Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mhphf Structured version   Visualization version   GIF version

Theorem mhphf 40208
Description: A homogeneous polynomial defines a homogeneous function. Equivalently, an algebraic form is a homogeneous function. (An algebraic form is the function corresponding to a homogeneous polynomial, which in this case is the (𝑄𝑋) which corresponds to 𝑋). (Contributed by SN, 28-Jul-2024.)
Hypotheses
Ref Expression
mhphf.q 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
mhphf.h 𝐻 = (𝐼 mHomP 𝑈)
mhphf.u 𝑈 = (𝑆s 𝑅)
mhphf.k 𝐾 = (Base‘𝑆)
mhphf.m · = (.r𝑆)
mhphf.e = (.g‘(mulGrp‘𝑆))
mhphf.i (𝜑𝐼𝑉)
mhphf.s (𝜑𝑆 ∈ CRing)
mhphf.r (𝜑𝑅 ∈ (SubRing‘𝑆))
mhphf.l (𝜑𝐿𝑅)
mhphf.n (𝜑𝑁 ∈ ℕ0)
mhphf.x (𝜑𝑋 ∈ (𝐻𝑁))
mhphf.a (𝜑𝐴 ∈ (𝐾m 𝐼))
Assertion
Ref Expression
mhphf (𝜑 → ((𝑄𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴)))

Proof of Theorem mhphf
Dummy variables 𝑎 𝑏 𝑓 𝑠 𝑗 𝑘 𝑣 𝑥 𝑦 𝑤 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhphf.h . . 3 𝐻 = (𝐼 mHomP 𝑈)
2 eqid 2738 . . 3 (Base‘𝑈) = (Base‘𝑈)
3 eqid 2738 . . 3 (0g𝑈) = (0g𝑈)
4 eqid 2738 . . 3 (𝐼 mPoly 𝑈) = (𝐼 mPoly 𝑈)
5 eqid 2738 . . 3 (+g‘(𝐼 mPoly 𝑈)) = (+g‘(𝐼 mPoly 𝑈))
6 eqid 2738 . . 3 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
7 eqid 2738 . . 3 {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} = {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}
8 mhphf.i . . 3 (𝜑𝐼𝑉)
9 mhphf.r . . . . 5 (𝜑𝑅 ∈ (SubRing‘𝑆))
10 mhphf.u . . . . . 6 𝑈 = (𝑆s 𝑅)
1110subrgring 19942 . . . . 5 (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring)
129, 11syl 17 . . . 4 (𝜑𝑈 ∈ Ring)
1312ringgrpd 19707 . . 3 (𝜑𝑈 ∈ Grp)
14 mhphf.n . . 3 (𝜑𝑁 ∈ ℕ0)
15 mhphf.x . . 3 (𝜑𝑋 ∈ (𝐻𝑁))
164, 8, 12mplsca 21127 . . . . . . 7 (𝜑𝑈 = (Scalar‘(𝐼 mPoly 𝑈)))
1716fveq2d 6760 . . . . . 6 (𝜑 → (0g𝑈) = (0g‘(Scalar‘(𝐼 mPoly 𝑈))))
1817fveq2d 6760 . . . . 5 (𝜑 → ((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)) = ((algSc‘(𝐼 mPoly 𝑈))‘(0g‘(Scalar‘(𝐼 mPoly 𝑈)))))
19 eqid 2738 . . . . . 6 (algSc‘(𝐼 mPoly 𝑈)) = (algSc‘(𝐼 mPoly 𝑈))
20 eqid 2738 . . . . . 6 (Scalar‘(𝐼 mPoly 𝑈)) = (Scalar‘(𝐼 mPoly 𝑈))
214mpllmod 21133 . . . . . . 7 ((𝐼𝑉𝑈 ∈ Ring) → (𝐼 mPoly 𝑈) ∈ LMod)
228, 12, 21syl2anc 583 . . . . . 6 (𝜑 → (𝐼 mPoly 𝑈) ∈ LMod)
234mplring 21134 . . . . . . 7 ((𝐼𝑉𝑈 ∈ Ring) → (𝐼 mPoly 𝑈) ∈ Ring)
248, 12, 23syl2anc 583 . . . . . 6 (𝜑 → (𝐼 mPoly 𝑈) ∈ Ring)
2519, 20, 22, 24ascl0 20998 . . . . 5 (𝜑 → ((algSc‘(𝐼 mPoly 𝑈))‘(0g‘(Scalar‘(𝐼 mPoly 𝑈)))) = (0g‘(𝐼 mPoly 𝑈)))
26 eqid 2738 . . . . . 6 (0g‘(𝐼 mPoly 𝑈)) = (0g‘(𝐼 mPoly 𝑈))
274, 6, 3, 26, 8, 13mpl0 21122 . . . . 5 (𝜑 → (0g‘(𝐼 mPoly 𝑈)) = ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(0g𝑈)}))
2818, 25, 273eqtrrd 2783 . . . 4 (𝜑 → ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(0g𝑈)}) = ((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)))
29 mhphf.m . . . . . . . . . 10 · = (.r𝑆)
3010, 29ressmulr 16943 . . . . . . . . 9 (𝑅 ∈ (SubRing‘𝑆) → · = (.r𝑈))
319, 30syl 17 . . . . . . . 8 (𝜑· = (.r𝑈))
3231oveqd 7272 . . . . . . 7 (𝜑 → ((𝑁 𝐿) · (0g𝑈)) = ((𝑁 𝐿)(.r𝑈)(0g𝑈)))
33 eqid 2738 . . . . . . . . . . . 12 (mulGrp‘𝑆) = (mulGrp‘𝑆)
3433subrgsubm 19952 . . . . . . . . . . 11 (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ∈ (SubMnd‘(mulGrp‘𝑆)))
359, 34syl 17 . . . . . . . . . 10 (𝜑𝑅 ∈ (SubMnd‘(mulGrp‘𝑆)))
36 mhphf.l . . . . . . . . . 10 (𝜑𝐿𝑅)
37 mhphf.e . . . . . . . . . . 11 = (.g‘(mulGrp‘𝑆))
3837submmulgcl 18661 . . . . . . . . . 10 ((𝑅 ∈ (SubMnd‘(mulGrp‘𝑆)) ∧ 𝑁 ∈ ℕ0𝐿𝑅) → (𝑁 𝐿) ∈ 𝑅)
3935, 14, 36, 38syl3anc 1369 . . . . . . . . 9 (𝜑 → (𝑁 𝐿) ∈ 𝑅)
4010subrgbas 19948 . . . . . . . . . 10 (𝑅 ∈ (SubRing‘𝑆) → 𝑅 = (Base‘𝑈))
419, 40syl 17 . . . . . . . . 9 (𝜑𝑅 = (Base‘𝑈))
4239, 41eleqtrd 2841 . . . . . . . 8 (𝜑 → (𝑁 𝐿) ∈ (Base‘𝑈))
43 eqid 2738 . . . . . . . . 9 (.r𝑈) = (.r𝑈)
442, 43, 3ringrz 19742 . . . . . . . 8 ((𝑈 ∈ Ring ∧ (𝑁 𝐿) ∈ (Base‘𝑈)) → ((𝑁 𝐿)(.r𝑈)(0g𝑈)) = (0g𝑈))
4512, 42, 44syl2anc 583 . . . . . . 7 (𝜑 → ((𝑁 𝐿)(.r𝑈)(0g𝑈)) = (0g𝑈))
4632, 45eqtrd 2778 . . . . . 6 (𝜑 → ((𝑁 𝐿) · (0g𝑈)) = (0g𝑈))
47 mhphf.q . . . . . . . . 9 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
48 mhphf.k . . . . . . . . 9 𝐾 = (Base‘𝑆)
49 eqid 2738 . . . . . . . . 9 (Base‘(𝐼 mPoly 𝑈)) = (Base‘(𝐼 mPoly 𝑈))
50 mhphf.s . . . . . . . . 9 (𝜑𝑆 ∈ CRing)
512, 3ring0cl 19723 . . . . . . . . . . 11 (𝑈 ∈ Ring → (0g𝑈) ∈ (Base‘𝑈))
5212, 51syl 17 . . . . . . . . . 10 (𝜑 → (0g𝑈) ∈ (Base‘𝑈))
5352, 41eleqtrrd 2842 . . . . . . . . 9 (𝜑 → (0g𝑈) ∈ 𝑅)
54 mhphf.a . . . . . . . . 9 (𝜑𝐴 ∈ (𝐾m 𝐼))
5547, 4, 10, 48, 49, 19, 8, 50, 9, 53, 54evlsscaval 40196 . . . . . . . 8 (𝜑 → (((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)))‘𝐴) = (0g𝑈)))
5655simprd 495 . . . . . . 7 (𝜑 → ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)))‘𝐴) = (0g𝑈))
5756oveq2d 7271 . . . . . 6 (𝜑 → ((𝑁 𝐿) · ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)))‘𝐴)) = ((𝑁 𝐿) · (0g𝑈)))
5848fvexi 6770 . . . . . . . . . 10 𝐾 ∈ V
5958a1i 11 . . . . . . . . 9 (𝜑𝐾 ∈ V)
6050crngringd 19711 . . . . . . . . . . . 12 (𝜑𝑆 ∈ Ring)
6148, 29ringcl 19715 . . . . . . . . . . . 12 ((𝑆 ∈ Ring ∧ 𝑗𝐾𝑘𝐾) → (𝑗 · 𝑘) ∈ 𝐾)
6260, 61syl3an1 1161 . . . . . . . . . . 11 ((𝜑𝑗𝐾𝑘𝐾) → (𝑗 · 𝑘) ∈ 𝐾)
63623expb 1118 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → (𝑗 · 𝑘) ∈ 𝐾)
6448subrgss 19940 . . . . . . . . . . . . 13 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐾)
659, 64syl 17 . . . . . . . . . . . 12 (𝜑𝑅𝐾)
6665, 36sseldd 3918 . . . . . . . . . . 11 (𝜑𝐿𝐾)
67 fconst6g 6647 . . . . . . . . . . 11 (𝐿𝐾 → (𝐼 × {𝐿}):𝐼𝐾)
6866, 67syl 17 . . . . . . . . . 10 (𝜑 → (𝐼 × {𝐿}):𝐼𝐾)
69 elmapi 8595 . . . . . . . . . . 11 (𝐴 ∈ (𝐾m 𝐼) → 𝐴:𝐼𝐾)
7054, 69syl 17 . . . . . . . . . 10 (𝜑𝐴:𝐼𝐾)
71 inidm 4149 . . . . . . . . . 10 (𝐼𝐼) = 𝐼
7263, 68, 70, 8, 8, 71off 7529 . . . . . . . . 9 (𝜑 → ((𝐼 × {𝐿}) ∘f · 𝐴):𝐼𝐾)
7359, 8, 72elmapdd 40142 . . . . . . . 8 (𝜑 → ((𝐼 × {𝐿}) ∘f · 𝐴) ∈ (𝐾m 𝐼))
7447, 4, 10, 48, 49, 19, 8, 50, 9, 53, 73evlsscaval 40196 . . . . . . 7 (𝜑 → (((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = (0g𝑈)))
7574simprd 495 . . . . . 6 (𝜑 → ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = (0g𝑈))
7646, 57, 753eqtr4rd 2789 . . . . 5 (𝜑 → ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)))‘𝐴)))
