Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mhphf Structured version   Visualization version   GIF version

Theorem mhphf 39818
Description: A homogeneous polynomial defines a homogeneous function. Equivalently, an algebraic form is a homogeneous function. (An algebraic form is the function corresponding to a homogeneous polynomial, which in this case is the (𝑄𝑋) which corresponds to 𝑋). (Contributed by SN, 28-Jul-2024.)
Hypotheses
Ref Expression
mhphf.q 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
mhphf.h 𝐻 = (𝐼 mHomP 𝑈)
mhphf.u 𝑈 = (𝑆s 𝑅)
mhphf.k 𝐾 = (Base‘𝑆)
mhphf.m · = (.r𝑆)
mhphf.e = (.g‘(mulGrp‘𝑆))
mhphf.i (𝜑𝐼𝑉)
mhphf.s (𝜑𝑆 ∈ CRing)
mhphf.r (𝜑𝑅 ∈ (SubRing‘𝑆))
mhphf.l (𝜑𝐿𝑅)
mhphf.n (𝜑𝑁 ∈ ℕ0)
mhphf.x (𝜑𝑋 ∈ (𝐻𝑁))
mhphf.a (𝜑𝐴 ∈ (𝐾m 𝐼))
Assertion
Ref Expression
mhphf (𝜑 → ((𝑄𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴)))

Proof of Theorem mhphf
Dummy variables 𝑎 𝑏 𝑓 𝑠 𝑗 𝑘 𝑣 𝑥 𝑦 𝑤 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhphf.h . . 3 𝐻 = (𝐼 mHomP 𝑈)
2 eqid 2758 . . 3 (Base‘𝑈) = (Base‘𝑈)
3 eqid 2758 . . 3 (0g𝑈) = (0g𝑈)
4 eqid 2758 . . 3 (𝐼 mPoly 𝑈) = (𝐼 mPoly 𝑈)
5 eqid 2758 . . 3 (+g‘(𝐼 mPoly 𝑈)) = (+g‘(𝐼 mPoly 𝑈))
6 eqid 2758 . . 3 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
7 eqid 2758 . . 3 {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} = {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}
8 mhphf.i . . 3 (𝜑𝐼𝑉)
9 mhphf.r . . . . 5 (𝜑𝑅 ∈ (SubRing‘𝑆))
10 mhphf.u . . . . . 6 𝑈 = (𝑆s 𝑅)
1110subrgring 19611 . . . . 5 (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring)
129, 11syl 17 . . . 4 (𝜑𝑈 ∈ Ring)
1312ringgrpd 19379 . . 3 (𝜑𝑈 ∈ Grp)
14 mhphf.n . . 3 (𝜑𝑁 ∈ ℕ0)
15 mhphf.x . . 3 (𝜑𝑋 ∈ (𝐻𝑁))
164, 8, 12mplsca 20781 . . . . . . 7 (𝜑𝑈 = (Scalar‘(𝐼 mPoly 𝑈)))
1716fveq2d 6666 . . . . . 6 (𝜑 → (0g𝑈) = (0g‘(Scalar‘(𝐼 mPoly 𝑈))))
1817fveq2d 6666 . . . . 5 (𝜑 → ((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)) = ((algSc‘(𝐼 mPoly 𝑈))‘(0g‘(Scalar‘(𝐼 mPoly 𝑈)))))
19 eqid 2758 . . . . . 6 (algSc‘(𝐼 mPoly 𝑈)) = (algSc‘(𝐼 mPoly 𝑈))
20 eqid 2758 . . . . . 6 (Scalar‘(𝐼 mPoly 𝑈)) = (Scalar‘(𝐼 mPoly 𝑈))
214mpllmod 20787 . . . . . . 7 ((𝐼𝑉𝑈 ∈ Ring) → (𝐼 mPoly 𝑈) ∈ LMod)
228, 12, 21syl2anc 587 . . . . . 6 (𝜑 → (𝐼 mPoly 𝑈) ∈ LMod)
234mplring 20788 . . . . . . 7 ((𝐼𝑉𝑈 ∈ Ring) → (𝐼 mPoly 𝑈) ∈ Ring)
248, 12, 23syl2anc 587 . . . . . 6 (𝜑 → (𝐼 mPoly 𝑈) ∈ Ring)
2519, 20, 22, 24ascl0 20651 . . . . 5 (𝜑 → ((algSc‘(𝐼 mPoly 𝑈))‘(0g‘(Scalar‘(𝐼 mPoly 𝑈)))) = (0g‘(𝐼 mPoly 𝑈)))
26 eqid 2758 . . . . . 6 (0g‘(𝐼 mPoly 𝑈)) = (0g‘(𝐼 mPoly 𝑈))
274, 6, 3, 26, 8, 13mpl0 20776 . . . . 5 (𝜑 → (0g‘(𝐼 mPoly 𝑈)) = ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(0g𝑈)}))
2818, 25, 273eqtrrd 2798 . . . 4 (𝜑 → ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(0g𝑈)}) = ((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)))
29 mhphf.m . . . . . . . . . 10 · = (.r𝑆)
3010, 29ressmulr 16688 . . . . . . . . 9 (𝑅 ∈ (SubRing‘𝑆) → · = (.r𝑈))
319, 30syl 17 . . . . . . . 8 (𝜑· = (.r𝑈))
3231oveqd 7172 . . . . . . 7 (𝜑 → ((𝑁 𝐿) · (0g𝑈)) = ((𝑁 𝐿)(.r𝑈)(0g𝑈)))
33 eqid 2758 . . . . . . . . . . . 12 (mulGrp‘𝑆) = (mulGrp‘𝑆)
3433subrgsubm 19621 . . . . . . . . . . 11 (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ∈ (SubMnd‘(mulGrp‘𝑆)))
359, 34syl 17 . . . . . . . . . 10 (𝜑𝑅 ∈ (SubMnd‘(mulGrp‘𝑆)))
36 mhphf.l . . . . . . . . . 10 (𝜑𝐿𝑅)
37 mhphf.e . . . . . . . . . . 11 = (.g‘(mulGrp‘𝑆))
3837submmulgcl 18342 . . . . . . . . . 10 ((𝑅 ∈ (SubMnd‘(mulGrp‘𝑆)) ∧ 𝑁 ∈ ℕ0𝐿𝑅) → (𝑁 𝐿) ∈ 𝑅)
3935, 14, 36, 38syl3anc 1368 . . . . . . . . 9 (𝜑 → (𝑁 𝐿) ∈ 𝑅)
4010subrgbas 19617 . . . . . . . . . 10 (𝑅 ∈ (SubRing‘𝑆) → 𝑅 = (Base‘𝑈))
419, 40syl 17 . . . . . . . . 9 (𝜑𝑅 = (Base‘𝑈))
4239, 41eleqtrd 2854 . . . . . . . 8 (𝜑 → (𝑁 𝐿) ∈ (Base‘𝑈))
43 eqid 2758 . . . . . . . . 9 (.r𝑈) = (.r𝑈)
442, 43, 3ringrz 19414 . . . . . . . 8 ((𝑈 ∈ Ring ∧ (𝑁 𝐿) ∈ (Base‘𝑈)) → ((𝑁 𝐿)(.r𝑈)(0g𝑈)) = (0g𝑈))
4512, 42, 44syl2anc 587 . . . . . . 7 (𝜑 → ((𝑁 𝐿)(.r𝑈)(0g𝑈)) = (0g𝑈))
4632, 45eqtrd 2793 . . . . . 6 (𝜑 → ((𝑁 𝐿) · (0g𝑈)) = (0g𝑈))
47 mhphf.q . . . . . . . . 9 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
48 mhphf.k . . . . . . . . 9 𝐾 = (Base‘𝑆)
49 eqid 2758 . . . . . . . . 9 (Base‘(𝐼 mPoly 𝑈)) = (Base‘(𝐼 mPoly 𝑈))
50 mhphf.s . . . . . . . . 9 (𝜑𝑆 ∈ CRing)
512, 3ring0cl 19395 . . . . . . . . . . 11 (𝑈 ∈ Ring → (0g𝑈) ∈ (Base‘𝑈))
5212, 51syl 17 . . . . . . . . . 10 (𝜑 → (0g𝑈) ∈ (Base‘𝑈))
5352, 41eleqtrrd 2855 . . . . . . . . 9 (𝜑 → (0g𝑈) ∈ 𝑅)
54 mhphf.a . . . . . . . . 9 (𝜑𝐴 ∈ (𝐾m 𝐼))
