Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mhphf Structured version   Visualization version   GIF version

Theorem mhphf 42636
Description: A homogeneous polynomial defines a homogeneous function. Equivalently, an algebraic form is a homogeneous function. (An algebraic form is the function corresponding to a homogeneous polynomial, which in this case is the (𝑄𝑋) which corresponds to 𝑋). (Contributed by SN, 28-Jul-2024.) (Proof shortened by SN, 8-Mar-2025.)
Hypotheses
Ref Expression
mhphf.q 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
mhphf.h 𝐻 = (𝐼 mHomP 𝑈)
mhphf.u 𝑈 = (𝑆s 𝑅)
mhphf.k 𝐾 = (Base‘𝑆)
mhphf.m · = (.r𝑆)
mhphf.e = (.g‘(mulGrp‘𝑆))
mhphf.s (𝜑𝑆 ∈ CRing)
mhphf.r (𝜑𝑅 ∈ (SubRing‘𝑆))
mhphf.l (𝜑𝐿𝑅)
mhphf.x (𝜑𝑋 ∈ (𝐻𝑁))
mhphf.a (𝜑𝐴 ∈ (𝐾m 𝐼))
Assertion
Ref Expression
mhphf (𝜑 → ((𝑄𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴)))

Proof of Theorem mhphf
Dummy variables 𝑏 𝑖 𝑘 𝑗 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhphf.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ (𝐾m 𝐼))
2 elmapi 8773 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ (𝐾m 𝐼) → 𝐴:𝐼𝐾)
31, 2syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐴:𝐼𝐾)
43ffnd 6652 . . . . . . . . . . . . . . 15 (𝜑𝐴 Fn 𝐼)
51, 4fndmexd 7834 . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ V)
65adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 𝐼 ∈ V)
7 mhphf.l . . . . . . . . . . . . . 14 (𝜑𝐿𝑅)
87adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 𝐿𝑅)
94adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 𝐴 Fn 𝐼)
10 eqidd 2732 . . . . . . . . . . . . 13 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → (𝐴𝑖) = (𝐴𝑖))
116, 8, 9, 10ofc1 7638 . . . . . . . . . . . 12 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖) = (𝐿 · (𝐴𝑖)))
1211oveq2d 7362 . . . . . . . . . . 11 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖)) = ((𝑏𝑖) (𝐿 · (𝐴𝑖))))
13 mhphf.s . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ CRing)
14 eqid 2731 . . . . . . . . . . . . . . 15 (mulGrp‘𝑆) = (mulGrp‘𝑆)
1514crngmgp 20160 . . . . . . . . . . . . . 14 (𝑆 ∈ CRing → (mulGrp‘𝑆) ∈ CMnd)
1613, 15syl 17 . . . . . . . . . . . . 13 (𝜑 → (mulGrp‘𝑆) ∈ CMnd)
1716ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → (mulGrp‘𝑆) ∈ CMnd)
18 elrabi 3643 . . . . . . . . . . . . . . 15 (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} → 𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
19 eqid 2731 . . . . . . . . . . . . . . . 16 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
2019psrbagf 21856 . . . . . . . . . . . . . . 15 (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑏:𝐼⟶ℕ0)
2118, 20syl 17 . . . . . . . . . . . . . 14 (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} → 𝑏:𝐼⟶ℕ0)
2221adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 𝑏:𝐼⟶ℕ0)
2322ffvelcdmda 7017 . . . . . . . . . . . 12 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → (𝑏𝑖) ∈ ℕ0)
24 mhphf.r . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ (SubRing‘𝑆))
25 mhphf.k . . . . . . . . . . . . . . . 16 𝐾 = (Base‘𝑆)
2625subrgss 20488 . . . . . . . . . . . . . . 15 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐾)
2724, 26syl 17 . . . . . . . . . . . . . 14 (𝜑𝑅𝐾)