77 fvex 6769 . . . . . 6 ((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)) ∈ V
78 fveq2 6756 . . . . . . . 8 (𝑓 = ((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)) → (𝑄𝑓) = (𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈))))
7978fveq1d 6758 . . . . . . 7 (𝑓 = ((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)) → ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)))‘((𝐼 × {𝐿}) ∘f · 𝐴)))
8078fveq1d 6758 . . . . . . . 8 (𝑓 = ((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)) → ((𝑄𝑓)‘𝐴) = ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)))‘𝐴))
8180oveq2d 7271 . . . . . . 7 (𝑓 = ((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)) → ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴)) = ((𝑁 𝐿) · ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)))‘𝐴)))
8279, 81eqeq12d 2754 . . . . . 6 (𝑓 = ((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)) → (((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴)) ↔ ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)))‘𝐴))))
8377, 82elab 3602 . . . . 5 (((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)) ∈ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))} ↔ ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)))‘𝐴)))
8476, 83sylibr 233 . . . 4 (𝜑 → ((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)) ∈ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))})
8528, 84eqeltrd 2839 . . 3 (𝜑 → ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(0g𝑈)}) ∈ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))})
8610subrgcrng 19943 . . . . . . . . . 10 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑈 ∈ CRing)
8750, 9, 86syl2anc 583 . . . . . . . . 9 (𝜑𝑈 ∈ CRing)
884mplassa 21137 . . . . . . . . 9 ((𝐼𝑉𝑈 ∈ CRing) → (𝐼 mPoly 𝑈) ∈ AssAlg)
898, 87, 88syl2anc 583 . . . . . . . 8 (𝜑 → (𝐼 mPoly 𝑈) ∈ AssAlg)
9089adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝐼 mPoly 𝑈) ∈ AssAlg)
9116fveq2d 6760 . . . . . . . . . 10 (𝜑 → (Base‘𝑈) = (Base‘(Scalar‘(𝐼 mPoly 𝑈))))
9291eleq2d 2824 . . . . . . . . 9 (𝜑 → (𝑏 ∈ (Base‘𝑈) ↔ 𝑏 ∈ (Base‘(Scalar‘(𝐼 mPoly 𝑈)))))
9392biimpa 476 . . . . . . . 8 ((𝜑𝑏 ∈ (Base‘𝑈)) → 𝑏 ∈ (Base‘(Scalar‘(𝐼 mPoly 𝑈))))
9493adantrl 712 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑏 ∈ (Base‘(Scalar‘(𝐼 mPoly 𝑈))))
95 fvexd 6771 . . . . . . . . . . 11 (𝜑 → (Base‘𝑈) ∈ V)
96 ovex 7288 . . . . . . . . . . . . 13 (ℕ0m 𝐼) ∈ V
9796rabex 5251 . . . . . . . . . . . 12 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V
9897a1i 11 . . . . . . . . . . 11 (𝜑 → { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V)
99 eqid 2738 . . . . . . . . . . . . . . . 16 (1r𝑈) = (1r𝑈)
1002, 99ringidcl 19722 . . . . . . . . . . . . . . 15 (𝑈 ∈ Ring → (1r𝑈) ∈ (Base‘𝑈))
10112, 100syl 17 . . . . . . . . . . . . . 14 (𝜑 → (1r𝑈) ∈ (Base‘𝑈))
102101, 52ifcld 4502 . . . . . . . . . . . . 13 (𝜑 → if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)) ∈ (Base‘𝑈))
103102adantr 480 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)) ∈ (Base‘𝑈))
104103fmpttd 6971 . . . . . . . . . . 11 (𝜑 → (𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑈))
10595, 98, 104elmapdd 40142 . . . . . . . . . 10 (𝜑 → (𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))) ∈ ((Base‘𝑈) ↑m { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}))
106 eqid 2738 . . . . . . . . . . 11 (𝐼 mPwSer 𝑈) = (𝐼 mPwSer 𝑈)
107 eqid 2738 . . . . . . . . . . 11 (Base‘(𝐼 mPwSer 𝑈)) = (Base‘(𝐼 mPwSer 𝑈))
108106, 2, 6, 107, 8psrbas 21057 . . . . . . . . . 10 (𝜑 → (Base‘(𝐼 mPwSer 𝑈)) = ((Base‘𝑈) ↑m { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}))
109105, 108eleqtrrd 2842 . . . . . . . . 9 (𝜑 → (𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))) ∈ (Base‘(𝐼 mPwSer 𝑈)))
11097mptex 7081 . . . . . . . . . . 11 (𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))) ∈ V
111110a1i 11 . . . . . . . . . 10 (𝜑 → (𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))) ∈ V)
112 fvexd 6771 . . . . . . . . . 10 (𝜑 → (0g𝑈) ∈ V)
113 funmpt 6456 . . . . . . . . . . 11 Fun (𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))
114113a1i 11 . . . . . . . . . 10 (𝜑 → Fun (𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))))
115 snfi 8788 . . . . . . . . . . . 12 {𝑎} ∈ Fin
116115a1i 11 . . . . . . . . . . 11 (𝜑 → {𝑎} ∈ Fin)
117 eldifsnneq 4721 . . . . . . . . . . . . . 14 (𝑤 ∈ ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ {𝑎}) → ¬ 𝑤 = 𝑎)
118117adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ {𝑎})) → ¬ 𝑤 = 𝑎)
119118iffalsed 4467 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ {𝑎})) → if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)) = (0g𝑈))
120119, 98suppss2 7987 . . . . . . . . . . 11 (𝜑 → ((𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))) supp (0g𝑈)) ⊆ {𝑎})
121116, 120ssfid 8971 . . . . . . . . . 10 (𝜑 → ((𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))) supp (0g𝑈)) ∈ Fin)
122111, 112, 114, 121isfsuppd 40143 . . . . . . . . 9 (𝜑 → (𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))) finSupp (0g𝑈))
1234, 106, 107, 3, 49mplelbas 21109 . . . . . . . . 9 ((𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))) ∈ (Base‘(𝐼 mPoly 𝑈)) ↔ ((𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))) ∈ (Base‘(𝐼 mPwSer 𝑈)) ∧ (𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))) finSupp (0g𝑈)))
124109, 122, 123sylanbrc 582 . . . . . . . 8 (𝜑 → (𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))) ∈ (Base‘(𝐼 mPoly 𝑈)))
125124adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))) ∈ (Base‘(𝐼 mPoly 𝑈)))
126 eqid 2738 . . . . . . . 8 (Base‘(Scalar‘(𝐼 mPoly 𝑈))) = (Base‘(Scalar‘(𝐼 mPoly 𝑈)))
127 eqid 2738 . . . . . . . 8 (.r‘(𝐼 mPoly 𝑈)) = (.r‘(𝐼 mPoly 𝑈))
128 eqid 2738 . . . . . . . 8 ( ·𝑠 ‘(𝐼 mPoly 𝑈)) = ( ·𝑠 ‘(𝐼 mPoly 𝑈))
12919, 20, 126, 49, 127, 128asclmul1 21000 . . . . . . 7 (((𝐼 mPoly 𝑈) ∈ AssAlg ∧ 𝑏 ∈ (Base‘(Scalar‘(𝐼 mPoly 𝑈))) ∧ (𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))) ∈ (Base‘(𝐼 mPoly 𝑈))) → (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))) = (𝑏( ·𝑠 ‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))))