5547, 4, 10, 48, 49, 19, 8, 50, 9, 53, 54evlsscaval 39806 . . . . . . . 8 (𝜑 → (((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)))‘𝐴) = (0g𝑈)))
5655simprd 499 . . . . . . 7 (𝜑 → ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)))‘𝐴) = (0g𝑈))
5756oveq2d 7171 . . . . . 6 (𝜑 → ((𝑁 𝐿) · ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)))‘𝐴)) = ((𝑁 𝐿) · (0g𝑈)))
5848fvexi 6676 . . . . . . . . . 10 𝐾 ∈ V
5958a1i 11 . . . . . . . . 9 (𝜑𝐾 ∈ V)
6050crngringd 19383 . . . . . . . . . . . 12 (𝜑𝑆 ∈ Ring)
6148, 29ringcl 19387 . . . . . . . . . . . 12 ((𝑆 ∈ Ring ∧ 𝑗𝐾𝑘𝐾) → (𝑗 · 𝑘) ∈ 𝐾)
6260, 61syl3an1 1160 . . . . . . . . . . 11 ((𝜑𝑗𝐾𝑘𝐾) → (𝑗 · 𝑘) ∈ 𝐾)
63623expb 1117 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → (𝑗 · 𝑘) ∈ 𝐾)
6448subrgss 19609 . . . . . . . . . . . . 13 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐾)
659, 64syl 17 . . . . . . . . . . . 12 (𝜑𝑅𝐾)
6665, 36sseldd 3895 . . . . . . . . . . 11 (𝜑𝐿𝐾)
67 fconst6g 6557 . . . . . . . . . . 11 (𝐿𝐾 → (𝐼 × {𝐿}):𝐼𝐾)
6866, 67syl 17 . . . . . . . . . 10 (𝜑 → (𝐼 × {𝐿}):𝐼𝐾)
69 elmapi 8443 . . . . . . . . . . 11 (𝐴 ∈ (𝐾m 𝐼) → 𝐴:𝐼𝐾)
7054, 69syl 17 . . . . . . . . . 10 (𝜑𝐴:𝐼𝐾)
71 inidm 4125 . . . . . . . . . 10 (𝐼𝐼) = 𝐼
7263, 68, 70, 8, 8, 71off 7427 . . . . . . . . 9 (𝜑 → ((𝐼 × {𝐿}) ∘f · 𝐴):𝐼𝐾)
7359, 8, 72elmapdd 39751 . . . . . . . 8 (𝜑 → ((𝐼 × {𝐿}) ∘f · 𝐴) ∈ (𝐾m 𝐼))
7447, 4, 10, 48, 49, 19, 8, 50, 9, 53, 73evlsscaval 39806 . . . . . . 7 (𝜑 → (((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = (0g𝑈)))
7574simprd 499 . . . . . 6 (𝜑 → ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = (0g𝑈))
7646, 57, 753eqtr4rd 2804 . . . . 5 (𝜑 → ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)))‘𝐴)))
77 fvex 6675 . . . . . 6 ((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)) ∈ V
78 fveq2 6662 . . . . . . . 8 (𝑓 = ((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)) → (𝑄𝑓) = (𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈))))
7978fveq1d 6664 . . . . . . 7 (𝑓 = ((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)) → ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)))‘((𝐼 × {𝐿}) ∘f · 𝐴)))
8078fveq1d 6664 . . . . . . . 8 (𝑓 = ((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)) → ((𝑄𝑓)‘𝐴) = ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)))‘𝐴))
8180oveq2d 7171 . . . . . . 7 (𝑓 = ((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)) → ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴)) = ((𝑁 𝐿) · ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)))‘𝐴)))
8279, 81eqeq12d 2774 . . . . . 6 (𝑓 = ((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)) → (((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴)) ↔ ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)))‘𝐴))))
8377, 82elab 3590 . . . . 5 (((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)) ∈ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))} ↔ ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)))‘𝐴)))
8476, 83sylibr 237 . . . 4 (𝜑 → ((algSc‘(𝐼 mPoly 𝑈))‘(0g𝑈)) ∈ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))})
8528, 84eqeltrd 2852 . . 3 (𝜑 → ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(0g𝑈)}) ∈ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))})
8610subrgcrng 19612 . . . . . . . . . 10 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑈 ∈ CRing)
8750, 9, 86syl2anc 587 . . . . . . . . 9 (𝜑𝑈 ∈ CRing)
884mplassa 20791 . . . . . . . . 9 ((𝐼𝑉𝑈 ∈ CRing) → (𝐼 mPoly 𝑈) ∈ AssAlg)
898, 87, 88syl2anc 587 . . . . . . . 8 (𝜑 → (𝐼 mPoly 𝑈) ∈ AssAlg)
9089adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝐼 mPoly 𝑈) ∈ AssAlg)
9116fveq2d 6666 . . . . . . . . . 10 (𝜑 → (Base‘𝑈) = (Base‘(Scalar‘(𝐼 mPoly 𝑈))))
9291eleq2d 2837 . . . . . . . . 9 (𝜑 → (𝑏 ∈ (Base‘𝑈) ↔ 𝑏 ∈ (Base‘(Scalar‘(𝐼 mPoly 𝑈)))))
9392biimpa 480 . . . . . . . 8 ((𝜑𝑏 ∈ (Base‘𝑈)) → 𝑏 ∈ (Base‘(Scalar‘(𝐼 mPoly 𝑈))))
9493adantrl 715 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑏 ∈ (Base‘(Scalar‘(𝐼 mPoly 𝑈))))
95 fvexd 6677 . . . . . . . . . . 11 (𝜑 → (Base‘𝑈) ∈ V)
96 ovex 7188 . . . . . . . . . . . . 13 (ℕ0m 𝐼) ∈ V
9796rabex 5205 . . . . . . . . . . . 12 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V
9897a1i 11 . . . . . . . . . . 11 (𝜑 → { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V)
99 eqid 2758 . . . . . . . . . . . . . . . 16 (1r𝑈) = (1r𝑈)
1002, 99ringidcl 19394 . . . . . . . . . . . . . . 15 (𝑈 ∈ Ring → (1r𝑈) ∈ (Base‘𝑈))
