Step | Hyp | Ref
| Expression |
1 | | mhphf.h |
. . 3
⊢ 𝐻 = (𝐼 mHomP 𝑈) |
2 | | eqid 2738 |
. . 3
⊢
(Base‘𝑈) =
(Base‘𝑈) |
3 | | eqid 2738 |
. . 3
⊢
(0g‘𝑈) = (0g‘𝑈) |
4 | | eqid 2738 |
. . 3
⊢ (𝐼 mPoly 𝑈) = (𝐼 mPoly 𝑈) |
5 | | eqid 2738 |
. . 3
⊢
(+g‘(𝐼 mPoly 𝑈)) = (+g‘(𝐼 mPoly 𝑈)) |
6 | | eqid 2738 |
. . 3
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
7 | | eqid 2738 |
. . 3
⊢ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} = {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} |
8 | | mhphf.i |
. . 3
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
9 | | mhphf.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
10 | | mhphf.u |
. . . . . 6
⊢ 𝑈 = (𝑆 ↾s 𝑅) |
11 | 10 | subrgring 20027 |
. . . . 5
⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring) |
12 | 9, 11 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑈 ∈ Ring) |
13 | 12 | ringgrpd 19792 |
. . 3
⊢ (𝜑 → 𝑈 ∈ Grp) |
14 | | mhphf.n |
. . 3
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
15 | | mhphf.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) |
16 | | eqid 2738 |
. . . . . 6
⊢
(algSc‘(𝐼
mPoly 𝑈)) =
(algSc‘(𝐼 mPoly 𝑈)) |
17 | | eqid 2738 |
. . . . . 6
⊢
(0g‘(𝐼 mPoly 𝑈)) = (0g‘(𝐼 mPoly 𝑈)) |
18 | | mhphf.s |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ CRing) |
19 | 10 | subrgcrng 20028 |
. . . . . . 7
⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑈 ∈ CRing) |
20 | 18, 9, 19 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → 𝑈 ∈ CRing) |
21 | 4, 16, 3, 17, 8, 20 | mplascl0 40270 |
. . . . 5
⊢ (𝜑 → ((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)) = (0g‘(𝐼 mPoly 𝑈))) |
22 | 4, 6, 3, 17, 8, 13 | mpl0 21212 |
. . . . 5
⊢ (𝜑 →
(0g‘(𝐼
mPoly 𝑈)) = ({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(0g‘𝑈)})) |
23 | 21, 22 | eqtr2d 2779 |
. . . 4
⊢ (𝜑 → ({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(0g‘𝑈)})
= ((algSc‘(𝐼 mPoly
𝑈))‘(0g‘𝑈))) |
24 | | mhphf.m |
. . . . . . . . . 10
⊢ · =
(.r‘𝑆) |
25 | 10, 24 | ressmulr 17017 |
. . . . . . . . 9
⊢ (𝑅 ∈ (SubRing‘𝑆) → · =
(.r‘𝑈)) |
26 | 9, 25 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → · =
(.r‘𝑈)) |
27 | 26 | oveqd 7292 |
. . . . . . 7
⊢ (𝜑 → ((𝑁 ↑ 𝐿) ·
(0g‘𝑈)) =
((𝑁 ↑ 𝐿)(.r‘𝑈)(0g‘𝑈))) |
28 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(mulGrp‘𝑆) =
(mulGrp‘𝑆) |
29 | 28 | subrgsubm 20037 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ∈ (SubMnd‘(mulGrp‘𝑆))) |
30 | 9, 29 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ (SubMnd‘(mulGrp‘𝑆))) |
31 | | mhphf.l |
. . . . . . . . . 10
⊢ (𝜑 → 𝐿 ∈ 𝑅) |
32 | | mhphf.e |
. . . . . . . . . . 11
⊢ ↑ =
(.g‘(mulGrp‘𝑆)) |
33 | 32 | submmulgcl 18746 |
. . . . . . . . . 10
⊢ ((𝑅 ∈
(SubMnd‘(mulGrp‘𝑆)) ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ 𝑅) → (𝑁 ↑ 𝐿) ∈ 𝑅) |
34 | 30, 14, 31, 33 | syl3anc 1370 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁 ↑ 𝐿) ∈ 𝑅) |
35 | 10 | subrgbas 20033 |
. . . . . . . . . 10
⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 = (Base‘𝑈)) |
36 | 9, 35 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 = (Base‘𝑈)) |
37 | 34, 36 | eleqtrd 2841 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 ↑ 𝐿) ∈ (Base‘𝑈)) |
38 | | eqid 2738 |
. . . . . . . . 9
⊢
(.r‘𝑈) = (.r‘𝑈) |
39 | 2, 38, 3 | ringrz 19827 |
. . . . . . . 8
⊢ ((𝑈 ∈ Ring ∧ (𝑁 ↑ 𝐿) ∈ (Base‘𝑈)) → ((𝑁 ↑ 𝐿)(.r‘𝑈)(0g‘𝑈)) = (0g‘𝑈)) |
40 | 12, 37, 39 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → ((𝑁 ↑ 𝐿)(.r‘𝑈)(0g‘𝑈)) = (0g‘𝑈)) |
41 | 27, 40 | eqtrd 2778 |
. . . . . 6
⊢ (𝜑 → ((𝑁 ↑ 𝐿) ·
(0g‘𝑈)) =
(0g‘𝑈)) |
42 | | mhphf.q |
. . . . . . . . 9
⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) |
43 | | mhphf.k |
. . . . . . . . 9
⊢ 𝐾 = (Base‘𝑆) |
44 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘(𝐼 mPoly
𝑈)) = (Base‘(𝐼 mPoly 𝑈)) |
45 | 2, 3 | ring0cl 19808 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ Ring →
(0g‘𝑈)
∈ (Base‘𝑈)) |
46 | 12, 45 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (0g‘𝑈) ∈ (Base‘𝑈)) |
47 | 46, 36 | eleqtrrd 2842 |
. . . . . . . . 9
⊢ (𝜑 → (0g‘𝑈) ∈ 𝑅) |
48 | | mhphf.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
49 | 42, 4, 10, 43, 44, 16, 8, 18, 9, 47, 48 | evlsscaval 40273 |
. . . . . . . 8
⊢ (𝜑 → (((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)))‘𝐴) = (0g‘𝑈))) |
50 | 49 | simprd 496 |
. . . . . . 7
⊢ (𝜑 → ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)))‘𝐴) = (0g‘𝑈)) |
51 | 50 | oveq2d 7291 |
. . . . . 6
⊢ (𝜑 → ((𝑁 ↑ 𝐿) · ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)))‘𝐴)) = ((𝑁 ↑ 𝐿) ·
(0g‘𝑈))) |
52 | 43 | fvexi 6788 |
. . . . . . . . . 10
⊢ 𝐾 ∈ V |
53 | 52 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ V) |
54 | 18 | crngringd 19796 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 ∈ Ring) |
55 | 43, 24 | ringcl 19800 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ Ring ∧ 𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾) → (𝑗 · 𝑘) ∈ 𝐾) |
56 | 54, 55 | syl3an1 1162 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾) → (𝑗 · 𝑘) ∈ 𝐾) |
57 | 56 | 3expb 1119 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾)) → (𝑗 · 𝑘) ∈ 𝐾) |
58 | 43 | subrgss 20025 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐾) |
59 | 9, 58 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑅 ⊆ 𝐾) |
60 | 59, 31 | sseldd 3922 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐿 ∈ 𝐾) |
61 | | fconst6g 6663 |
. . . . . . . . . . 11
⊢ (𝐿 ∈ 𝐾 → (𝐼 × {𝐿}):𝐼⟶𝐾) |
62 | 60, 61 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐼 × {𝐿}):𝐼⟶𝐾) |
63 | | elmapi 8637 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (𝐾 ↑m 𝐼) → 𝐴:𝐼⟶𝐾) |
64 | 48, 63 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴:𝐼⟶𝐾) |
65 | | inidm 4152 |
. . . . . . . . . 10
⊢ (𝐼 ∩ 𝐼) = 𝐼 |
66 | 57, 62, 64, 8, 8, 65 | off 7551 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐼 × {𝐿}) ∘f · 𝐴):𝐼⟶𝐾) |
67 | 53, 8, 66 | elmapdd 40216 |
. . . . . . . 8
⊢ (𝜑 → ((𝐼 × {𝐿}) ∘f · 𝐴) ∈ (𝐾 ↑m 𝐼)) |
68 | 42, 4, 10, 43, 44, 16, 8, 18, 9, 47, 67 | evlsscaval 40273 |
. . . . . . 7
⊢ (𝜑 → (((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = (0g‘𝑈))) |
69 | 68 | simprd 496 |
. . . . . 6
⊢ (𝜑 → ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = (0g‘𝑈)) |
70 | 41, 51, 69 | 3eqtr4rd 2789 |
. . . . 5
⊢ (𝜑 → ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)))‘𝐴))) |
71 | | fvex 6787 |
. . . . . 6
⊢
((algSc‘(𝐼
mPoly 𝑈))‘(0g‘𝑈)) ∈ V |
72 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑓 = ((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)) → (𝑄‘𝑓) = (𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)))) |