2827, 7sseldd 3935 . . . . . . . . . . . . 13 (𝜑𝐿𝐾)
2928ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → 𝐿𝐾)
303adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 𝐴:𝐼𝐾)
3130ffvelcdmda 7017 . . . . . . . . . . . 12 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → (𝐴𝑖) ∈ 𝐾)
3214, 25mgpbas 20064 . . . . . . . . . . . . 13 𝐾 = (Base‘(mulGrp‘𝑆))
33 mhphf.e . . . . . . . . . . . . 13 = (.g‘(mulGrp‘𝑆))
34 mhphf.m . . . . . . . . . . . . . 14 · = (.r𝑆)
3514, 34mgpplusg 20063 . . . . . . . . . . . . 13 · = (+g‘(mulGrp‘𝑆))
3632, 33, 35mulgnn0di 19738 . . . . . . . . . . . 12 (((mulGrp‘𝑆) ∈ CMnd ∧ ((𝑏𝑖) ∈ ℕ0𝐿𝐾 ∧ (𝐴𝑖) ∈ 𝐾)) → ((𝑏𝑖) (𝐿 · (𝐴𝑖))) = (((𝑏𝑖) 𝐿) · ((𝑏𝑖) (𝐴𝑖))))
3717, 23, 29, 31, 36syl13anc 1374 . . . . . . . . . . 11 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → ((𝑏𝑖) (𝐿 · (𝐴𝑖))) = (((𝑏𝑖) 𝐿) · ((𝑏𝑖) (𝐴𝑖))))
3812, 37eqtrd 2766 . . . . . . . . . 10 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖)) = (((𝑏𝑖) 𝐿) · ((𝑏𝑖) (𝐴𝑖))))
3938mpteq2dva 5184 . . . . . . . . 9 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑖𝐼 ↦ ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖))) = (𝑖𝐼 ↦ (((𝑏𝑖) 𝐿) · ((𝑏𝑖) (𝐴𝑖)))))
4039oveq2d 7362 . . . . . . . 8 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖)))) = ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ (((𝑏𝑖) 𝐿) · ((𝑏𝑖) (𝐴𝑖))))))
41 eqid 2731 . . . . . . . . . 10 (1r𝑆) = (1r𝑆)
4214, 41ringidval 20102 . . . . . . . . 9 (1r𝑆) = (0g‘(mulGrp‘𝑆))
4313adantr 480 . . . . . . . . . 10 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 𝑆 ∈ CRing)
4443, 15syl 17 . . . . . . . . 9 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (mulGrp‘𝑆) ∈ CMnd)
4513crngringd 20165 . . . . . . . . . . . 12 (𝜑𝑆 ∈ Ring)
4614ringmgp 20158 . . . . . . . . . . . 12 (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd)
4745, 46syl 17 . . . . . . . . . . 11 (𝜑 → (mulGrp‘𝑆) ∈ Mnd)
4847ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → (mulGrp‘𝑆) ∈ Mnd)
4932, 33, 48, 23, 29mulgnn0cld 19008 . . . . . . . . 9 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → ((𝑏𝑖) 𝐿) ∈ 𝐾)
5032, 33, 48, 23, 31mulgnn0cld 19008 . . . . . . . . 9 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → ((𝑏𝑖) (𝐴𝑖)) ∈ 𝐾)
51 eqidd 2732 . . . . . . . . 9 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑖𝐼 ↦ ((𝑏𝑖) 𝐿)) = (𝑖𝐼 ↦ ((𝑏𝑖) 𝐿)))
52 eqidd 2732 . . . . . . . . 9 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))) = (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))
535mptexd 7158 . . . . . . . . . . 11 (𝜑 → (𝑖𝐼 ↦ ((𝑏𝑖) 𝐿)) ∈ V)
5453adantr 480 . . . . . . . . . 10 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑖𝐼 ↦ ((𝑏𝑖) 𝐿)) ∈ V)
55 fvexd 6837 . . . . . . . . . 10 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (1r𝑆) ∈ V)
56 funmpt 6519 . . . . . . . . . . 11 Fun (𝑖𝐼 ↦ ((𝑏𝑖) 𝐿))
5756a1i 11 . . . . . . . . . 10 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → Fun (𝑖𝐼 ↦ ((𝑏𝑖) 𝐿)))
5819psrbagfsupp 21857 . . . . . . . . . . . 12 (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑏 finSupp 0)
5918, 58syl 17 . . . . . . . . . . 11 (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} → 𝑏 finSupp 0)
6059adantl 481 . . . . . . . . . 10 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 𝑏 finSupp 0)