10112, 100syl 17 . . . . . . . . . . . . . 14 (𝜑 → (1r𝑈) ∈ (Base‘𝑈))
102101, 52ifcld 4469 . . . . . . . . . . . . 13 (𝜑 → if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)) ∈ (Base‘𝑈))
103102adantr 484 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)) ∈ (Base‘𝑈))
104103fmpttd 6875 . . . . . . . . . . 11 (𝜑 → (𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑈))
10595, 98, 104elmapdd 39751 . . . . . . . . . 10 (𝜑 → (𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))) ∈ ((Base‘𝑈) ↑m { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}))
106 eqid 2758 . . . . . . . . . . 11 (𝐼 mPwSer 𝑈) = (𝐼 mPwSer 𝑈)
107 eqid 2758 . . . . . . . . . . 11 (Base‘(𝐼 mPwSer 𝑈)) = (Base‘(𝐼 mPwSer 𝑈))
108106, 2, 6, 107, 8psrbas 20711 . . . . . . . . . 10 (𝜑 → (Base‘(𝐼 mPwSer 𝑈)) = ((Base‘𝑈) ↑m { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}))
109105, 108eleqtrrd 2855 . . . . . . . . 9 (𝜑 → (𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))) ∈ (Base‘(𝐼 mPwSer 𝑈)))
11097mptex 6982 . . . . . . . . . . 11 (𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))) ∈ V
111110a1i 11 . . . . . . . . . 10 (𝜑 → (𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))) ∈ V)
112 fvexd 6677 . . . . . . . . . 10 (𝜑 → (0g𝑈) ∈ V)
113 funmpt 6377 . . . . . . . . . . 11 Fun (𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))
114113a1i 11 . . . . . . . . . 10 (𝜑 → Fun (𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))))
115 snfi 8619 . . . . . . . . . . . 12 {𝑎} ∈ Fin
116115a1i 11 . . . . . . . . . . 11 (𝜑 → {𝑎} ∈ Fin)
117 eldifsnneq 4684 . . . . . . . . . . . . . 14 (𝑤 ∈ ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ {𝑎}) → ¬ 𝑤 = 𝑎)
118117adantl 485 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ {𝑎})) → ¬ 𝑤 = 𝑎)
119118iffalsed 4434 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ {𝑎})) → if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)) = (0g𝑈))
120119, 98suppss2 7879 . . . . . . . . . . 11 (𝜑 → ((𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))) supp (0g𝑈)) ⊆ {𝑎})
121116, 120ssfid 8783 . . . . . . . . . 10 (𝜑 → ((𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))) supp (0g𝑈)) ∈ Fin)
122111, 112, 114, 121isfsuppd 39752 . . . . . . . . 9 (𝜑 → (𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))) finSupp (0g𝑈))
1234, 106, 107, 3, 49mplelbas 20763 . . . . . . . . 9 ((𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))) ∈ (Base‘(𝐼 mPoly 𝑈)) ↔ ((𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))) ∈ (Base‘(𝐼 mPwSer 𝑈)) ∧ (𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))) finSupp (0g𝑈)))
124109, 122, 123sylanbrc 586 . . . . . . . 8 (𝜑 → (𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))) ∈ (Base‘(𝐼 mPoly 𝑈)))
125124adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))) ∈ (Base‘(𝐼 mPoly 𝑈)))
126 eqid 2758 . . . . . . . 8 (Base‘(Scalar‘(𝐼 mPoly 𝑈))) = (Base‘(Scalar‘(𝐼 mPoly 𝑈)))
127 eqid 2758 . . . . . . . 8 (.r‘(𝐼 mPoly 𝑈)) = (.r‘(𝐼 mPoly 𝑈))
128 eqid 2758 . . . . . . . 8 ( ·𝑠 ‘(𝐼 mPoly 𝑈)) = ( ·𝑠 ‘(𝐼 mPoly 𝑈))
12919, 20, 126, 49, 127, 128asclmul1 20653 . . . . . . 7 (((𝐼 mPoly 𝑈) ∈ AssAlg ∧ 𝑏 ∈ (Base‘(Scalar‘(𝐼 mPoly 𝑈))) ∧ (𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))) ∈ (Base‘(𝐼 mPoly 𝑈))) → (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))) = (𝑏( ·𝑠 ‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))))
13090, 94, 125, 129syl3anc 1368 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))) = (𝑏( ·𝑠 ‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))))
131 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑏 ∈ (Base‘𝑈))
1324, 128, 2, 49, 43, 6, 131, 125mplvsca 20783 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑏( ·𝑠 ‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))) = (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑏}) ∘f (.r𝑈)(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))))
133130, 132eqtrd 2793 . . . . 5 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))) = (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑏}) ∘f (.r𝑈)(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))))
134 vex 3413 . . . . . . 7 𝑏 ∈ V
135 fnconstg 6556 . . . . . . 7 (𝑏 ∈ V → ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑏}) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
136134, 135mp1i 13 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑏}) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
137 fvex 6675 . . . . . . . . 9 (1r𝑈) ∈ V