13090, 94, 125, 129syl3anc 1369 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))) = (𝑏( ·𝑠 ‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))))
131 simprr 769 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑏 ∈ (Base‘𝑈))
1324, 128, 2, 49, 43, 6, 131, 125mplvsca 21129 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑏( ·𝑠 ‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))) = (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑏}) ∘f (.r𝑈)(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))))
133130, 132eqtrd 2778 . . . . 5 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))) = (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑏}) ∘f (.r𝑈)(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))))
134 vex 3426 . . . . . . 7 𝑏 ∈ V
135 fnconstg 6646 . . . . . . 7 (𝑏 ∈ V → ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑏}) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
136134, 135mp1i 13 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑏}) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
137 fvex 6769 . . . . . . . . 9 (1r𝑈) ∈ V
138 fvex 6769 . . . . . . . . 9 (0g𝑈) ∈ V
139137, 138ifex 4506 . . . . . . . 8 if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)) ∈ V
140 eqid 2738 . . . . . . . 8 (𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))) = (𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))
141139, 140fnmpti 6560 . . . . . . 7 (𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
142141a1i 11 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
14397a1i 11 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V)
144 inidm 4149 . . . . . 6 ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∩ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
145134fvconst2 7061 . . . . . . 7 (𝑠 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑏})‘𝑠) = 𝑏)
146145adantl 481 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑠 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑏})‘𝑠) = 𝑏)
147 equequ1 2029 . . . . . . . . 9 (𝑤 = 𝑠 → (𝑤 = 𝑎𝑠 = 𝑎))
148147ifbid 4479 . . . . . . . 8 (𝑤 = 𝑠 → if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)) = if(𝑠 = 𝑎, (1r𝑈), (0g𝑈)))
149137, 138ifex 4506 . . . . . . . 8 if(𝑠 = 𝑎, (1r𝑈), (0g𝑈)) ∈ V
150148, 140, 149fvmpt 6857 . . . . . . 7 (𝑠 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → ((𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))‘𝑠) = if(𝑠 = 𝑎, (1r𝑈), (0g𝑈)))
151150adantl 481 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑠 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))‘𝑠) = if(𝑠 = 𝑎, (1r𝑈), (0g𝑈)))
152136, 142, 143, 143, 144, 146, 151offval 7520 . . . . 5 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑏}) ∘f (.r𝑈)(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))) = (𝑠 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏(.r𝑈)if(𝑠 = 𝑎, (1r𝑈), (0g𝑈)))))
153 ovif2 7351 . . . . . . 7 (𝑏(.r𝑈)if(𝑠 = 𝑎, (1r𝑈), (0g𝑈))) = if(𝑠 = 𝑎, (𝑏(.r𝑈)(1r𝑈)), (𝑏(.r𝑈)(0g𝑈)))
15412ad2antrr 722 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑠 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑈 ∈ Ring)
155 simplrr 774 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑠 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑏 ∈ (Base‘𝑈))
1562, 43, 99ringridm 19726 . . . . . . . . 9 ((𝑈 ∈ Ring ∧ 𝑏 ∈ (Base‘𝑈)) → (𝑏(.r𝑈)(1r𝑈)) = 𝑏)
157154, 155, 156syl2anc 583 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑠 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑏(.r𝑈)(1r𝑈)) = 𝑏)
1582, 43, 3ringrz 19742 . . . . . . . . 9 ((𝑈 ∈ Ring ∧ 𝑏 ∈ (Base‘𝑈)) → (𝑏(.r𝑈)(0g𝑈)) = (0g𝑈))
159154, 155, 158syl2anc 583 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑠 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑏(.r𝑈)(0g𝑈)) = (0g𝑈))
160157, 159ifeq12d 4477 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑠 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → if(𝑠 = 𝑎, (𝑏(.r𝑈)(1r𝑈)), (𝑏(.r𝑈)(0g𝑈))) = if(𝑠 = 𝑎, 𝑏, (0g𝑈)))
161153, 160syl5eq 2791 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑠 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑏(.r𝑈)if(𝑠 = 𝑎, (1r𝑈), (0g𝑈))) = if(𝑠 = 𝑎, 𝑏, (0g𝑈)))
162161mpteq2dva 5170 . . . . 5 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑠 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏(.r𝑈)if(𝑠 = 𝑎, (1r𝑈), (0g𝑈)))) = (𝑠 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑠 = 𝑎, 𝑏, (0g𝑈))))
163133, 152, 1623eqtrd 2782 . . . 4 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))) = (𝑠 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑠 = 𝑎, 𝑏, (0g𝑈))))
1648adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝐼𝑉)
16550adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑆 ∈ CRing)
1669adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑅 ∈ (SubRing‘𝑆))
16773adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝐼 × {𝐿}) ∘f · 𝐴) ∈ (𝐾m 𝐼))
16812adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑈 ∈ Ring)
1694, 49, 2, 19, 164, 168mplasclf 21183 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (algSc‘(𝐼 mPoly 𝑈)):(Base‘𝑈)⟶(Base‘(𝐼 mPoly 𝑈)))
170169, 131ffvelrnd 6944 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((algSc‘(𝐼 mPoly 𝑈))‘𝑏) ∈ (Base‘(𝐼 mPoly 𝑈)))
171 eqidd 2739 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘((𝐼 × {𝐿}) ∘f · 𝐴)))
172170, 171jca 511 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((algSc‘(𝐼 mPoly 𝑈))‘𝑏) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘((𝐼 × {𝐿}) ∘f · 𝐴))))
173 elrabi 3611 . . . . . . . . . 10 (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} → 𝑎 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
174173ad2antrl 724 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑎 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
17547, 4, 10, 49, 48, 33, 37, 3, 99, 6, 140, 164, 165, 166, 167, 174evlsbagval 40198 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣))))))
17647, 4, 10, 48, 49, 164, 165, 166, 167, 172, 175, 127, 29evlsmulval 40201 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = (((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘((𝐼 × {𝐿}) ∘f · 𝐴)) · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣)))))))