6122feqmptd 6890 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 𝑏 = (𝑖𝐼 ↦ (𝑏𝑖)))
6261oveq1d 7361 . . . . . . . . . . . 12 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑏 supp 0) = ((𝑖𝐼 ↦ (𝑏𝑖)) supp 0))
6362eqimsscd 3992 . . . . . . . . . . 11 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((𝑖𝐼 ↦ (𝑏𝑖)) supp 0) ⊆ (𝑏 supp 0))
6432, 42, 33mulg0 18987 . . . . . . . . . . . 12 (𝑘𝐾 → (0 𝑘) = (1r𝑆))
6564adantl 481 . . . . . . . . . . 11 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑘𝐾) → (0 𝑘) = (1r𝑆))
66 0zd 12480 . . . . . . . . . . 11 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 0 ∈ ℤ)
6763, 65, 23, 29, 66suppssov1 8127 . . . . . . . . . 10 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((𝑖𝐼 ↦ ((𝑏𝑖) 𝐿)) supp (1r𝑆)) ⊆ (𝑏 supp 0))
6854, 55, 57, 60, 67fsuppsssuppgd 9266 . . . . . . . . 9 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑖𝐼 ↦ ((𝑏𝑖) 𝐿)) finSupp (1r𝑆))
695mptexd 7158 . . . . . . . . . . 11 (𝜑 → (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))) ∈ V)
7069adantr 480 . . . . . . . . . 10 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))) ∈ V)
71 funmpt 6519 . . . . . . . . . . 11 Fun (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))
7271a1i 11 . . . . . . . . . 10 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → Fun (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))
7363, 65, 23, 31, 66suppssov1 8127 . . . . . . . . . 10 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))) supp (1r𝑆)) ⊆ (𝑏 supp 0))
7470, 55, 72, 60, 73fsuppsssuppgd 9266 . . . . . . . . 9 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))) finSupp (1r𝑆))
7532, 42, 35, 44, 6, 49, 50, 51, 52, 68, 74gsummptfsadd 19837 . . . . . . . 8 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ (((𝑏𝑖) 𝐿) · ((𝑏𝑖) (𝐴𝑖))))) = (((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) 𝐿))) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))))
76 eqid 2731 . . . . . . . . . 10 {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} = {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}
77 mhphf.h . . . . . . . . . . 11 𝐻 = (𝐼 mHomP 𝑈)
78 mhphf.x . . . . . . . . . . 11 (𝜑𝑋 ∈ (𝐻𝑁))
7977, 78mhprcl 22059 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
8019, 76, 32, 33, 5, 47, 28, 79mhphflem 42635 . . . . . . . . 9 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) 𝐿))) = (𝑁 𝐿))
8180oveq1d 7361 . . . . . . . 8 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) 𝐿))) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))) = ((𝑁 𝐿) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))))
8240, 75, 813eqtrd 2770 . . . . . . 7 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖)))) = ((𝑁 𝐿) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))))
8382oveq2d 7362 . . . . . 6 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖))))) = ((𝑋𝑏) · ((𝑁 𝐿) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))))
84 eqid 2731 . . . . . . . . . . 11 (𝐼 mPoly 𝑈) = (𝐼 mPoly 𝑈)
85 eqid 2731 . . . . . . . . . . 11 (Base‘𝑈) = (Base‘𝑈)
86 eqid 2731 . . . . . . . . . . 11 (Base‘(𝐼 mPoly 𝑈)) = (Base‘(𝐼 mPoly 𝑈))
8777, 84, 86, 78mhpmpl 22060 . . . . . . . . . . 11 (𝜑𝑋 ∈ (Base‘(𝐼 mPoly 𝑈)))