138 fvex 6675 . . . . . . . . 9 (0g𝑈) ∈ V
139137, 138ifex 4473 . . . . . . . 8 if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)) ∈ V
140 eqid 2758 . . . . . . . 8 (𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))) = (𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))
141139, 140fnmpti 6478 . . . . . . 7 (𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
142141a1i 11 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
14397a1i 11 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V)
144 inidm 4125 . . . . . 6 ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∩ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
145134fvconst2 6962 . . . . . . 7 (𝑠 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑏})‘𝑠) = 𝑏)
146145adantl 485 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑠 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑏})‘𝑠) = 𝑏)
147 equequ1 2032 . . . . . . . . 9 (𝑤 = 𝑠 → (𝑤 = 𝑎𝑠 = 𝑎))
148147ifbid 4446 . . . . . . . 8 (𝑤 = 𝑠 → if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)) = if(𝑠 = 𝑎, (1r𝑈), (0g𝑈)))
149137, 138ifex 4473 . . . . . . . 8 if(𝑠 = 𝑎, (1r𝑈), (0g𝑈)) ∈ V
150148, 140, 149fvmpt 6763 . . . . . . 7 (𝑠 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → ((𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))‘𝑠) = if(𝑠 = 𝑎, (1r𝑈), (0g𝑈)))
151150adantl 485 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑠 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))‘𝑠) = if(𝑠 = 𝑎, (1r𝑈), (0g𝑈)))
152136, 142, 143, 143, 144, 146, 151offval 7418 . . . . 5 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑏}) ∘f (.r𝑈)(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))) = (𝑠 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏(.r𝑈)if(𝑠 = 𝑎, (1r𝑈), (0g𝑈)))))
153 ovif2 7251 . . . . . . 7 (𝑏(.r𝑈)if(𝑠 = 𝑎, (1r𝑈), (0g𝑈))) = if(𝑠 = 𝑎, (𝑏(.r𝑈)(1r𝑈)), (𝑏(.r𝑈)(0g𝑈)))
15412ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑠 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑈 ∈ Ring)
155 simplrr 777 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑠 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑏 ∈ (Base‘𝑈))
1562, 43, 99ringridm 19398 . . . . . . . . 9 ((𝑈 ∈ Ring ∧ 𝑏 ∈ (Base‘𝑈)) → (𝑏(.r𝑈)(1r𝑈)) = 𝑏)
157154, 155, 156syl2anc 587 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑠 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑏(.r𝑈)(1r𝑈)) = 𝑏)
1582, 43, 3ringrz 19414 . . . . . . . . 9 ((𝑈 ∈ Ring ∧ 𝑏 ∈ (Base‘𝑈)) → (𝑏(.r𝑈)(0g𝑈)) = (0g𝑈))
159154, 155, 158syl2anc 587 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑠 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑏(.r𝑈)(0g𝑈)) = (0g𝑈))
160157, 159ifeq12d 4444 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑠 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → if(𝑠 = 𝑎, (𝑏(.r𝑈)(1r𝑈)), (𝑏(.r𝑈)(0g𝑈))) = if(𝑠 = 𝑎, 𝑏, (0g𝑈)))
161153, 160syl5eq 2805 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑠 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑏(.r𝑈)if(𝑠 = 𝑎, (1r𝑈), (0g𝑈))) = if(𝑠 = 𝑎, 𝑏, (0g𝑈)))
162161mpteq2dva 5130 . . . . 5 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑠 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏(.r𝑈)if(𝑠 = 𝑎, (1r𝑈), (0g𝑈)))) = (𝑠 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑠 = 𝑎, 𝑏, (0g𝑈))))
163133, 152, 1623eqtrd 2797 . . . 4 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))) = (𝑠 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑠 = 𝑎, 𝑏, (0g𝑈))))
1648adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝐼𝑉)
16550adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑆 ∈ CRing)
1669adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑅 ∈ (SubRing‘𝑆))
16773adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝐼 × {𝐿}) ∘f · 𝐴) ∈ (𝐾m 𝐼))
16812adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑈 ∈ Ring)
1694, 49, 2, 19, 164, 168mplasclf 20831 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (algSc‘(𝐼 mPoly 𝑈)):(Base‘𝑈)⟶(Base‘(𝐼 mPoly 𝑈)))
170169, 131ffvelrnd 6848 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((algSc‘(𝐼 mPoly 𝑈))‘𝑏) ∈ (Base‘(𝐼 mPoly 𝑈)))
171 eqidd 2759 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘((𝐼 × {𝐿}) ∘f · 𝐴)))
172170, 171jca 515 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((algSc‘(𝐼 mPoly 𝑈))‘𝑏) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘((𝐼 × {𝐿}) ∘f · 𝐴))))
173 elrabi 3598 . . . . . . . . . 10 (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} → 𝑎 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