177176simprd 495 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = (((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘((𝐼 × {𝐿}) ∘f · 𝐴)) · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣))))))
17833ringmgp 19704 . . . . . . . . . . . . 13 (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd)
17960, 178syl 17 . . . . . . . . . . . 12 (𝜑 → (mulGrp‘𝑆) ∈ Mnd)
18033, 48mgpbas 19641 . . . . . . . . . . . . 13 𝐾 = (Base‘(mulGrp‘𝑆))
181180, 37mulgnn0cl 18635 . . . . . . . . . . . 12 (((mulGrp‘𝑆) ∈ Mnd ∧ 𝑁 ∈ ℕ0𝐿𝐾) → (𝑁 𝐿) ∈ 𝐾)
182179, 14, 66, 181syl3anc 1369 . . . . . . . . . . 11 (𝜑 → (𝑁 𝐿) ∈ 𝐾)
183182adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑁 𝐿) ∈ 𝐾)
18441, 65eqsstrrd 3956 . . . . . . . . . . . 12 (𝜑 → (Base‘𝑈) ⊆ 𝐾)
185184sselda 3917 . . . . . . . . . . 11 ((𝜑𝑏 ∈ (Base‘𝑈)) → 𝑏𝐾)
186185adantrl 712 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑏𝐾)
18748, 29crngcom 19716 . . . . . . . . . 10 ((𝑆 ∈ CRing ∧ (𝑁 𝐿) ∈ 𝐾𝑏𝐾) → ((𝑁 𝐿) · 𝑏) = (𝑏 · (𝑁 𝐿)))
188165, 183, 186, 187syl3anc 1369 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑁 𝐿) · 𝑏) = (𝑏 · (𝑁 𝐿)))
189188oveq1d 7270 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((𝑁 𝐿) · 𝑏) · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))))) = ((𝑏 · (𝑁 𝐿)) · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))))))
190165crngringd 19711 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑆 ∈ Ring)
191 eqid 2738 . . . . . . . . . . 11 (1r𝑆) = (1r𝑆)
19233, 191ringidval 19654 . . . . . . . . . 10 (1r𝑆) = (0g‘(mulGrp‘𝑆))
19333crngmgp 19706 . . . . . . . . . . . 12 (𝑆 ∈ CRing → (mulGrp‘𝑆) ∈ CMnd)
19450, 193syl 17 . . . . . . . . . . 11 (𝜑 → (mulGrp‘𝑆) ∈ CMnd)
195194adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (mulGrp‘𝑆) ∈ CMnd)
196179ad2antrr 722 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣𝐼) → (mulGrp‘𝑆) ∈ Mnd)
197 elrabi 3611 . . . . . . . . . . . . . . . 16 (𝑎 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑎 ∈ (ℕ0m 𝐼))
198 elmapi 8595 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (ℕ0m 𝐼) → 𝑎:𝐼⟶ℕ0)
199173, 197, 1983syl 18 . . . . . . . . . . . . . . 15 (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} → 𝑎:𝐼⟶ℕ0)
200199adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 𝑎:𝐼⟶ℕ0)
201200adantrr 713 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑎:𝐼⟶ℕ0)
202201ffvelrnda 6943 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣𝐼) → (𝑎𝑣) ∈ ℕ0)
20370ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣𝐼) → 𝐴:𝐼𝐾)
204 simpr 484 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣𝐼) → 𝑣𝐼)
205203, 204ffvelrnd 6944 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣𝐼) → (𝐴𝑣) ∈ 𝐾)
206180, 37mulgnn0cl 18635 . . . . . . . . . . . 12 (((mulGrp‘𝑆) ∈ Mnd ∧ (𝑎𝑣) ∈ ℕ0 ∧ (𝐴𝑣) ∈ 𝐾) → ((𝑎𝑣) (𝐴𝑣)) ∈ 𝐾)
207196, 202, 205, 206syl3anc 1369 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣𝐼) → ((𝑎𝑣) (𝐴𝑣)) ∈ 𝐾)
208207fmpttd 6971 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))):𝐼𝐾)
2096psrbagfsupp 21033 . . . . . . . . . . . . . . 15 (𝑎 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑎 finSupp 0)
210209adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑎 finSupp 0)
211210fsuppimpd 9065 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑎 supp 0) ∈ Fin)
212173, 211sylan2 592 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑎 supp 0) ∈ Fin)
213212adantrr 713 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑎 supp 0) ∈ Fin)
214201feqmptd 6819 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑎 = (𝑣𝐼 ↦ (𝑎𝑣)))
215214oveq1d 7270 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑎 supp 0) = ((𝑣𝐼 ↦ (𝑎𝑣)) supp 0))
216 ssidd 3940 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑎 supp 0) ⊆ (𝑎 supp 0))
217215, 216eqsstrrd 3956 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑣𝐼 ↦ (𝑎𝑣)) supp 0) ⊆ (𝑎 supp 0))
218180, 192, 37mulg0 18622 . . . . . . . . . . . . 13 (𝑘𝐾 → (0 𝑘) = (1r𝑆))
219218adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑘𝐾) → (0 𝑘) = (1r𝑆))
220 c0ex 10900 . . . . . . . . . . . . 13 0 ∈ V
221220a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 0 ∈ V)
222217, 219, 202, 205, 221suppssov1 7985 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))) supp (1r𝑆)) ⊆ (𝑎 supp 0))
223213, 222ssfid 8971 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))) supp (1r𝑆)) ∈ Fin)
224180, 192, 195, 164, 208, 223gsumcl2 19430 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣)))) ∈ 𝐾)
22548, 29ringass 19718 . . . . . . . . 9 ((𝑆 ∈ Ring ∧ ((𝑁 𝐿) ∈ 𝐾𝑏𝐾 ∧ ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣)))) ∈ 𝐾)) → (((𝑁 𝐿) · 𝑏) · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))))) = ((𝑁 𝐿) · (𝑏 · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣)))))))
226190, 183, 186, 224, 225syl13anc 1370 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((𝑁 𝐿) · 𝑏) · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))))) = ((𝑁 𝐿) · (𝑏 · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣)))))))
22748, 29ringass 19718 . . . . . . . . 9 ((𝑆 ∈ Ring ∧ (𝑏𝐾 ∧ (𝑁 𝐿) ∈ 𝐾 ∧ ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣)))) ∈ 𝐾)) → ((𝑏 · (𝑁 𝐿)) · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))))) = (𝑏 · ((𝑁 𝐿) · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣)))))))
228190, 186, 183, 224, 227syl13anc 1370 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑏 · (𝑁 𝐿)) · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))))) = (𝑏 · ((𝑁 𝐿) · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣)))))))
229189, 226, 2283eqtr3d 2786 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑁 𝐿) · (𝑏 · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣)))))) = (𝑏 · ((𝑁 𝐿) · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣)))))))
23054adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝐴 ∈ (𝐾m 𝐼))
23141eleq2d 2824 . . . . . . . . . . . . 13 (𝜑 → (𝑏𝑅𝑏 ∈ (Base‘𝑈)))
232231biimpar 477 . . . . . . . . . . . 12 ((𝜑𝑏 ∈ (Base‘𝑈)) → 𝑏𝑅)
233232adantrl 712 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑏𝑅)