73 | 72 | fveq1d 6776 |
. . . . . . 7
⊢ (𝑓 = ((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)) → ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)))‘((𝐼 × {𝐿}) ∘f · 𝐴))) |
74 | 72 | fveq1d 6776 |
. . . . . . . 8
⊢ (𝑓 = ((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)) → ((𝑄‘𝑓)‘𝐴) = ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)))‘𝐴)) |
75 | 74 | oveq2d 7291 |
. . . . . . 7
⊢ (𝑓 = ((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)) → ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)))‘𝐴))) |
76 | 73, 75 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑓 = ((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)) → (((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴)) ↔ ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)))‘𝐴)))) |
77 | 71, 76 | elab 3609 |
. . . . 5
⊢
(((algSc‘(𝐼
mPoly 𝑈))‘(0g‘𝑈)) ∈ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))} ↔ ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)))‘𝐴))) |
78 | 70, 77 | sylibr 233 |
. . . 4
⊢ (𝜑 → ((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)) ∈ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))}) |
79 | 23, 78 | eqeltrd 2839 |
. . 3
⊢ (𝜑 → ({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(0g‘𝑈)})
∈ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))}) |
80 | 4 | mplassa 21227 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑈 ∈ CRing) → (𝐼 mPoly 𝑈) ∈ AssAlg) |
81 | 8, 20, 80 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (𝐼 mPoly 𝑈) ∈ AssAlg) |
82 | 81 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝐼 mPoly 𝑈) ∈ AssAlg) |
83 | 4, 8, 12 | mplsca 21217 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 = (Scalar‘(𝐼 mPoly 𝑈))) |
84 | 83 | fveq2d 6778 |
. . . . . . . . . 10
⊢ (𝜑 → (Base‘𝑈) =
(Base‘(Scalar‘(𝐼 mPoly 𝑈)))) |
85 | 84 | eleq2d 2824 |
. . . . . . . . 9
⊢ (𝜑 → (𝑏 ∈ (Base‘𝑈) ↔ 𝑏 ∈ (Base‘(Scalar‘(𝐼 mPoly 𝑈))))) |
86 | 85 | biimpa 477 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ (Base‘𝑈)) → 𝑏 ∈ (Base‘(Scalar‘(𝐼 mPoly 𝑈)))) |
87 | 86 | adantrl 713 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑏 ∈ (Base‘(Scalar‘(𝐼 mPoly 𝑈)))) |
88 | | fvexd 6789 |
. . . . . . . . . . 11
⊢ (𝜑 → (Base‘𝑈) ∈ V) |
89 | | ovex 7308 |
. . . . . . . . . . . . 13
⊢
(ℕ0 ↑m 𝐼) ∈ V |
90 | 89 | rabex 5256 |
. . . . . . . . . . . 12
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V |
91 | 90 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V) |
92 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢
(1r‘𝑈) = (1r‘𝑈) |
93 | 2, 92 | ringidcl 19807 |
. . . . . . . . . . . . . . 15
⊢ (𝑈 ∈ Ring →
(1r‘𝑈)
∈ (Base‘𝑈)) |
94 | 12, 93 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (1r‘𝑈) ∈ (Base‘𝑈)) |
95 | 94, 46 | ifcld 4505 |
. . . . . . . . . . . . 13
⊢ (𝜑 → if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)) ∈ (Base‘𝑈)) |
96 | 95 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)) ∈ (Base‘𝑈)) |
97 | 96 | fmpttd 6989 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))):{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑈)) |
98 | 88, 91, 97 | elmapdd 40216 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))) ∈ ((Base‘𝑈) ↑m {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin})) |
99 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝐼 mPwSer 𝑈) = (𝐼 mPwSer 𝑈) |
100 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Base‘(𝐼
mPwSer 𝑈)) =
(Base‘(𝐼 mPwSer 𝑈)) |
101 | 99, 2, 6, 100, 8 | psrbas 21147 |
. . . . . . . . . 10
⊢ (𝜑 → (Base‘(𝐼 mPwSer 𝑈)) = ((Base‘𝑈) ↑m {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin})) |
102 | 98, 101 | eleqtrrd 2842 |
. . . . . . . . 9
⊢ (𝜑 → (𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))) ∈ (Base‘(𝐼 mPwSer 𝑈))) |
103 | 90 | mptex 7099 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))) ∈ V |
104 | 103 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))) ∈ V) |
105 | | fvexd 6789 |
. . . . . . . . . 10
⊢ (𝜑 → (0g‘𝑈) ∈ V) |
106 | | funmpt 6472 |
. . . . . . . . . . 11
⊢ Fun
(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))) |
107 | 106 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → Fun (𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))) |
108 | | snfi 8834 |
. . . . . . . . . . . 12
⊢ {𝑎} ∈ Fin |
109 | 108 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝑎} ∈ Fin) |
110 | | eldifsnneq 4724 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ ({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∖ {𝑎}) → ¬ 𝑤 = 𝑎) |
111 | 110 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ ({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∖ {𝑎})) → ¬ 𝑤 = 𝑎) |
112 | 111 | iffalsed 4470 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ ({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∖ {𝑎})) → if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)) = (0g‘𝑈)) |
113 | 112, 91 | suppss2 8016 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))) supp (0g‘𝑈)) ⊆ {𝑎}) |
114 | 109, 113 | ssfid 9042 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))) supp (0g‘𝑈)) ∈ Fin) |
115 | 104, 105,
107, 114 | isfsuppd 40217 |
. . . . . . . . 9
⊢ (𝜑 → (𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))) finSupp (0g‘𝑈)) |
116 | 4, 99, 100, 3, 44 | mplelbas 21199 |
. . . . . . . . 9
⊢ ((𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))) ∈ (Base‘(𝐼 mPoly 𝑈)) ↔ ((𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))) ∈ (Base‘(𝐼 mPwSer 𝑈)) ∧ (𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))) finSupp (0g‘𝑈))) |
117 | 102, 115,
116 | sylanbrc 583 |
. . . . . . . 8
⊢ (𝜑 → (𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))) ∈ (Base‘(𝐼 mPoly 𝑈))) |
118 | 117 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))) ∈ (Base‘(𝐼 mPoly 𝑈))) |
119 | | eqid 2738 |
. . . . . . . 8
⊢
(Scalar‘(𝐼
mPoly 𝑈)) =
(Scalar‘(𝐼 mPoly
𝑈)) |
120 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘(Scalar‘(𝐼 mPoly 𝑈))) = (Base‘(Scalar‘(𝐼 mPoly 𝑈))) |
121 | | eqid 2738 |
. . . . . . . 8
⊢
(.r‘(𝐼 mPoly 𝑈)) = (.r‘(𝐼 mPoly 𝑈)) |
122 | | eqid 2738 |
. . . . . . . 8
⊢ (
·𝑠 ‘(𝐼 mPoly 𝑈)) = ( ·𝑠
‘(𝐼 mPoly 𝑈)) |
123 | 16, 119, 120, 44, 121, 122 | asclmul1 21090 |
. . . . . . 7
⊢ (((𝐼 mPoly 𝑈) ∈ AssAlg ∧ 𝑏 ∈ (Base‘(Scalar‘(𝐼 mPoly 𝑈))) ∧ (𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))) ∈ (Base‘(𝐼 mPoly 𝑈))) → (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))) = (𝑏( ·𝑠
‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))))) |