174173ad2antrl 727 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑎 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
17547, 4, 10, 49, 48, 33, 37, 3, 99, 6, 140, 164, 165, 166, 167, 174evlsbagval 39808 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣))))))
17647, 4, 10, 48, 49, 164, 165, 166, 167, 172, 175, 127, 29evlsmulval 39811 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = (((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘((𝐼 × {𝐿}) ∘f · 𝐴)) · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣)))))))
177176simprd 499 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = (((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘((𝐼 × {𝐿}) ∘f · 𝐴)) · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣))))))
17833ringmgp 19376 . . . . . . . . . . . . 13 (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd)
17960, 178syl 17 . . . . . . . . . . . 12 (𝜑 → (mulGrp‘𝑆) ∈ Mnd)
18033, 48mgpbas 19318 . . . . . . . . . . . . 13 𝐾 = (Base‘(mulGrp‘𝑆))
181180, 37mulgnn0cl 18316 . . . . . . . . . . . 12 (((mulGrp‘𝑆) ∈ Mnd ∧ 𝑁 ∈ ℕ0𝐿𝐾) → (𝑁 𝐿) ∈ 𝐾)
182179, 14, 66, 181syl3anc 1368 . . . . . . . . . . 11 (𝜑 → (𝑁 𝐿) ∈ 𝐾)
183182adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑁 𝐿) ∈ 𝐾)
18441, 65eqsstrrd 3933 . . . . . . . . . . . 12 (𝜑 → (Base‘𝑈) ⊆ 𝐾)
185184sselda 3894 . . . . . . . . . . 11 ((𝜑𝑏 ∈ (Base‘𝑈)) → 𝑏𝐾)
186185adantrl 715 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑏𝐾)
18748, 29crngcom 19388 . . . . . . . . . 10 ((𝑆 ∈ CRing ∧ (𝑁 𝐿) ∈ 𝐾𝑏𝐾) → ((𝑁 𝐿) · 𝑏) = (𝑏 · (𝑁 𝐿)))
188165, 183, 186, 187syl3anc 1368 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑁 𝐿) · 𝑏) = (𝑏 · (𝑁 𝐿)))
189188oveq1d 7170 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((𝑁 𝐿) · 𝑏) · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))))) = ((𝑏 · (𝑁 𝐿)) · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))))))
190165crngringd 19383 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑆 ∈ Ring)
191 eqid 2758 . . . . . . . . . . 11 (1r𝑆) = (1r𝑆)
19233, 191ringidval 19326 . . . . . . . . . 10 (1r𝑆) = (0g‘(mulGrp‘𝑆))
19333crngmgp 19378 . . . . . . . . . . . 12 (𝑆 ∈ CRing → (mulGrp‘𝑆) ∈ CMnd)
19450, 193syl 17 . . . . . . . . . . 11 (𝜑 → (mulGrp‘𝑆) ∈ CMnd)
195194adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (mulGrp‘𝑆) ∈ CMnd)
196179ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣𝐼) → (mulGrp‘𝑆) ∈ Mnd)
197 elrabi 3598 . . . . . . . . . . . . . . . 16 (𝑎 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑎 ∈ (ℕ0m 𝐼))
198 elmapi 8443 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (ℕ0m 𝐼) → 𝑎:𝐼⟶ℕ0)
199173, 197, 1983syl 18 . . . . . . . . . . . . . . 15 (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} → 𝑎:𝐼⟶ℕ0)
200199adantl 485 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 𝑎:𝐼⟶ℕ0)
201200adantrr 716 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑎:𝐼⟶ℕ0)
202201ffvelrnda 6847 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣𝐼) → (𝑎𝑣) ∈ ℕ0)
20370ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣𝐼) → 𝐴:𝐼𝐾)
204 simpr 488 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣𝐼) → 𝑣𝐼)
205203, 204ffvelrnd 6848 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣𝐼) → (𝐴𝑣) ∈ 𝐾)
206180, 37mulgnn0cl 18316 . . . . . . . . . . . 12 (((mulGrp‘𝑆) ∈ Mnd ∧ (𝑎𝑣) ∈ ℕ0 ∧ (𝐴𝑣) ∈ 𝐾) → ((𝑎𝑣) (𝐴𝑣)) ∈ 𝐾)
207196, 202, 205, 206syl3anc 1368 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣𝐼) → ((𝑎𝑣) (𝐴𝑣)) ∈ 𝐾)
208207fmpttd 6875 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))):𝐼𝐾)
2096psrbagfsupp 20687 . . . . . . . . . . . . . . 15 (𝑎 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑎 finSupp 0)
210209adantl 485 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑎 finSupp 0)
211210fsuppimpd 8878 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑎 supp 0) ∈ Fin)
212173, 211sylan2 595 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑎 supp 0) ∈ Fin)
213212adantrr 716 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑎 supp 0) ∈ Fin)
214201feqmptd 6725 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑎 = (𝑣𝐼 ↦ (𝑎𝑣)))
215214oveq1d 7170 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑎 supp 0) = ((𝑣𝐼 ↦ (𝑎𝑣)) supp 0))
216 ssidd 3917 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑎 supp 0) ⊆ (𝑎 supp 0))
217215, 216eqsstrrd 3933 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑣𝐼 ↦ (𝑎𝑣)) supp 0) ⊆ (𝑎 supp 0))