23447, 4, 10, 48, 49, 19, 164, 165, 166, 233, 230evlsscaval 40196 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((algSc‘(𝐼 mPoly 𝑈))‘𝑏) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘𝐴) = 𝑏))
23547, 4, 10, 49, 48, 33, 37, 3, 99, 6, 140, 164, 165, 166, 230, 174evlsbagval 40198 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))))‘𝐴) = ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))))))
23647, 4, 10, 48, 49, 164, 165, 166, 230, 234, 235, 127, 29evlsmulval 40201 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))))‘𝐴) = (𝑏 · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣)))))))
237236simprd 495 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))))‘𝐴) = (𝑏 · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))))))
238237oveq2d 7271 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑁 𝐿) · ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))))‘𝐴)) = ((𝑁 𝐿) · (𝑏 · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣)))))))
23947, 4, 10, 48, 49, 19, 164, 165, 166, 233, 167evlsscaval 40196 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((algSc‘(𝐼 mPoly 𝑈))‘𝑏) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = 𝑏))
240239simprd 495 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = 𝑏)
241 fconst6g 6647 . . . . . . . . . . . . . . . . 17 (𝐿𝑅 → (𝐼 × {𝐿}):𝐼𝑅)
24236, 241syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐼 × {𝐿}):𝐼𝑅)
243242ffnd 6585 . . . . . . . . . . . . . . 15 (𝜑 → (𝐼 × {𝐿}) Fn 𝐼)
244243adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝐼 × {𝐿}) Fn 𝐼)
24570ffnd 6585 . . . . . . . . . . . . . . 15 (𝜑𝐴 Fn 𝐼)
246245adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝐴 Fn 𝐼)
24736ad2antrr 722 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣𝐼) → 𝐿𝑅)
248 fvconst2g 7059 . . . . . . . . . . . . . . 15 ((𝐿𝑅𝑣𝐼) → ((𝐼 × {𝐿})‘𝑣) = 𝐿)
249247, 204, 248syl2anc 583 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣𝐼) → ((𝐼 × {𝐿})‘𝑣) = 𝐿)
250 eqidd 2739 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣𝐼) → (𝐴𝑣) = (𝐴𝑣))
251244, 246, 164, 164, 71, 249, 250ofval 7522 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣𝐼) → (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣) = (𝐿 · (𝐴𝑣)))
252251oveq2d 7271 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣𝐼) → ((𝑎𝑣) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣)) = ((𝑎𝑣) (𝐿 · (𝐴𝑣))))
253194ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣𝐼) → (mulGrp‘𝑆) ∈ CMnd)
25466ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣𝐼) → 𝐿𝐾)
25533, 29mgpplusg 19639 . . . . . . . . . . . . . 14 · = (+g‘(mulGrp‘𝑆))
256180, 37, 255mulgnn0di 19342 . . . . . . . . . . . . 13 (((mulGrp‘𝑆) ∈ CMnd ∧ ((𝑎𝑣) ∈ ℕ0𝐿𝐾 ∧ (𝐴𝑣) ∈ 𝐾)) → ((𝑎𝑣) (𝐿 · (𝐴𝑣))) = (((𝑎𝑣) 𝐿) · ((𝑎𝑣) (𝐴𝑣))))
257253, 202, 254, 205, 256syl13anc 1370 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣𝐼) → ((𝑎𝑣) (𝐿 · (𝐴𝑣))) = (((𝑎𝑣) 𝐿) · ((𝑎𝑣) (𝐴𝑣))))
258252, 257eqtrd 2778 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣𝐼) → ((𝑎𝑣) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣)) = (((𝑎𝑣) 𝐿) · ((𝑎𝑣) (𝐴𝑣))))
259258mpteq2dva 5170 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑣𝐼 ↦ ((𝑎𝑣) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣))) = (𝑣𝐼 ↦ (((𝑎𝑣) 𝐿) · ((𝑎𝑣) (𝐴𝑣)))))
260259oveq2d 7271 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣)))) = ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ (((𝑎𝑣) 𝐿) · ((𝑎𝑣) (𝐴𝑣))))))
261194adantr 480 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (mulGrp‘𝑆) ∈ CMnd)
2628adantr 480 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 𝐼𝑉)
263179ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑣𝐼) → (mulGrp‘𝑆) ∈ Mnd)
264200ffvelrnda 6943 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑣𝐼) → (𝑎𝑣) ∈ ℕ0)
26566ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑣𝐼) → 𝐿𝐾)
266180, 37mulgnn0cl 18635 . . . . . . . . . . . . 13 (((mulGrp‘𝑆) ∈ Mnd ∧ (𝑎𝑣) ∈ ℕ0𝐿𝐾) → ((𝑎𝑣) 𝐿) ∈ 𝐾)
267263, 264, 265, 266syl3anc 1369 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑣𝐼) → ((𝑎𝑣) 𝐿) ∈ 𝐾)
26870ffvelrnda 6943 . . . . . . . . . . . . . 14 ((𝜑𝑣𝐼) → (𝐴𝑣) ∈ 𝐾)
269268adantlr 711 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑣𝐼) → (𝐴𝑣) ∈ 𝐾)
270263, 264, 269, 206syl3anc 1369 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑣𝐼) → ((𝑎𝑣) (𝐴𝑣)) ∈ 𝐾)
271 eqidd 2739 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑣𝐼 ↦ ((𝑎𝑣) 𝐿)) = (𝑣𝐼 ↦ ((𝑎𝑣) 𝐿)))
272 eqidd 2739 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))) = (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))))
273262mptexd 7082 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑣𝐼 ↦ ((𝑎𝑣) 𝐿)) ∈ V)
274 fvexd 6771 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (1r𝑆) ∈ V)
275 funmpt 6456 . . . . . . . . . . . . . 14 Fun (𝑣𝐼 ↦ ((𝑎𝑣) 𝐿))
276275a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → Fun (𝑣𝐼 ↦ ((𝑎𝑣) 𝐿)))
277200feqmptd 6819 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 𝑎 = (𝑣𝐼 ↦ (𝑎𝑣)))
278277oveq1d 7270 . . . . . . . . . . . . . . . 16 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑎 supp 0) = ((𝑣𝐼 ↦ (𝑎𝑣)) supp 0))
279 ssidd 3940 . . . . . . . . . . . . . . . 16 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑎 supp 0) ⊆ (𝑎 supp 0))
280278, 279eqsstrrd 3956 . . . . . . . . . . . . . . 15 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((𝑣𝐼 ↦ (𝑎𝑣)) supp 0) ⊆ (𝑎 supp 0))
281218adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑘𝐾) → (0 𝑘) = (1r𝑆))
282220a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 0 ∈ V)
283280, 281, 264, 265, 282suppssov1 7985 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((𝑣𝐼 ↦ ((𝑎𝑣) 𝐿)) supp (1r𝑆)) ⊆ (𝑎 supp 0))
284212, 283ssfid 8971 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((𝑣𝐼 ↦ ((𝑎𝑣) 𝐿)) supp (1r𝑆)) ∈ Fin)
285273, 274, 276, 284isfsuppd 40143 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑣𝐼 ↦ ((𝑎𝑣) 𝐿)) finSupp (1r𝑆))
286262mptexd 7082 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))) ∈ V)
287 funmpt 6456 . . . . . . . . . . . . . 14 Fun (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣)))
288287a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → Fun (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))))
