆ (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))))
118116, 117mp1i 13 . . . . 5 (𝜑 → (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))) ⊆ (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))))
11919, 84, 89, 86, 25, 14, 33, 34, 5, 13, 24, 87, 1evlsvvvallem2 42550 . . . . 5 (𝜑 → (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))) finSupp (0g𝑆))
120118, 119fsuppss 9334 . . . 4 (𝜑 → (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))) finSupp (0g𝑆))
12125, 108, 34, 45, 112, 96, 115, 120gsummulc2 20226 . . 3 (𝜑 → (𝑆 Σg (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑁 𝐿) · ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))))) = ((𝑁 𝐿) · (𝑆 Σg (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))))))
122107, 121eqtrd 2764 . 2 (𝜑 → (𝑆 Σg (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖))))))) = ((𝑁 𝐿) · (𝑆 Σg (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))))))
123 mhphf.q . . 3 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
12425fvexi 6872 . . . . 5 𝐾 ∈ V
125124a1i 11 . . . 4 (𝜑𝐾 ∈ V)
12625, 34ringcl 20159 . . . . . . 7 ((𝑆 ∈ Ring ∧ 𝑗𝐾𝑘𝐾) → (𝑗 · 𝑘) ∈ 𝐾)
12745, 126syl3an1 1163 . . . . . 6 ((𝜑𝑗𝐾𝑘𝐾) → (𝑗 · 𝑘) ∈ 𝐾)
1281273expb 1120 . . . . 5 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → (𝑗 · 𝑘) ∈ 𝐾)
129 fconst6g 6749 . . . . . 6 (𝐿𝐾 → (𝐼 × {𝐿}):𝐼𝐾)
13028, 129syl 17 . . . . 5 (𝜑 → (𝐼 × {𝐿}):𝐼𝐾)
131 inidm 4190 . . . . 5 (𝐼𝐼) = 𝐼
132128, 130, 3, 5, 5, 131off 7671 . . . 4 (𝜑 → ((𝐼 × {𝐿}) ∘f · 𝐴):𝐼𝐾)
133125, 5, 132elmapdd 8814 . . 3 (𝜑 → ((𝐼 × {𝐿}) ∘f · 𝐴) ∈ (𝐾m 𝐼))
134123, 77, 89, 19, 76, 25, 14, 33, 34, 13, 24, 78, 133evlsmhpvvval 42583 . 2 (𝜑 → ((𝑄𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = (𝑆 Σg (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖))))))))
135123, 77, 89, 19, 76, 25, 14, 33, 34, 13, 24, 78, 1evlsmhpvvval 42583 . . 3 (𝜑 → ((𝑄𝑋)‘𝐴) = (𝑆 Σg (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))))))
136135oveq2d 7403 . 2 (𝜑 → ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴)) = ((𝑁 𝐿) · (𝑆 Σg (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))))))
137122, 134, 1363eqtr4d 2774 1 (𝜑 → ((𝑄𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  wss 3914  {csn 4589   class class class wbr 5107  cmpt 5188   × cxp 5636  ccnv 5637  cima 5641  Fun wfun 6505   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  f cof 7651   supp csupp 8139  m cmap 8799  Fincfn 8918   finSupp cfsupp 9312  0cc0 11068  cn 12186  0cn0 12442  cz 12529  Basecbs 17179  s cress 17200  .rcmulr 17221  0gc0g 17402   Σg cgsu 17403  Mndcmnd 18661  .gcmg 18999  CMndccmn 19710  mulGrpcmgp 20049  1rcur 20090  Ringcrg 20142  CRingccrg 20143  SubRingcsubrg 20478  fldccnfld 21264   mPoly cmpl 21815   evalSub ces 21979   mHomP cmhp 22016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-srg 20096  df-ring 20144  df-cring 20145  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-lmod 20768  df-lss 20838  df-lsp 20878  df-cnfld 21265  df-assa 21762  df-asp 21763  df-ascl 21764  df-psr 21818  df-mvr 21819  df-mpl 21820  df-evls 21981  df-mhp 22023
This theorem is referenced by:  mhphf2  42586  mhphf3  42587
  Copyright terms: Public domain W3C validator