8884, 85, 86, 19, 87mplelf 21936 . . . . . . . . . 10 (𝜑𝑋:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑈))
89 mhphf.u . . . . . . . . . . . . 13 𝑈 = (𝑆s 𝑅)
9089subrgbas 20497 . . . . . . . . . . . 12 (𝑅 ∈ (SubRing‘𝑆) → 𝑅 = (Base‘𝑈))
9190, 26eqsstrrd 3970 . . . . . . . . . . 11 (𝑅 ∈ (SubRing‘𝑆) → (Base‘𝑈) ⊆ 𝐾)
9224, 91syl 17 . . . . . . . . . 10 (𝜑 → (Base‘𝑈) ⊆ 𝐾)
9388, 92fssd 6668 . . . . . . . . 9 (𝜑𝑋:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶𝐾)
9493ffvelcdmda 7017 . . . . . . . 8 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑋𝑏) ∈ 𝐾)
9518, 94sylan2 593 . . . . . . 7 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑋𝑏) ∈ 𝐾)
9632, 33, 47, 79, 28mulgnn0cld 19008 . . . . . . . 8 (𝜑 → (𝑁 𝐿) ∈ 𝐾)
9796adantr 480 . . . . . . 7 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑁 𝐿) ∈ 𝐾)
985adantr 480 . . . . . . . . 9 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐼 ∈ V)
9913adantr 480 . . . . . . . . 9 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑆 ∈ CRing)
1001adantr 480 . . . . . . . . 9 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐴 ∈ (𝐾m 𝐼))
101 simpr 484 . . . . . . . . 9 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
10219, 25, 14, 33, 98, 99, 100, 101evlsvvvallem 42600 . . . . . . . 8 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))) ∈ 𝐾)
10318, 102sylan2 593 . . . . . . 7 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))) ∈ 𝐾)
10425, 34, 43, 95, 97, 103crng12d 20177 . . . . . 6 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((𝑋𝑏) · ((𝑁 𝐿) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))) = ((𝑁 𝐿) · ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))))
10583, 104eqtrd 2766 . . . . 5 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖))))) = ((𝑁 𝐿) · ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))))
106105mpteq2dva 5184 . . . 4 (𝜑 → (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖)))))) = (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑁 𝐿) · ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))))))
107106oveq2d 7362 . . 3 (𝜑 → (𝑆 Σg (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖))))))) = (𝑆 Σg (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑁 𝐿) · ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))))))
108 eqid 2731 . . . 4 (0g𝑆) = (0g𝑆)
109 ovex 7379 . . . . . . 7 (ℕ0m 𝐼) ∈ V
110109rabex 5277 . . . . . 6 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V
111110rabex 5277 . . . . 5 {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∈ V
112111a1i 11 . . . 4 (𝜑 → {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∈ V)
11345adantr 480 . . . . . 6 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑆 ∈ Ring)
11425, 34, 113, 94, 102ringcld 20179 . . . . 5 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))) ∈ 𝐾)
11518, 114sylan2 593 . . . 4 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))) ∈ 𝐾)
116 ssrab2 4030 . . . . . 6 {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ⊆ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
117 mptss 5991 . . . . . 6 ({𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ⊆ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))) ⊆ (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))))