289280, 281, 264, 269, 282suppssov1 7985 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))) supp (1r𝑆)) ⊆ (𝑎 supp 0))
290212, 289ssfid 8971 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))) supp (1r𝑆)) ∈ Fin)
291286, 274, 288, 290isfsuppd 40143 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))) finSupp (1r𝑆))
292180, 192, 255, 261, 262, 267, 270, 271, 272, 285, 291gsummptfsadd 19440 . . . . . . . . . . 11 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ (((𝑎𝑣) 𝐿) · ((𝑎𝑣) (𝐴𝑣))))) = (((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) 𝐿))) · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))))))
2936, 7, 180, 37, 8, 179, 66, 14mhphflem 40207 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) 𝐿))) = (𝑁 𝐿))
294293oveq1d 7270 . . . . . . . . . . 11 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) 𝐿))) · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))))) = ((𝑁 𝐿) · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))))))
295292, 294eqtrd 2778 . . . . . . . . . 10 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ (((𝑎𝑣) 𝐿) · ((𝑎𝑣) (𝐴𝑣))))) = ((𝑁 𝐿) · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))))))
296295adantrr 713 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ (((𝑎𝑣) 𝐿) · ((𝑎𝑣) (𝐴𝑣))))) = ((𝑁 𝐿) · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))))))
297260, 296eqtrd 2778 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣)))) = ((𝑁 𝐿) · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))))))
298240, 297oveq12d 7273 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘((𝐼 × {𝐿}) ∘f · 𝐴)) · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣))))) = (𝑏 · ((𝑁 𝐿) · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣)))))))
299229, 238, 2983eqtr4rd 2789 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘((𝐼 × {𝐿}) ∘f · 𝐴)) · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣))))) = ((𝑁 𝐿) · ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))))‘𝐴)))
300177, 299eqtrd 2778 . . . . 5 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))))‘𝐴)))
301 ovex 7288 . . . . . 6 (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))) ∈ V
302 fveq2 6756 . . . . . . . 8 (𝑓 = (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))) → (𝑄𝑓) = (𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))))))
303302fveq1d 6758 . . . . . . 7 (𝑓 = (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))) → ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))))‘((𝐼 × {𝐿}) ∘f · 𝐴)))
304302fveq1d 6758 . . . . . . . 8 (𝑓 = (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))) → ((𝑄𝑓)‘𝐴) = ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))))‘𝐴))
305304oveq2d 7271 . . . . . . 7 (𝑓 = (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))) → ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴)) = ((𝑁 𝐿) · ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))))‘𝐴)))
306303, 305eqeq12d 2754 . . . . . 6 (𝑓 = (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))) → (((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴)) ↔ ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))))‘𝐴))))
307301, 306elab 3602 . . . . 5 ((((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))) ∈ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))} ↔ ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))))‘𝐴)))
308300, 307sylibr 233 . . . 4 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))) ∈ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))})
309163, 308eqeltrrd 2840 . . 3 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑠 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑠 = 𝑎, 𝑏, (0g𝑈))) ∈ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))})
310 elin 3899 . . . . . 6 (𝑥 ∈ ((𝐻𝑁) ∩ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))}) ↔ (𝑥 ∈ (𝐻𝑁) ∧ 𝑥 ∈ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))}))
311 vex 3426 . . . . . . . 8 𝑥 ∈ V
312 fveq2 6756 . . . . . . . . . 10 (𝑓 = 𝑥 → (𝑄𝑓) = (𝑄𝑥))
313312fveq1d 6758 . . . . . . . . 9 (𝑓 = 𝑥 → ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)))
314312fveq1d 6758 . . . . . . . . . 10 (𝑓 = 𝑥 → ((𝑄𝑓)‘𝐴) = ((𝑄𝑥)‘𝐴))
315314oveq2d 7271 . . . . . . . . 9 (𝑓 = 𝑥 → ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴)))
316313, 315eqeq12d 2754 . . . . . . . 8 (𝑓 = 𝑥 → (((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴)) ↔ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))))
317311, 316elab 3602 . . . . . . 7 (𝑥 ∈ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))} ↔ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴)))
318317anbi2i 622 . . . . . 6 ((𝑥 ∈ (𝐻𝑁) ∧ 𝑥 ∈ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))}) ↔ (𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))))
319310, 318bitri 274 . . . . 5 (𝑥 ∈ ((𝐻𝑁) ∩ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))}) ↔ (𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))))
320 elin 3899 . . . . . 6 (𝑦 ∈ ((𝐻𝑁) ∩ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))}) ↔ (𝑦 ∈ (𝐻𝑁) ∧ 𝑦 ∈ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))}))
321 vex 3426 . . . . . . . 8 𝑦 ∈ V
322 fveq2 6756 . . . . . . . . . 10 (𝑓 = 𝑦 → (𝑄𝑓) = (𝑄𝑦))
323322fveq1d 6758 . . . . . . . . 9 (𝑓 = 𝑦 → ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)))
324322fveq1d 6758 . . . . . . . . . 10 (𝑓 = 𝑦 → ((𝑄𝑓)‘𝐴) = ((𝑄𝑦)‘𝐴))
325324oveq2d 7271 . . . . . . . . 9 (𝑓 = 𝑦 → ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴)))
326323, 325eqeq12d 2754 . . . . . . . 8 (𝑓 = 𝑦 → (((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴)) ↔ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))
327321, 326elab 3602 . . . . . . 7 (𝑦 ∈ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))} ↔ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴)))
328327anbi2i 622 . . . . . 6 ((𝑦 ∈ (𝐻𝑁) ∧ 𝑦 ∈ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))}) ↔ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))
329320, 328bitri 274 . . . . 5 (𝑦 ∈ ((𝐻𝑁) ∩ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))}) ↔ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))