124 | 82, 87, 118, 123 | syl3anc 1370 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))) = (𝑏( ·𝑠
‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))))) |
125 | | simprr 770 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑏 ∈ (Base‘𝑈)) |
126 | 4, 122, 2, 44, 38, 6, 125, 118 | mplvsca 21219 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑏( ·𝑠
‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))) = (({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑏}) ∘f
(.r‘𝑈)(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))))) |
127 | 124, 126 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))) = (({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑏}) ∘f
(.r‘𝑈)(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))))) |
128 | | vex 3436 |
. . . . . . 7
⊢ 𝑏 ∈ V |
129 | | fnconstg 6662 |
. . . . . . 7
⊢ (𝑏 ∈ V → ({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑏}) Fn {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
130 | 128, 129 | mp1i 13 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑏}) Fn {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
131 | | fvex 6787 |
. . . . . . . . 9
⊢
(1r‘𝑈) ∈ V |
132 | | fvex 6787 |
. . . . . . . . 9
⊢
(0g‘𝑈) ∈ V |
133 | 131, 132 | ifex 4509 |
. . . . . . . 8
⊢ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)) ∈ V |
134 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))) = (𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))) |
135 | 133, 134 | fnmpti 6576 |
. . . . . . 7
⊢ (𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))) Fn {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
136 | 135 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))) Fn {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
137 | 90 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V) |
138 | | inidm 4152 |
. . . . . 6
⊢ ({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∩ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
139 | 128 | fvconst2 7079 |
. . . . . . 7
⊢ (𝑠 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → (({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑏})‘𝑠) = 𝑏) |
140 | 139 | adantl 482 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑠 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑏})‘𝑠) = 𝑏) |
141 | | equequ1 2028 |
. . . . . . . . 9
⊢ (𝑤 = 𝑠 → (𝑤 = 𝑎 ↔ 𝑠 = 𝑎)) |
142 | 141 | ifbid 4482 |
. . . . . . . 8
⊢ (𝑤 = 𝑠 → if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)) = if(𝑠 = 𝑎, (1r‘𝑈), (0g‘𝑈))) |
143 | 131, 132 | ifex 4509 |
. . . . . . . 8
⊢ if(𝑠 = 𝑎, (1r‘𝑈), (0g‘𝑈)) ∈ V |
144 | 142, 134,
143 | fvmpt 6875 |
. . . . . . 7
⊢ (𝑠 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → ((𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))‘𝑠) = if(𝑠 = 𝑎, (1r‘𝑈), (0g‘𝑈))) |
145 | 144 | adantl 482 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑠 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))‘𝑠) = if(𝑠 = 𝑎, (1r‘𝑈), (0g‘𝑈))) |
146 | 130, 136,
137, 137, 138, 140, 145 | offval 7542 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑏}) ∘f
(.r‘𝑈)(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))) = (𝑠 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑏(.r‘𝑈)if(𝑠 = 𝑎, (1r‘𝑈), (0g‘𝑈))))) |
147 | | ovif2 7373 |
. . . . . . 7
⊢ (𝑏(.r‘𝑈)if(𝑠 = 𝑎, (1r‘𝑈), (0g‘𝑈))) = if(𝑠 = 𝑎, (𝑏(.r‘𝑈)(1r‘𝑈)), (𝑏(.r‘𝑈)(0g‘𝑈))) |
148 | 12 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑠 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑈 ∈ Ring) |
149 | | simplrr 775 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑠 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑏 ∈ (Base‘𝑈)) |
150 | 2, 38, 92, 148, 149 | ringridmd 40243 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑠 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑏(.r‘𝑈)(1r‘𝑈)) = 𝑏) |
151 | 2, 38, 3 | ringrz 19827 |
. . . . . . . . 9
⊢ ((𝑈 ∈ Ring ∧ 𝑏 ∈ (Base‘𝑈)) → (𝑏(.r‘𝑈)(0g‘𝑈)) = (0g‘𝑈)) |
152 | 148, 149,
151 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑠 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑏(.r‘𝑈)(0g‘𝑈)) = (0g‘𝑈)) |
153 | 150, 152 | ifeq12d 4480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑠 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → if(𝑠 = 𝑎, (𝑏(.r‘𝑈)(1r‘𝑈)), (𝑏(.r‘𝑈)(0g‘𝑈))) = if(𝑠 = 𝑎, 𝑏, (0g‘𝑈))) |
154 | 147, 153 | eqtrid 2790 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑠 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑏(.r‘𝑈)if(𝑠 = 𝑎, (1r‘𝑈), (0g‘𝑈))) = if(𝑠 = 𝑎, 𝑏, (0g‘𝑈))) |
155 | 154 | mpteq2dva 5174 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑠 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑏(.r‘𝑈)if(𝑠 = 𝑎, (1r‘𝑈), (0g‘𝑈)))) = (𝑠 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑠 = 𝑎, 𝑏, (0g‘𝑈)))) |
156 | 127, 146,
155 | 3eqtrd 2782 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))) = (𝑠 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑠 = 𝑎, 𝑏, (0g‘𝑈)))) |
157 | 8 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝐼 ∈ 𝑉) |
158 | 18 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑆 ∈ CRing) |
159 | 9 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑅 ∈ (SubRing‘𝑆)) |
160 | 67 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝐼 × {𝐿}) ∘f · 𝐴) ∈ (𝐾 ↑m 𝐼)) |
161 | 12 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑈 ∈ Ring) |
162 | 4, 44, 2, 16, 157, 161 | mplasclf 21273 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (algSc‘(𝐼 mPoly 𝑈)):(Base‘𝑈)⟶(Base‘(𝐼 mPoly 𝑈))) |
163 | 162, 125 | ffvelrnd 6962 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((algSc‘(𝐼 mPoly 𝑈))‘𝑏) ∈ (Base‘(𝐼 mPoly 𝑈))) |
164 | | eqidd 2739 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘((𝐼 × {𝐿}) ∘f · 𝐴))) |
165 | 163, 164 | jca 512 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((algSc‘(𝐼 mPoly 𝑈))‘𝑏) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘((𝐼 × {𝐿}) ∘f · 𝐴)))) |
166 | | elrabi 3618 |
. . . . . . . . . 10
⊢ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} → 𝑎 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
167 | 166 | ad2antrl 725 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑎 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
168 | 42, 4, 10, 44, 43, 28, 32, 3, 92, 6, 134, 157, 158, 159, 160, 167 | evlsbagval 40275 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((mulGrp‘𝑆) Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣)))))) |