218180, 192, 37mulg0 18303 . . . . . . . . . . . . 13 (𝑘𝐾 → (0 𝑘) = (1r𝑆))
219218adantl 485 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑘𝐾) → (0 𝑘) = (1r𝑆))
220 c0ex 10678 . . . . . . . . . . . . 13 0 ∈ V
221220a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 0 ∈ V)
222217, 219, 202, 205, 221suppssov1 7877 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))) supp (1r𝑆)) ⊆ (𝑎 supp 0))
223213, 222ssfid 8783 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))) supp (1r𝑆)) ∈ Fin)
224180, 192, 195, 164, 208, 223gsumcl2 19107 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣)))) ∈ 𝐾)
22548, 29ringass 19390 . . . . . . . . 9 ((𝑆 ∈ Ring ∧ ((𝑁 𝐿) ∈ 𝐾𝑏𝐾 ∧ ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣)))) ∈ 𝐾)) → (((𝑁 𝐿) · 𝑏) · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))))) = ((𝑁 𝐿) · (𝑏 · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣)))))))
226190, 183, 186, 224, 225syl13anc 1369 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((𝑁 𝐿) · 𝑏) · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))))) = ((𝑁 𝐿) · (𝑏 · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣)))))))
22748, 29ringass 19390 . . . . . . . . 9 ((𝑆 ∈ Ring ∧ (𝑏𝐾 ∧ (𝑁 𝐿) ∈ 𝐾 ∧ ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣)))) ∈ 𝐾)) → ((𝑏 · (𝑁 𝐿)) · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))))) = (𝑏 · ((𝑁 𝐿) · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣)))))))
228190, 186, 183, 224, 227syl13anc 1369 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑏 · (𝑁 𝐿)) · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))))) = (𝑏 · ((𝑁 𝐿) · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣)))))))
229189, 226, 2283eqtr3d 2801 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑁 𝐿) · (𝑏 · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣)))))) = (𝑏 · ((𝑁 𝐿) · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣)))))))
23054adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝐴 ∈ (𝐾m 𝐼))
23141eleq2d 2837 . . . . . . . . . . . . 13 (𝜑 → (𝑏𝑅𝑏 ∈ (Base‘𝑈)))
232231biimpar 481 . . . . . . . . . . . 12 ((𝜑𝑏 ∈ (Base‘𝑈)) → 𝑏𝑅)
233232adantrl 715 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑏𝑅)
23447, 4, 10, 48, 49, 19, 164, 165, 166, 233, 230evlsscaval 39806 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((algSc‘(𝐼 mPoly 𝑈))‘𝑏) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘𝐴) = 𝑏))
23547, 4, 10, 49, 48, 33, 37, 3, 99, 6, 140, 164, 165, 166, 230, 174evlsbagval 39808 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))))‘𝐴) = ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))))))
23647, 4, 10, 48, 49, 164, 165, 166, 230, 234, 235, 127, 29evlsmulval 39811 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))))‘𝐴) = (𝑏 · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣)))))))
237236simprd 499 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))))‘𝐴) = (𝑏 · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))))))
238237oveq2d 7171 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑁 𝐿) · ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))))‘𝐴)) = ((𝑁 𝐿) · (𝑏 · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣)))))))
23947, 4, 10, 48, 49, 19, 164, 165, 166, 233, 167evlsscaval 39806 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((algSc‘(𝐼 mPoly 𝑈))‘𝑏) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = 𝑏))
240239simprd 499 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = 𝑏)
241 fconst6g 6557 . . . . . . . . . . . . . . . . 17 (𝐿𝑅 → (𝐼 × {𝐿}):𝐼𝑅)
24236, 241syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐼 × {𝐿}):𝐼𝑅)
243242ffnd 6503 . . . . . . . . . . . . . . 15 (𝜑 → (𝐼 × {𝐿}) Fn 𝐼)
244243adantr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝐼 × {𝐿}) Fn 𝐼)
24570ffnd 6503 . . . . . . . . . . . . . . 15 (𝜑𝐴 Fn 𝐼)
246245adantr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝐴 Fn 𝐼)
24736ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣𝐼) → 𝐿𝑅)
248 fvconst2g 6960 . . . . . . . . . . . . . . 15 ((𝐿𝑅𝑣𝐼) → ((𝐼 × {𝐿})‘𝑣) = 𝐿)
249247, 204, 248syl2anc 587 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣𝐼) → ((𝐼 × {𝐿})‘𝑣) = 𝐿)
250 eqidd 2759 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣𝐼) → (𝐴𝑣) = (𝐴𝑣))
251244, 246, 164, 164, 71, 249, 250ofval 7420 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣𝐼) → (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣) = (𝐿 · (𝐴𝑣)))