330319, 329anbi12i 626 . . . 4 ((𝑥 ∈ ((𝐻𝑁) ∩ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))}) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))})) ↔ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴)))))
33160adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → 𝑆 ∈ Ring)
332182adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → (𝑁 𝐿) ∈ 𝐾)
333 eqid 2738 . . . . . . . . 9 (𝑆s (Base‘(𝑆s 𝐼))) = (𝑆s (Base‘(𝑆s 𝐼)))
334 eqid 2738 . . . . . . . . 9 (Base‘(𝑆s (Base‘(𝑆s 𝐼)))) = (Base‘(𝑆s (Base‘(𝑆s 𝐼))))
33550adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → 𝑆 ∈ CRing)
336 fvexd 6771 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → (Base‘(𝑆s 𝐼)) ∈ V)
337 eqid 2738 . . . . . . . . . . . . . . 15 (𝑆s (𝐾m 𝐼)) = (𝑆s (𝐾m 𝐼))
33847, 4, 10, 337, 48evlsrhm 21208 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ ((𝐼 mPoly 𝑈) RingHom (𝑆s (𝐾m 𝐼))))
3398, 50, 9, 338syl3anc 1369 . . . . . . . . . . . . 13 (𝜑𝑄 ∈ ((𝐼 mPoly 𝑈) RingHom (𝑆s (𝐾m 𝐼))))
340 eqid 2738 . . . . . . . . . . . . . 14 (Base‘(𝑆s (𝐾m 𝐼))) = (Base‘(𝑆s (𝐾m 𝐼)))
34149, 340rhmf 19885 . . . . . . . . . . . . 13 (𝑄 ∈ ((𝐼 mPoly 𝑈) RingHom (𝑆s (𝐾m 𝐼))) → 𝑄:(Base‘(𝐼 mPoly 𝑈))⟶(Base‘(𝑆s (𝐾m 𝐼))))
342339, 341syl 17 . . . . . . . . . . . 12 (𝜑𝑄:(Base‘(𝐼 mPoly 𝑈))⟶(Base‘(𝑆s (𝐾m 𝐼))))
343342adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → 𝑄:(Base‘(𝐼 mPoly 𝑈))⟶(Base‘(𝑆s (𝐾m 𝐼))))
3448adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐻𝑁)) → 𝐼𝑉)
34512adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐻𝑁)) → 𝑈 ∈ Ring)
34614adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐻𝑁)) → 𝑁 ∈ ℕ0)
347 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐻𝑁)) → 𝑥 ∈ (𝐻𝑁))
3481, 4, 49, 344, 345, 346, 347mhpmpl 21244 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐻𝑁)) → 𝑥 ∈ (Base‘(𝐼 mPoly 𝑈)))
349348adantrr 713 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴)))) → 𝑥 ∈ (Base‘(𝐼 mPoly 𝑈)))
350349adantrr 713 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → 𝑥 ∈ (Base‘(𝐼 mPoly 𝑈)))
351343, 350ffvelrnd 6944 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → (𝑄𝑥) ∈ (Base‘(𝑆s (𝐾m 𝐼))))
352 eqid 2738 . . . . . . . . . . . . . . 15 (𝑆s 𝐼) = (𝑆s 𝐼)
353352, 48pwsbas 17115 . . . . . . . . . . . . . 14 ((𝑆 ∈ CRing ∧ 𝐼𝑉) → (𝐾m 𝐼) = (Base‘(𝑆s 𝐼)))
35450, 8, 353syl2anc 583 . . . . . . . . . . . . 13 (𝜑 → (𝐾m 𝐼) = (Base‘(𝑆s 𝐼)))
355354oveq2d 7271 . . . . . . . . . . . 12 (𝜑 → (𝑆s (𝐾m 𝐼)) = (𝑆s (Base‘(𝑆s 𝐼))))
356355fveq2d 6760 . . . . . . . . . . 11 (𝜑 → (Base‘(𝑆s (𝐾m 𝐼))) = (Base‘(𝑆s (Base‘(𝑆s 𝐼)))))
357356adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → (Base‘(𝑆s (𝐾m 𝐼))) = (Base‘(𝑆s (Base‘(𝑆s 𝐼)))))
358351, 357eleqtrd 2841 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → (𝑄𝑥) ∈ (Base‘(𝑆s (Base‘(𝑆s 𝐼)))))
359333, 48, 334, 335, 336, 358pwselbas 17117 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → (𝑄𝑥):(Base‘(𝑆s 𝐼))⟶𝐾)
36054, 354eleqtrd 2841 . . . . . . . . 9 (𝜑𝐴 ∈ (Base‘(𝑆s 𝐼)))
361360adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → 𝐴 ∈ (Base‘(𝑆s 𝐼)))
362359, 361ffvelrnd 6944 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → ((𝑄𝑥)‘𝐴) ∈ 𝐾)
3638adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐻𝑁)) → 𝐼𝑉)
36412adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐻𝑁)) → 𝑈 ∈ Ring)
36514adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐻𝑁)) → 𝑁 ∈ ℕ0)
366 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐻𝑁)) → 𝑦 ∈ (𝐻𝑁))
3671, 4, 49, 363, 364, 365, 366mhpmpl 21244 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐻𝑁)) → 𝑦 ∈ (Base‘(𝐼 mPoly 𝑈)))
368367adantrr 713 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴)))) → 𝑦 ∈ (Base‘(𝐼 mPoly 𝑈)))
369368adantrl 712 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → 𝑦 ∈ (Base‘(𝐼 mPoly 𝑈)))
370343, 369ffvelrnd 6944 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → (𝑄𝑦) ∈ (Base‘(𝑆s (𝐾m 𝐼))))
371370, 357eleqtrd 2841 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → (𝑄𝑦) ∈ (Base‘(𝑆s (Base‘(𝑆s 𝐼)))))
372333, 48, 334, 335, 336, 371pwselbas 17117 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → (𝑄𝑦):(Base‘(𝑆s 𝐼))⟶𝐾)
373372, 361ffvelrnd 6944 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → ((𝑄𝑦)‘𝐴) ∈ 𝐾)
374 eqid 2738 . . . . . . . 8 (+g𝑆) = (+g𝑆)
37548, 374, 29ringdi 19720 . . . . . . 7 ((𝑆 ∈ Ring ∧ ((𝑁 𝐿) ∈ 𝐾 ∧ ((𝑄𝑥)‘𝐴) ∈ 𝐾 ∧ ((𝑄𝑦)‘𝐴) ∈ 𝐾)) → ((𝑁 𝐿) · (((𝑄𝑥)‘𝐴)(+g𝑆)((𝑄𝑦)‘𝐴))) = (((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))(+g𝑆)((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))
376331, 332, 362, 373, 375syl13anc 1370 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → ((𝑁 𝐿) · (((𝑄𝑥)‘𝐴)(+g𝑆)((𝑄𝑦)‘𝐴))) = (((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))(+g𝑆)((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))
3778adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → 𝐼𝑉)
3789adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → 𝑅 ∈ (SubRing‘𝑆))
37954adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → 𝐴 ∈ (𝐾m 𝐼))
380 eqidd 2739 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) → ((𝑄𝑥)‘𝐴) = ((𝑄𝑥)‘𝐴))
381348, 380anim12dan 618 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴)))) → (𝑥 ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄𝑥)‘𝐴) = ((𝑄𝑥)‘𝐴)))
382381adantrr 713 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → (𝑥 ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄𝑥)‘𝐴) = ((𝑄𝑥)‘𝐴)))
383 eqidd 2739 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))) → ((𝑄𝑦)‘𝐴) = ((𝑄𝑦)‘𝐴))
384367, 383anim12dan 618 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴)))) → (𝑦 ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄𝑦)‘𝐴) = ((𝑄𝑦)‘𝐴)))
385384adantrl 712 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → (𝑦 ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄𝑦)‘𝐴) = ((𝑄𝑦)‘𝐴)))
38647, 4, 10, 48, 49, 377, 335, 378, 379, 382, 385, 5, 374evlsaddval 40200 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → ((𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘𝐴) = (((𝑄𝑥)‘𝐴)(+g𝑆)((𝑄𝑦)‘𝐴))))
387386simprd 495 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘𝐴) = (((𝑄𝑥)‘𝐴)(+g𝑆)((𝑄𝑦)‘𝐴)))
388387oveq2d 7271 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → ((𝑁 𝐿) · ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘𝐴)) = ((𝑁 𝐿) · (((𝑄𝑥)‘𝐴)(+g𝑆)((𝑄𝑦)‘𝐴))))