169 | 42, 4, 10, 43, 44, 157, 158, 159, 160, 165, 168, 121, 24 | evlsmulval 40278 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = (((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘((𝐼 × {𝐿}) ∘f · 𝐴)) ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣))))))) |
170 | 169 | simprd 496 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = (((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘((𝐼 × {𝐿}) ∘f · 𝐴)) ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣)))))) |
171 | 28 | ringmgp 19789 |
. . . . . . . . . . . . 13
⊢ (𝑆 ∈ Ring →
(mulGrp‘𝑆) ∈
Mnd) |
172 | 54, 171 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (mulGrp‘𝑆) ∈ Mnd) |
173 | 28, 43 | mgpbas 19726 |
. . . . . . . . . . . . 13
⊢ 𝐾 =
(Base‘(mulGrp‘𝑆)) |
174 | 173, 32 | mulgnn0cl 18720 |
. . . . . . . . . . . 12
⊢
(((mulGrp‘𝑆)
∈ Mnd ∧ 𝑁 ∈
ℕ0 ∧ 𝐿
∈ 𝐾) → (𝑁 ↑ 𝐿) ∈ 𝐾) |
175 | 172, 14, 60, 174 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁 ↑ 𝐿) ∈ 𝐾) |
176 | 175 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑁 ↑ 𝐿) ∈ 𝐾) |
177 | 36, 59 | eqsstrrd 3960 |
. . . . . . . . . . . 12
⊢ (𝜑 → (Base‘𝑈) ⊆ 𝐾) |
178 | 177 | sselda 3921 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ∈ (Base‘𝑈)) → 𝑏 ∈ 𝐾) |
179 | 178 | adantrl 713 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑏 ∈ 𝐾) |
180 | 43, 24 | crngcom 19801 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ CRing ∧ (𝑁 ↑ 𝐿) ∈ 𝐾 ∧ 𝑏 ∈ 𝐾) → ((𝑁 ↑ 𝐿) · 𝑏) = (𝑏 · (𝑁 ↑ 𝐿))) |
181 | 158, 176,
179, 180 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑁 ↑ 𝐿) · 𝑏) = (𝑏 · (𝑁 ↑ 𝐿))) |
182 | 181 | oveq1d 7290 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((𝑁 ↑ 𝐿) · 𝑏) ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))))) = ((𝑏 · (𝑁 ↑ 𝐿)) ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣)))))) |
183 | 158 | crngringd 19796 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑆 ∈ Ring) |
184 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(1r‘𝑆) = (1r‘𝑆) |
185 | 28, 184 | ringidval 19739 |
. . . . . . . . . 10
⊢
(1r‘𝑆) = (0g‘(mulGrp‘𝑆)) |
186 | 28 | crngmgp 19791 |
. . . . . . . . . . . 12
⊢ (𝑆 ∈ CRing →
(mulGrp‘𝑆) ∈
CMnd) |
187 | 18, 186 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (mulGrp‘𝑆) ∈ CMnd) |
188 | 187 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (mulGrp‘𝑆) ∈ CMnd) |
189 | 172 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣 ∈ 𝐼) → (mulGrp‘𝑆) ∈ Mnd) |
190 | | elrabi 3618 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → 𝑎 ∈ (ℕ0
↑m 𝐼)) |
191 | | elmapi 8637 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 ∈ (ℕ0
↑m 𝐼)
→ 𝑎:𝐼⟶ℕ0) |
192 | 166, 190,
191 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} → 𝑎:𝐼⟶ℕ0) |
193 | 192 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → 𝑎:𝐼⟶ℕ0) |
194 | 193 | adantrr 714 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑎:𝐼⟶ℕ0) |
195 | 194 | ffvelrnda 6961 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣 ∈ 𝐼) → (𝑎‘𝑣) ∈
ℕ0) |
196 | 64 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣 ∈ 𝐼) → 𝐴:𝐼⟶𝐾) |
197 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣 ∈ 𝐼) → 𝑣 ∈ 𝐼) |
198 | 196, 197 | ffvelrnd 6962 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣 ∈ 𝐼) → (𝐴‘𝑣) ∈ 𝐾) |
199 | 173, 32 | mulgnn0cl 18720 |
. . . . . . . . . . . 12
⊢
(((mulGrp‘𝑆)
∈ Mnd ∧ (𝑎‘𝑣) ∈ ℕ0 ∧ (𝐴‘𝑣) ∈ 𝐾) → ((𝑎‘𝑣) ↑ (𝐴‘𝑣)) ∈ 𝐾) |
200 | 189, 195,
198, 199 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣 ∈ 𝐼) → ((𝑎‘𝑣) ↑ (𝐴‘𝑣)) ∈ 𝐾) |
201 | 200 | fmpttd 6989 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))):𝐼⟶𝐾) |
202 | 6 | psrbagfsupp 21123 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → 𝑎 finSupp 0) |
203 | 202 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑎 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑎 finSupp 0) |
204 | 203 | fsuppimpd 9135 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑎 supp 0) ∈
Fin) |
205 | 166, 204 | sylan2 593 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → (𝑎 supp 0) ∈ Fin) |
206 | 205 | adantrr 714 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑎 supp 0) ∈ Fin) |
207 | 194 | feqmptd 6837 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑎 = (𝑣 ∈ 𝐼 ↦ (𝑎‘𝑣))) |
208 | 207 | oveq1d 7290 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑎 supp 0) = ((𝑣 ∈ 𝐼 ↦ (𝑎‘𝑣)) supp 0)) |
209 | | ssidd 3944 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑎 supp 0) ⊆ (𝑎 supp 0)) |
210 | 208, 209 | eqsstrrd 3960 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑣 ∈ 𝐼 ↦ (𝑎‘𝑣)) supp 0) ⊆ (𝑎 supp 0)) |
211 | 173, 185,
32 | mulg0 18707 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ 𝐾 → (0 ↑ 𝑘) = (1r‘𝑆)) |
212 | 211 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑘 ∈ 𝐾) → (0 ↑ 𝑘) = (1r‘𝑆)) |
213 | | c0ex 10969 |
. . . . . . . . . . . . 13
⊢ 0 ∈
V |
214 | 213 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 0 ∈ V) |
215 | 210, 212,
195, 198, 214 | suppssov1 8014 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))) supp (1r‘𝑆)) ⊆ (𝑎 supp 0)) |
216 | 206, 215 | ssfid 9042 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))) supp (1r‘𝑆)) ∈ Fin) |
217 | 173, 185,
188, 157, 201, 216 | gsumcl2 19515 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((mulGrp‘𝑆) Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣)))) ∈ 𝐾) |
218 | 43, 24, 183, 176, 179, 217 | ringassd 40241 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((𝑁 ↑ 𝐿) · 𝑏) ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))))) = ((𝑁 ↑ 𝐿) · (𝑏 ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))))))) |
219 | 43, 24, 183, 179, 176, 217 | ringassd 40241 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑏 · (𝑁 ↑ 𝐿)) ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))))) = (𝑏 · ((𝑁 ↑ 𝐿) ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))))))) |
220 | 182, 218,
219 | 3eqtr3d 2786 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑁 ↑ 𝐿) · (𝑏 ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣)))))) = (𝑏 · ((𝑁 ↑ 𝐿) ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))))))) |
221 | 48 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
222 | 36 | eleq2d 2824 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑏 ∈ 𝑅 ↔ 𝑏 ∈ (Base‘𝑈))) |
223 | 222 | biimpar 478 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ∈ (Base‘𝑈)) → 𝑏 ∈ 𝑅) |
224 | 223 | adantrl 713 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑏 ∈ 𝑅) |
225 | 42, 4, 10, 43, 44, 16, 157, 158, 159, 224, 221 | evlsscaval 40273 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((algSc‘(𝐼 mPoly 𝑈))‘𝑏) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘𝐴) = 𝑏)) |