118116, 117mp1i 13 . . . . 5 (𝜑 → (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))) ⊆ (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))))
11919, 84, 89, 86, 25, 14, 33, 34, 5, 13, 24, 87, 1evlsvvvallem2 42601 . . . . 5 (𝜑 → (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))) finSupp (0g𝑆))
120118, 119fsuppss 9267 . . . 4 (𝜑 → (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))) finSupp (0g𝑆))
12125, 108, 34, 45, 112, 96, 115, 120gsummulc2 20236 . . 3 (𝜑 → (𝑆 Σg (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑁 𝐿) · ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))))) = ((𝑁 𝐿) · (𝑆 Σg (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))))))
122107, 121eqtrd 2766 . 2 (𝜑 → (𝑆 Σg (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖))))))) = ((𝑁 𝐿) · (𝑆 Σg (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))))))
123 mhphf.q . . 3 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
12425fvexi 6836 . . . . 5 𝐾 ∈ V
125124a1i 11 . . . 4 (𝜑𝐾 ∈ V)
12625, 34ringcl 20169 . . . . . . 7 ((𝑆 ∈ Ring ∧ 𝑗𝐾𝑘𝐾) → (𝑗 · 𝑘) ∈ 𝐾)
12745, 126syl3an1 1163 . . . . . 6 ((𝜑𝑗𝐾𝑘𝐾) → (𝑗 · 𝑘) ∈ 𝐾)
1281273expb 1120 . . . . 5 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → (𝑗 · 𝑘) ∈ 𝐾)
129 fconst6g 6712 . . . . . 6 (𝐿𝐾 → (𝐼 × {𝐿}):𝐼𝐾)
13028, 129syl 17 . . . . 5 (𝜑 → (𝐼 × {𝐿}):𝐼𝐾)
131 inidm 4177 . . . . 5 (𝐼𝐼) = 𝐼
132128, 130, 3, 5, 5, 131off 7628 . . . 4 (𝜑 → ((𝐼 × {𝐿}) ∘f · 𝐴):𝐼𝐾)
133125, 5, 132elmapdd 8765 . . 3 (𝜑 → ((𝐼 × {𝐿}) ∘f · 𝐴) ∈ (𝐾m 𝐼))
134123, 77, 89, 19, 76, 25, 14, 33, 34, 13, 24, 78, 133evlsmhpvvval 42634 . 2 (𝜑 → ((𝑄𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = (𝑆 Σg (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖))))))))
135123, 77, 89, 19, 76, 25, 14, 33, 34, 13, 24, 78, 1evlsmhpvvval 42634 . . 3 (𝜑 → ((𝑄𝑋)‘𝐴) = (𝑆 Σg (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))))))
136135oveq2d 7362 . 2 (𝜑 → ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴)) = ((𝑁 𝐿) · (𝑆 Σg (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))))))
137122, 134, 1363eqtr4d 2776 1 (𝜑 → ((𝑄𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  wss 3902  {csn 4576   class class class wbr 5091  cmpt 5172   × cxp 5614  ccnv 5615  cima 5619  Fun wfun 6475   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  f cof 7608   supp csupp 8090  m cmap 8750  Fincfn 8869   finSupp cfsupp 9245  0cc0 11006  cn 12125  0cn0 12381  cz 12468  Basecbs 17120  s cress 17141  .rcmulr 17162  0gc0g 17343   Σg cgsu 17344  Mndcmnd 18642  .gcmg 18980  CMndccmn 19693  mulGrpcmgp 20059  1rcur 20100  Ringcrg 20152  CRingccrg 20153  SubRingcsubrg 20485  fldccnfld 21292   mPoly cmpl 21844   evalSub ces 22008   mHomP cmhp 22045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19126  df-cntz 19230  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-srg 20106  df-ring 20154  df-cring 20155  df-rhm 20391  df-subrng 20462  df-subrg 20486  df-lmod 20796  df-lss 20866  df-lsp 20906  df-cnfld 21293  df-assa 21791  df-asp 21792  df-ascl 21793  df-psr 21847  df-mvr 21848  df-mpl 21849  df-evls 22010  df-mhp 22052
This theorem is referenced by:  mhphf2  42637  mhphf3  42638
  Copyright terms: Public domain W3C validator