38958a1i 11 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → 𝐾 ∈ V)
39063adantlr 711 . . . . . . . . . 10 (((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) ∧ (𝑗𝐾𝑘𝐾)) → (𝑗 · 𝑘) ∈ 𝐾)
39168adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → (𝐼 × {𝐿}):𝐼𝐾)
39270adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → 𝐴:𝐼𝐾)
393390, 391, 392, 377, 377, 71off 7529 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → ((𝐼 × {𝐿}) ∘f · 𝐴):𝐼𝐾)
394389, 377, 393elmapdd 40142 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → ((𝐼 × {𝐿}) ∘f · 𝐴) ∈ (𝐾m 𝐼))
395 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) → ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴)))
396348, 395anim12dan 618 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴)))) → (𝑥 ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))))
397396adantrr 713 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → (𝑥 ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))))
398 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))) → ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴)))
399367, 398anim12dan 618 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴)))) → (𝑦 ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))
400399adantrl 712 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → (𝑦 ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))
40147, 4, 10, 48, 49, 377, 335, 378, 394, 397, 400, 5, 374evlsaddval 40200 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → ((𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = (((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))(+g𝑆)((𝑁 𝐿) · ((𝑄𝑦)‘𝐴)))))
402401simprd 495 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = (((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))(+g𝑆)((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))
403376, 388, 4023eqtr4rd 2789 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘𝐴)))
404 ovex 7288 . . . . . 6 (𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) ∈ V
405 fveq2 6756 . . . . . . . 8 (𝑓 = (𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) → (𝑄𝑓) = (𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦)))
406405fveq1d 6758 . . . . . . 7 (𝑓 = (𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) → ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘((𝐼 × {𝐿}) ∘f · 𝐴)))
407405fveq1d 6758 . . . . . . . 8 (𝑓 = (𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) → ((𝑄𝑓)‘𝐴) = ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘𝐴))
408407oveq2d 7271 . . . . . . 7 (𝑓 = (𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) → ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴)) = ((𝑁 𝐿) · ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘𝐴)))
409406, 408eqeq12d 2754 . . . . . 6 (𝑓 = (𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) → (((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴)) ↔ ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘𝐴))))
410404, 409elab 3602 . . . . 5 ((𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) ∈ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))} ↔ ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘𝐴)))
411403, 410sylibr 233 . . . 4 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → (𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) ∈ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))})
412330, 411sylan2b 593 . . 3 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))}) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))}))) → (𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) ∈ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))})
4131, 2, 3, 4, 5, 6, 7, 8, 13, 14, 15, 85, 309, 412mhpind 40206 . 2 (𝜑𝑋 ∈ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))})
414 fveq2 6756 . . . . . 6 (𝑓 = 𝑋 → (𝑄𝑓) = (𝑄𝑋))
415414fveq1d 6758 . . . . 5 (𝑓 = 𝑋 → ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑄𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)))
416414fveq1d 6758 . . . . . 6 (𝑓 = 𝑋 → ((𝑄𝑓)‘𝐴) = ((𝑄𝑋)‘𝐴))
417416oveq2d 7271 . . . . 5 (𝑓 = 𝑋 → ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴)) = ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴)))
418415, 417eqeq12d 2754 . . . 4 (𝑓 = 𝑋 → (((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴)) ↔ ((𝑄𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴))))
419418elabg 3600 . . 3 (𝑋 ∈ (𝐻𝑁) → (𝑋 ∈ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))} ↔ ((𝑄𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴))))
42015, 419syl 17 . 2 (𝜑 → (𝑋 ∈ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))} ↔ ((𝑄𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴))))
421413, 420mpbid 231 1 (𝜑 → ((𝑄𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {cab 2715  {crab 3067  Vcvv 3422  cdif 3880  cin 3882  wss 3883  ifcif 4456  {csn 4558   class class class wbr 5070  cmpt 5153   × cxp 5578  ccnv 5579  cima 5583  Fun wfun 6412   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509   supp csupp 7948  m cmap 8573  Fincfn 8691   finSupp cfsupp 9058  0cc0 10802  cn 11903  0cn0 12163  Basecbs 16840  s cress 16867  +gcplusg 16888  .rcmulr 16889  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067   Σg cgsu 17068  s cpws 17074  Mndcmnd 18300  SubMndcsubmnd 18344  .gcmg 18615  CMndccmn 19301  mulGrpcmgp 19635  1rcur 19652  Ringcrg 19698  CRingccrg 19699   RingHom crh 19871  SubRingcsubrg 19935  LModclmod 20038  fldccnfld 20510  AssAlgcasa 20967  algSccascl 20969   mPwSer cmps 21017   mPoly cmpl 21019   evalSub ces 21190   mHomP cmhp 21229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-0g 17069  df-gsum 17070  df-prds 17075  df-pws 17077  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-srg 19657  df-ring 19700  df-cring 19701  df-rnghom 19874  df-subrg 19937  df-lmod 20040  df-lss 20109  df-lsp 20149  df-cnfld 20511  df-assa 20970  df-asp 20971  df-ascl 20972  df-psr 21022  df-mvr 21023  df-mpl 21024  df-evls 21192  df-mhp 21233
This theorem is referenced by:  mhphf2  40209
  Copyright terms: Public domain W3C validator