226 | 42, 4, 10, 44, 43, 28, 32, 3, 92, 6, 134, 157, 158, 159, 221, 167 | evlsbagval 40275 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))))‘𝐴) = ((mulGrp‘𝑆) Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣)))))) |
227 | 42, 4, 10, 43, 44, 157, 158, 159, 221, 225, 226, 121, 24 | evlsmulval 40278 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))))‘𝐴) = (𝑏 ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))))))) |
228 | 227 | simprd 496 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))))‘𝐴) = (𝑏 ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣)))))) |
229 | 228 | oveq2d 7291 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑁 ↑ 𝐿) · ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))))‘𝐴)) = ((𝑁 ↑ 𝐿) · (𝑏 ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))))))) |
230 | 42, 4, 10, 43, 44, 16, 157, 158, 159, 224, 160 | evlsscaval 40273 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((algSc‘(𝐼 mPoly 𝑈))‘𝑏) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = 𝑏)) |
231 | 230 | simprd 496 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = 𝑏) |
232 | | fconst6g 6663 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐿 ∈ 𝑅 → (𝐼 × {𝐿}):𝐼⟶𝑅) |
233 | 31, 232 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐼 × {𝐿}):𝐼⟶𝑅) |
234 | 233 | ffnd 6601 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐼 × {𝐿}) Fn 𝐼) |
235 | 234 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝐼 × {𝐿}) Fn 𝐼) |
236 | 64 | ffnd 6601 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 Fn 𝐼) |
237 | 236 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝐴 Fn 𝐼) |
238 | 31 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣 ∈ 𝐼) → 𝐿 ∈ 𝑅) |
239 | | fvconst2g 7077 |
. . . . . . . . . . . . . . 15
⊢ ((𝐿 ∈ 𝑅 ∧ 𝑣 ∈ 𝐼) → ((𝐼 × {𝐿})‘𝑣) = 𝐿) |
240 | 238, 197,
239 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣 ∈ 𝐼) → ((𝐼 × {𝐿})‘𝑣) = 𝐿) |
241 | | eqidd 2739 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣 ∈ 𝐼) → (𝐴‘𝑣) = (𝐴‘𝑣)) |
242 | 235, 237,
157, 157, 65, 240, 241 | ofval 7544 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣 ∈ 𝐼) → (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣) = (𝐿 · (𝐴‘𝑣))) |
243 | 242 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣 ∈ 𝐼) → ((𝑎‘𝑣) ↑ (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣)) = ((𝑎‘𝑣) ↑ (𝐿 · (𝐴‘𝑣)))) |
244 | 187 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣 ∈ 𝐼) → (mulGrp‘𝑆) ∈ CMnd) |
245 | 60 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣 ∈ 𝐼) → 𝐿 ∈ 𝐾) |
246 | 28, 24 | mgpplusg 19724 |
. . . . . . . . . . . . . 14
⊢ · =
(+g‘(mulGrp‘𝑆)) |
247 | 173, 32, 246 | mulgnn0di 19427 |
. . . . . . . . . . . . 13
⊢
(((mulGrp‘𝑆)
∈ CMnd ∧ ((𝑎‘𝑣) ∈ ℕ0 ∧ 𝐿 ∈ 𝐾 ∧ (𝐴‘𝑣) ∈ 𝐾)) → ((𝑎‘𝑣) ↑ (𝐿 · (𝐴‘𝑣))) = (((𝑎‘𝑣) ↑ 𝐿) · ((𝑎‘𝑣) ↑ (𝐴‘𝑣)))) |
248 | 244, 195,
245, 198, 247 | syl13anc 1371 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣 ∈ 𝐼) → ((𝑎‘𝑣) ↑ (𝐿 · (𝐴‘𝑣))) = (((𝑎‘𝑣) ↑ 𝐿) · ((𝑎‘𝑣) ↑ (𝐴‘𝑣)))) |
249 | 243, 248 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣 ∈ 𝐼) → ((𝑎‘𝑣) ↑ (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣)) = (((𝑎‘𝑣) ↑ 𝐿) · ((𝑎‘𝑣) ↑ (𝐴‘𝑣)))) |
250 | 249 | mpteq2dva 5174 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣))) = (𝑣 ∈ 𝐼 ↦ (((𝑎‘𝑣) ↑ 𝐿) · ((𝑎‘𝑣) ↑ (𝐴‘𝑣))))) |
251 | 250 | oveq2d 7291 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((mulGrp‘𝑆) Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣)))) = ((mulGrp‘𝑆) Σg (𝑣 ∈ 𝐼 ↦ (((𝑎‘𝑣) ↑ 𝐿) · ((𝑎‘𝑣) ↑ (𝐴‘𝑣)))))) |
252 | 187 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → (mulGrp‘𝑆) ∈ CMnd) |
253 | 8 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → 𝐼 ∈ 𝑉) |
254 | 172 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) ∧ 𝑣 ∈ 𝐼) → (mulGrp‘𝑆) ∈ Mnd) |
255 | 193 | ffvelrnda 6961 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) ∧ 𝑣 ∈ 𝐼) → (𝑎‘𝑣) ∈
ℕ0) |
256 | 60 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) ∧ 𝑣 ∈ 𝐼) → 𝐿 ∈ 𝐾) |
257 | 173, 32 | mulgnn0cl 18720 |
. . . . . . . . . . . . 13
⊢
(((mulGrp‘𝑆)
∈ Mnd ∧ (𝑎‘𝑣) ∈ ℕ0 ∧ 𝐿 ∈ 𝐾) → ((𝑎‘𝑣) ↑ 𝐿) ∈ 𝐾) |
258 | 254, 255,
256, 257 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) ∧ 𝑣 ∈ 𝐼) → ((𝑎‘𝑣) ↑ 𝐿) ∈ 𝐾) |
259 | 64 | ffvelrnda 6961 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐼) → (𝐴‘𝑣) ∈ 𝐾) |
260 | 259 | adantlr 712 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) ∧ 𝑣 ∈ 𝐼) → (𝐴‘𝑣) ∈ 𝐾) |
261 | 254, 255,
260, 199 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) ∧ 𝑣 ∈ 𝐼) → ((𝑎‘𝑣) ↑ (𝐴‘𝑣)) ∈ 𝐾) |
262 | | eqidd 2739 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ 𝐿)) = (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ 𝐿))) |
263 | | eqidd 2739 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))) = (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣)))) |
264 | 253 | mptexd 7100 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ 𝐿)) ∈ V) |
265 | | fvexd 6789 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → (1r‘𝑆) ∈ V) |
266 | | funmpt 6472 |
. . . . . . . . . . . . . 14
⊢ Fun
(𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ 𝐿)) |
267 | 266 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → Fun (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ 𝐿))) |
268 | 193 | feqmptd 6837 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → 𝑎 = (𝑣 ∈ 𝐼 ↦ (𝑎‘𝑣))) |
269 | 268 | oveq1d 7290 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → (𝑎 supp 0) = ((𝑣 ∈ 𝐼 ↦ (𝑎‘𝑣)) supp 0)) |
270 | | ssidd 3944 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → (𝑎 supp 0) ⊆ (𝑎 supp 0)) |
271 | 269, 270 | eqsstrrd 3960 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → ((𝑣 ∈ 𝐼 ↦ (𝑎‘𝑣)) supp 0) ⊆ (𝑎 supp 0)) |
272 | 211 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) ∧ 𝑘 ∈ 𝐾) → (0 ↑ 𝑘) = (1r‘𝑆)) |
273 | 213 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → 0 ∈ V) |
274 | 271, 272,
255, 256, 273 | suppssov1 8014 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → ((𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ 𝐿)) supp (1r‘𝑆)) ⊆ (𝑎 supp 0)) |
275 | 205, 274 | ssfid 9042 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → ((𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ 𝐿)) supp (1r‘𝑆)) ∈ Fin) |
276 | 264, 265,
267, 275 | isfsuppd 40217 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ 𝐿)) finSupp (1r‘𝑆)) |
277 | 253 | mptexd 7100 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))) ∈ V) |
278 | | funmpt 6472 |
. . . . . . . . . . . . . 14
⊢ Fun
(𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))) |
279 | 278 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → Fun (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣)))) |
280 | 271, 272,
255, 260, 273 | suppssov1 8014 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → ((𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))) supp (1r‘𝑆)) ⊆ (𝑎 supp 0)) |
281 | 205, 280 | ssfid 9042 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → ((𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))) supp (1r‘𝑆)) ∈ Fin) |
282 | 277, 265,
279, 281 | isfsuppd 40217 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))) finSupp (1r‘𝑆)) |
283 | 173, 185,
246, 252, 253, 258, 261, 262, 263, 276, 282 | gsummptfsadd 19525 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → ((mulGrp‘𝑆) Σg (𝑣 ∈ 𝐼 ↦ (((𝑎‘𝑣) ↑ 𝐿) · ((𝑎‘𝑣) ↑ (𝐴‘𝑣))))) = (((mulGrp‘𝑆) Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ 𝐿))) ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣)))))) |
284 | 6, 7, 173, 32, 8, 172, 60, 14 | mhphflem 40284 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → ((mulGrp‘𝑆) Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ 𝐿))) = (𝑁 ↑ 𝐿)) |
285 | 284 | oveq1d 7290 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → (((mulGrp‘𝑆) Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ 𝐿))) ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))))) = ((𝑁 ↑ 𝐿) ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣)))))) |
286 | 283, 285 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → ((mulGrp‘𝑆) Σg (𝑣 ∈ 𝐼 ↦ (((𝑎‘𝑣) ↑ 𝐿) · ((𝑎‘𝑣) ↑ (𝐴‘𝑣))))) = ((𝑁 ↑ 𝐿) ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣)))))) |
287 | 286 | adantrr 714 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((mulGrp‘𝑆) Σg (𝑣 ∈ 𝐼 ↦ (((𝑎‘𝑣) ↑ 𝐿) · ((𝑎‘𝑣) ↑ (𝐴‘𝑣))))) = ((𝑁 ↑ 𝐿) ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣)))))) |
288 | 251, 287 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((mulGrp‘𝑆) Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣)))) = ((𝑁 ↑ 𝐿) ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣)))))) |
289 | 231, 288 | oveq12d 7293 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘((𝐼 × {𝐿}) ∘f · 𝐴)) ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣))))) = (𝑏 · ((𝑁 ↑ 𝐿) ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))))))) |
290 | 220, 229,
289 | 3eqtr4rd 2789 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘((𝐼 × {𝐿}) ∘f · 𝐴)) ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣))))) = ((𝑁 ↑ 𝐿) · ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))))‘𝐴))) |
291 | 170, 290 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))))‘𝐴))) |
292 | | ovex 7308 |
. . . . . 6
⊢
(((algSc‘(𝐼
mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))) ∈ V |
293 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑓 = (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))) → (𝑄‘𝑓) = (𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))))) |
294 | 293 | fveq1d 6776 |
. . . . . . 7
⊢ (𝑓 = (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))) → ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))))‘((𝐼 × {𝐿}) ∘f · 𝐴))) |
295 | 293 | fveq1d 6776 |
. . . . . . . 8
⊢ (𝑓 = (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))) → ((𝑄‘𝑓)‘𝐴) = ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))))‘𝐴)) |
296 | 295 | oveq2d 7291 |
. . . . . . 7
⊢ (𝑓 = (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))) → ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))))‘𝐴))) |
297 | 294, 296 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑓 = (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))) → (((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴)) ↔ ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))))‘𝐴)))) |
298 | 292, 297 | elab 3609 |
. . . . 5
⊢
((((algSc‘(𝐼
mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))) ∈ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))} ↔ ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))))‘𝐴))) |
299 | 291, 298 | sylibr 233 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))) ∈ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))}) |
300 | 156, 299 | eqeltrrd 2840 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑠 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑠 = 𝑎, 𝑏, (0g‘𝑈))) ∈ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))}) |
301 | | elin 3903 |
. . . . . 6
⊢ (𝑥 ∈ ((𝐻‘𝑁) ∩ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))}) ↔ (𝑥 ∈ (𝐻‘𝑁) ∧ 𝑥 ∈ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))})) |
302 | | vex 3436 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
303 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑥 → (𝑄‘𝑓) = (𝑄‘𝑥)) |
304 | 303 | fveq1d 6776 |
. . . . . . . . 9
⊢ (𝑓 = 𝑥 → ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴))) |
305 | 303 | fveq1d 6776 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑥 → ((𝑄‘𝑓)‘𝐴) = ((𝑄‘𝑥)‘𝐴)) |
306 | 305 | oveq2d 7291 |
. . . . . . . . 9
⊢ (𝑓 = 𝑥 → ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) |
307 | 304, 306 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑓 = 𝑥 → (((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴)) ↔ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴)))) |
308 | 302, 307 | elab 3609 |
. . . . . . 7
⊢ (𝑥 ∈ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))} ↔ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) |
309 | 308 | anbi2i 623 |
. . . . . 6
⊢ ((𝑥 ∈ (𝐻‘𝑁) ∧ 𝑥 ∈ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))}) ↔ (𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴)))) |
310 | 301, 309 | bitri 274 |
. . . . 5
⊢ (𝑥 ∈ ((𝐻‘𝑁) ∩ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))}) ↔ (𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴)))) |
311 | | elin 3903 |
. . . . . 6
⊢ (𝑦 ∈ ((𝐻‘𝑁) ∩ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))}) ↔ (𝑦 ∈ (𝐻‘𝑁) ∧ 𝑦 ∈ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))})) |
312 | | vex 3436 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
313 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑦 → (𝑄‘𝑓) = (𝑄‘𝑦)) |
314 | 313 | fveq1d 6776 |
. . . . . . . . 9
⊢ (𝑓 = 𝑦 → ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴))) |
315 | 313 | fveq1d 6776 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑦 → ((𝑄‘𝑓)‘𝐴) = ((𝑄‘𝑦)‘𝐴)) |
316 | 315 | oveq2d 7291 |
. . . . . . . . 9
⊢ (𝑓 = 𝑦 → ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))) |