252251oveq2d 7171 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣𝐼) → ((𝑎𝑣) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣)) = ((𝑎𝑣) (𝐿 · (𝐴𝑣))))
253194ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣𝐼) → (mulGrp‘𝑆) ∈ CMnd)
25466ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣𝐼) → 𝐿𝐾)
25533, 29mgpplusg 19316 . . . . . . . . . . . . . 14 · = (+g‘(mulGrp‘𝑆))
256180, 37, 255mulgnn0di 19019 . . . . . . . . . . . . 13 (((mulGrp‘𝑆) ∈ CMnd ∧ ((𝑎𝑣) ∈ ℕ0𝐿𝐾 ∧ (𝐴𝑣) ∈ 𝐾)) → ((𝑎𝑣) (𝐿 · (𝐴𝑣))) = (((𝑎𝑣) 𝐿) · ((𝑎𝑣) (𝐴𝑣))))
257253, 202, 254, 205, 256syl13anc 1369 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣𝐼) → ((𝑎𝑣) (𝐿 · (𝐴𝑣))) = (((𝑎𝑣) 𝐿) · ((𝑎𝑣) (𝐴𝑣))))
258252, 257eqtrd 2793 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣𝐼) → ((𝑎𝑣) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣)) = (((𝑎𝑣) 𝐿) · ((𝑎𝑣) (𝐴𝑣))))
259258mpteq2dva 5130 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑣𝐼 ↦ ((𝑎𝑣) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣))) = (𝑣𝐼 ↦ (((𝑎𝑣) 𝐿) · ((𝑎𝑣) (𝐴𝑣)))))
260259oveq2d 7171 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣)))) = ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ (((𝑎𝑣) 𝐿) · ((𝑎𝑣) (𝐴𝑣))))))
261194adantr 484 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (mulGrp‘𝑆) ∈ CMnd)
2628adantr 484 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 𝐼𝑉)
263179ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑣𝐼) → (mulGrp‘𝑆) ∈ Mnd)
264200ffvelrnda 6847 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑣𝐼) → (𝑎𝑣) ∈ ℕ0)
26566ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑣𝐼) → 𝐿𝐾)
266180, 37mulgnn0cl 18316 . . . . . . . . . . . . 13 (((mulGrp‘𝑆) ∈ Mnd ∧ (𝑎𝑣) ∈ ℕ0𝐿𝐾) → ((𝑎𝑣) 𝐿) ∈ 𝐾)
267263, 264, 265, 266syl3anc 1368 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑣𝐼) → ((𝑎𝑣) 𝐿) ∈ 𝐾)
26870ffvelrnda 6847 . . . . . . . . . . . . . 14 ((𝜑𝑣𝐼) → (𝐴𝑣) ∈ 𝐾)
269268adantlr 714 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑣𝐼) → (𝐴𝑣) ∈ 𝐾)
270263, 264, 269, 206syl3anc 1368 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑣𝐼) → ((𝑎𝑣) (𝐴𝑣)) ∈ 𝐾)
271 eqidd 2759 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑣𝐼 ↦ ((𝑎𝑣) 𝐿)) = (𝑣𝐼 ↦ ((𝑎𝑣) 𝐿)))
272 eqidd 2759 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))) = (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))))
273262mptexd 6983 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑣𝐼 ↦ ((𝑎𝑣) 𝐿)) ∈ V)
274 fvexd 6677 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (1r𝑆) ∈ V)
275 funmpt 6377 . . . . . . . . . . . . . 14 Fun (𝑣𝐼 ↦ ((𝑎𝑣) 𝐿))
276275a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → Fun (𝑣𝐼 ↦ ((𝑎𝑣) 𝐿)))
277200feqmptd 6725 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 𝑎 = (𝑣𝐼 ↦ (𝑎𝑣)))
278277oveq1d 7170 . . . . . . . . . . . . . . . 16 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑎 supp 0) = ((𝑣𝐼 ↦ (𝑎𝑣)) supp 0))
279 ssidd 3917 . . . . . . . . . . . . . . . 16 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑎 supp 0) ⊆ (𝑎 supp 0))
280278, 279eqsstrrd 3933 . . . . . . . . . . . . . . 15 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((𝑣𝐼 ↦ (𝑎𝑣)) supp 0) ⊆ (𝑎 supp 0))
281218adantl 485 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑘𝐾) → (0 𝑘) = (1r𝑆))
282220a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 0 ∈ V)
283280, 281, 264, 265, 282suppssov1 7877 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((𝑣𝐼 ↦ ((𝑎𝑣) 𝐿)) supp (1r𝑆)) ⊆ (𝑎 supp 0))
284212, 283ssfid 8783 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((𝑣𝐼 ↦ ((𝑎𝑣) 𝐿)) supp (1r𝑆)) ∈ Fin)
285273, 274, 276, 284isfsuppd 39752 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑣𝐼 ↦ ((𝑎𝑣) 𝐿)) finSupp (1r𝑆))
286262mptexd 6983 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))) ∈ V)
287 funmpt 6377 . . . . . . . . . . . . . 14 Fun (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣)))
288287a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → Fun (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))))
289280, 281, 264, 269, 282suppssov1 7877 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))) supp (1r𝑆)) ⊆ (𝑎 supp 0))
290212, 289ssfid 8783 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))) supp (1r𝑆)) ∈ Fin)
291286, 274, 288, 290isfsuppd 39752 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))) finSupp (1r𝑆))
292180, 192, 255, 261, 262, 267, 270, 271, 272, 285, 291gsummptfsadd 19117 . . . . . . . . . . 11 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ (((𝑎𝑣) 𝐿) · ((𝑎𝑣) (𝐴𝑣))))) = (((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) 𝐿))) · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))))))