317 | 314, 316 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑓 = 𝑦 → (((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴)) ↔ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴)))) |
318 | 312, 317 | elab 3609 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))} ↔ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))) |
319 | 318 | anbi2i 623 |
. . . . . 6
⊢ ((𝑦 ∈ (𝐻‘𝑁) ∧ 𝑦 ∈ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))}) ↔ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴)))) |
320 | 311, 319 | bitri 274 |
. . . . 5
⊢ (𝑦 ∈ ((𝐻‘𝑁) ∩ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))}) ↔ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴)))) |
321 | 310, 320 | anbi12i 627 |
. . . 4
⊢ ((𝑥 ∈ ((𝐻‘𝑁) ∩ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))}) ∧ 𝑦 ∈ ((𝐻‘𝑁) ∩ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))})) ↔ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) |
322 | 54 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → 𝑆 ∈ Ring) |
323 | 175 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → (𝑁 ↑ 𝐿) ∈ 𝐾) |
324 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑆 ↑s
(Base‘(𝑆
↑s 𝐼))) = (𝑆 ↑s
(Base‘(𝑆
↑s 𝐼))) |
325 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘(𝑆
↑s (Base‘(𝑆 ↑s 𝐼)))) = (Base‘(𝑆 ↑s
(Base‘(𝑆
↑s 𝐼)))) |
326 | 18 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → 𝑆 ∈ CRing) |
327 | | fvexd 6789 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → (Base‘(𝑆 ↑s 𝐼)) ∈ V) |
328 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ (𝑆 ↑s
(𝐾 ↑m 𝐼)) = (𝑆 ↑s (𝐾 ↑m 𝐼)) |
329 | 42, 4, 10, 328, 43 | evlsrhm 21298 |
. . . . . . . . . . . . . 14
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ ((𝐼 mPoly 𝑈) RingHom (𝑆 ↑s (𝐾 ↑m 𝐼)))) |
330 | 8, 18, 9, 329 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑄 ∈ ((𝐼 mPoly 𝑈) RingHom (𝑆 ↑s (𝐾 ↑m 𝐼)))) |
331 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(Base‘(𝑆
↑s (𝐾 ↑m 𝐼))) = (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼))) |
332 | 44, 331 | rhmf 19970 |
. . . . . . . . . . . . 13
⊢ (𝑄 ∈ ((𝐼 mPoly 𝑈) RingHom (𝑆 ↑s (𝐾 ↑m 𝐼))) → 𝑄:(Base‘(𝐼 mPoly 𝑈))⟶(Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
333 | 330, 332 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑄:(Base‘(𝐼 mPoly 𝑈))⟶(Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
334 | 333 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → 𝑄:(Base‘(𝐼 mPoly 𝑈))⟶(Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
335 | 8 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) → 𝐼 ∈ 𝑉) |
336 | 12 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) → 𝑈 ∈ Ring) |
337 | 14 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) → 𝑁 ∈
ℕ0) |
338 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) → 𝑥 ∈ (𝐻‘𝑁)) |
339 | 1, 4, 44, 335, 336, 337, 338 | mhpmpl 21334 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) → 𝑥 ∈ (Base‘(𝐼 mPoly 𝑈))) |
340 | 339 | adantrr 714 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴)))) → 𝑥 ∈ (Base‘(𝐼 mPoly 𝑈))) |
341 | 340 | adantrr 714 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → 𝑥 ∈ (Base‘(𝐼 mPoly 𝑈))) |
342 | 334, 341 | ffvelrnd 6962 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → (𝑄‘𝑥) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
343 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ (𝑆 ↑s 𝐼) = (𝑆 ↑s 𝐼) |
344 | 343, 43 | pwsbas 17198 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈ CRing ∧ 𝐼 ∈ 𝑉) → (𝐾 ↑m 𝐼) = (Base‘(𝑆 ↑s 𝐼))) |
345 | 18, 8, 344 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐾 ↑m 𝐼) = (Base‘(𝑆 ↑s 𝐼))) |
346 | 345 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑆 ↑s (𝐾 ↑m 𝐼)) = (𝑆 ↑s
(Base‘(𝑆
↑s 𝐼)))) |
347 | 346 | fveq2d 6778 |
. . . . . . . . . . 11
⊢ (𝜑 → (Base‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) = (Base‘(𝑆 ↑s
(Base‘(𝑆
↑s 𝐼))))) |
348 | 347 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼))) = (Base‘(𝑆 ↑s
(Base‘(𝑆
↑s 𝐼))))) |
349 | 342, 348 | eleqtrd 2841 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → (𝑄‘𝑥) ∈ (Base‘(𝑆 ↑s
(Base‘(𝑆
↑s 𝐼))))) |
350 | 324, 43, 325, 326, 327, 349 | pwselbas 17200 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → (𝑄‘𝑥):(Base‘(𝑆 ↑s 𝐼))⟶𝐾) |
351 | 48, 345 | eleqtrd 2841 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ (Base‘(𝑆 ↑s 𝐼))) |
352 | 351 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → 𝐴 ∈ (Base‘(𝑆 ↑s 𝐼))) |
353 | 350, 352 | ffvelrnd 6962 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → ((𝑄‘𝑥)‘𝐴) ∈ 𝐾) |
354 | 8 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐻‘𝑁)) → 𝐼 ∈ 𝑉) |
355 | 12 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐻‘𝑁)) → 𝑈 ∈ Ring) |
356 | 14 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐻‘𝑁)) → 𝑁 ∈
ℕ0) |
357 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐻‘𝑁)) → 𝑦 ∈ (𝐻‘𝑁)) |
358 | 1, 4, 44, 354, 355, 356, 357 | mhpmpl 21334 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐻‘𝑁)) → 𝑦 ∈ (Base‘(𝐼 mPoly 𝑈))) |
359 | 358 | adantrr 714 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴)))) → 𝑦 ∈ (Base‘(𝐼 mPoly 𝑈))) |
360 | 359 | adantrl 713 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → 𝑦 ∈ (Base‘(𝐼 mPoly 𝑈))) |
361 | 334, 360 | ffvelrnd 6962 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → (𝑄‘𝑦) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
362 | 361, 348 | eleqtrd 2841 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → (𝑄‘𝑦) ∈ (Base‘(𝑆 ↑s
(Base‘(𝑆
↑s 𝐼))))) |
363 | 324, 43, 325, 326, 327, 362 | pwselbas 17200 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → (𝑄‘𝑦):(Base‘(𝑆 ↑s 𝐼))⟶𝐾) |
364 | 363, 352 | ffvelrnd 6962 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → ((𝑄‘𝑦)‘𝐴) ∈ 𝐾) |
365 | | eqid 2738 |
. . . . . . . 8
⊢
(+g‘𝑆) = (+g‘𝑆) |
366 | 43, 365, 24 | ringdi 19805 |
. . . . . . 7
⊢ ((𝑆 ∈ Ring ∧ ((𝑁 ↑ 𝐿) ∈ 𝐾 ∧ ((𝑄‘𝑥)‘𝐴) ∈ 𝐾 ∧ ((𝑄‘𝑦)‘𝐴) ∈ 𝐾)) → ((𝑁 ↑ 𝐿) · (((𝑄‘𝑥)‘𝐴)(+g‘𝑆)((𝑄‘𝑦)‘𝐴))) = (((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))(+g‘𝑆)((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴)))) |
367 | 322, 323,
353, 364, 366 | syl13anc 1371 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → ((𝑁 ↑ 𝐿) · (((𝑄‘𝑥)‘𝐴)(+g‘𝑆)((𝑄‘𝑦)‘𝐴))) = (((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))(+g‘𝑆)((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴)))) |
368 | 8 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → 𝐼 ∈ 𝑉) |
369 | 9 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → 𝑅 ∈ (SubRing‘𝑆)) |
370 | 48 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
371 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) → ((𝑄‘𝑥)‘𝐴) = ((𝑄‘𝑥)‘𝐴)) |
372 | 339, 371 | anim12dan 619 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴)))) → (𝑥 ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘𝑥)‘𝐴) = ((𝑄‘𝑥)‘𝐴))) |
373 | 372 | adantrr 714 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → (𝑥 ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘𝑥)‘𝐴) = ((𝑄‘𝑥)‘𝐴))) |
374 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))) → ((𝑄‘𝑦)‘𝐴) = ((𝑄‘𝑦)‘𝐴)) |
375 | 358, 374 | anim12dan 619 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴)))) → (𝑦 ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘𝑦)‘𝐴) = ((𝑄‘𝑦)‘𝐴))) |
376 | 375 | adantrl 713 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → (𝑦 ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘𝑦)‘𝐴) = ((𝑄‘𝑦)‘𝐴))) |
377 | 42, 4, 10, 43, 44, 368, 326, 369, 370, 373, 376, 5, 365 | evlsaddval 40277 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → ((𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘𝐴) = (((𝑄‘𝑥)‘𝐴)(+g‘𝑆)((𝑄‘𝑦)‘𝐴)))) |
378 | 377 | simprd 496 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘𝐴) = (((𝑄‘𝑥)‘𝐴)(+g‘𝑆)((𝑄‘𝑦)‘𝐴))) |
379 | 378 | oveq2d 7291 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → ((𝑁 ↑ 𝐿) · ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘𝐴)) = ((𝑁 ↑ 𝐿) · (((𝑄‘𝑥)‘𝐴)(+g‘𝑆)((𝑄‘𝑦)‘𝐴)))) |
380 | 52 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → 𝐾 ∈ V) |
381 | 57 | adantlr 712 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) ∧ (𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾)) → (𝑗 · 𝑘) ∈ 𝐾) |
382 | 62 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → (𝐼 × {𝐿}):𝐼⟶𝐾) |
383 | 64 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → 𝐴:𝐼⟶𝐾) |
384 | 381, 382,
383, 368, 368, 65 | off 7551 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → ((𝐼 × {𝐿}) ∘f · 𝐴):𝐼⟶𝐾) |
385 | 380, 368,
384 | elmapdd 40216 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → ((𝐼 × {𝐿}) ∘f · 𝐴) ∈ (𝐾 ↑m 𝐼)) |
386 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) → ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) |
387 | 339, 386 | anim12dan 619 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴)))) → (𝑥 ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴)))) |
388 | 387 | adantrr 714 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → (𝑥 ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴)))) |
389 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))) → ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))) |
390 | 358, 389 | anim12dan 619 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴)))) → (𝑦 ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴)))) |
391 | 390 | adantrl 713 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → (𝑦 ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴)))) |
392 | 42, 4, 10, 43, 44, 368, 326, 369, 385, 388, 391, 5, 365 | evlsaddval 40277 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → ((𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = (((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))(+g‘𝑆)((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) |
393 | 392 | simprd 496 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = (((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))(+g‘𝑆)((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴)))) |
394 | 367, 379,
393 | 3eqtr4rd 2789 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘𝐴))) |
395 | | ovex 7308 |
. . . . . 6
⊢ (𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) ∈ V |
396 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑓 = (𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) → (𝑄‘𝑓) = (𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))) |
397 | 396 | fveq1d 6776 |
. . . . . . 7
⊢ (𝑓 = (𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) → ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘((𝐼 × {𝐿}) ∘f · 𝐴))) |
398 | 396 | fveq1d 6776 |
. . . . . . . 8
⊢ (𝑓 = (𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) → ((𝑄‘𝑓)‘𝐴) = ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘𝐴)) |
399 | 398 | oveq2d 7291 |
. . . . . . 7
⊢ (𝑓 = (𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) → ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘𝐴))) |
400 | 397, 399 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑓 = (𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) → (((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴)) ↔ ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘𝐴)))) |
401 | 395, 400 | elab 3609 |
. . . . 5
⊢ ((𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) ∈ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))} ↔ ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘𝐴))) |
402 | 394, 401 | sylibr 233 |
. . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → (𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) ∈ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))}) |
403 | 321, 402 | sylan2b 594 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐻‘𝑁) ∩ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))}) ∧ 𝑦 ∈ ((𝐻‘𝑁) ∩ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))}))) → (𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) ∈ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))}) |
404 | 1, 2, 3, 4, 5, 6, 7, 8, 13, 14, 15, 79, 300, 403 | mhpind 40283 |
. 2
⊢ (𝜑 → 𝑋 ∈ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))}) |
405 | | fveq2 6774 |
. . . . . 6
⊢ (𝑓 = 𝑋 → (𝑄‘𝑓) = (𝑄‘𝑋)) |
406 | 405 | fveq1d 6776 |
. . . . 5
⊢ (𝑓 = 𝑋 → ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑄‘𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴))) |
407 | 405 | fveq1d 6776 |
. . . . . 6
⊢ (𝑓 = 𝑋 → ((𝑄‘𝑓)‘𝐴) = ((𝑄‘𝑋)‘𝐴)) |
408 | 407 | oveq2d 7291 |
. . . . 5
⊢ (𝑓 = 𝑋 → ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑋)‘𝐴))) |
409 | 406, 408 | eqeq12d 2754 |
. . . 4
⊢ (𝑓 = 𝑋 → (((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴)) ↔ ((𝑄‘𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑋)‘𝐴)))) |
410 | 409 | elabg 3607 |
. . 3
⊢ (𝑋 ∈ (𝐻‘𝑁) → (𝑋 ∈ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))} ↔ ((𝑄‘𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑋)‘𝐴)))) |
411 | 15, 410 | syl 17 |
. 2
⊢ (𝜑 → (𝑋 ∈ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))} ↔ ((𝑄‘𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑋)‘𝐴)))) |
412 | 404, 411 | mpbid 231 |
1
⊢ (𝜑 → ((𝑄‘𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑋)‘𝐴))) |