2936, 7, 180, 37, 8, 179, 66, 14mhphflem 39817 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) 𝐿))) = (𝑁 𝐿))
294293oveq1d 7170 . . . . . . . . . . 11 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) 𝐿))) · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))))) = ((𝑁 𝐿) · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))))))
295292, 294eqtrd 2793 . . . . . . . . . 10 ((𝜑𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ (((𝑎𝑣) 𝐿) · ((𝑎𝑣) (𝐴𝑣))))) = ((𝑁 𝐿) · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))))))
296295adantrr 716 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ (((𝑎𝑣) 𝐿) · ((𝑎𝑣) (𝐴𝑣))))) = ((𝑁 𝐿) · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))))))
297260, 296eqtrd 2793 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣)))) = ((𝑁 𝐿) · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣))))))
298240, 297oveq12d 7173 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘((𝐼 × {𝐿}) ∘f · 𝐴)) · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣))))) = (𝑏 · ((𝑁 𝐿) · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (𝐴𝑣)))))))
299229, 238, 2983eqtr4rd 2804 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘((𝐼 × {𝐿}) ∘f · 𝐴)) · ((mulGrp‘𝑆) Σg (𝑣𝐼 ↦ ((𝑎𝑣) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣))))) = ((𝑁 𝐿) · ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))))‘𝐴)))
300177, 299eqtrd 2793 . . . . 5 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))))‘𝐴)))
301 ovex 7188 . . . . . 6 (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))) ∈ V
302 fveq2 6662 . . . . . . . 8 (𝑓 = (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))) → (𝑄𝑓) = (𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈))))))
303302fveq1d 6664 . . . . . . 7 (𝑓 = (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))) → ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))))‘((𝐼 × {𝐿}) ∘f · 𝐴)))
304302fveq1d 6664 . . . . . . . 8 (𝑓 = (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))) → ((𝑄𝑓)‘𝐴) = ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))))‘𝐴))
305304oveq2d 7171 . . . . . . 7 (𝑓 = (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))) → ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴)) = ((𝑁 𝐿) · ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))))‘𝐴)))
306303, 305eqeq12d 2774 . . . . . 6 (𝑓 = (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))) → (((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴)) ↔ ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))))‘𝐴))))
307301, 306elab 3590 . . . . 5 ((((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))) ∈ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))} ↔ ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))))‘𝐴)))
308300, 307sylibr 237 . . . 4 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r𝑈), (0g𝑈)))) ∈ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))})
309163, 308eqeltrrd 2853 . . 3 ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑠 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑠 = 𝑎, 𝑏, (0g𝑈))) ∈ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))})
310 elin 3876 . . . . . 6 (𝑥 ∈ ((𝐻𝑁) ∩ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))}) ↔ (𝑥 ∈ (𝐻𝑁) ∧ 𝑥 ∈ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))}))
311 vex 3413 . . . . . . . 8 𝑥 ∈ V
312 fveq2 6662 . . . . . . . . . 10 (𝑓 = 𝑥 → (𝑄𝑓) = (𝑄𝑥))
313312fveq1d 6664 . . . . . . . . 9 (𝑓 = 𝑥 → ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)))
314312fveq1d 6664 . . . . . . . . . 10 (𝑓 = 𝑥 → ((𝑄𝑓)‘𝐴) = ((𝑄𝑥)‘𝐴))
315314oveq2d 7171 . . . . . . . . 9 (𝑓 = 𝑥 → ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴)))
316313, 315eqeq12d 2774 . . . . . . . 8 (𝑓 = 𝑥 → (((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴)) ↔ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))))
317311, 316elab 3590 . . . . . . 7 (𝑥 ∈ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))} ↔ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴)))
318317anbi2i 625 . . . . . 6 ((𝑥 ∈ (𝐻𝑁) ∧ 𝑥 ∈ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))}) ↔ (𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))))
319310, 318bitri 278 . . . . 5 (𝑥 ∈ ((𝐻𝑁) ∩ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))}) ↔ (𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))))
320 elin 3876 . . . . . 6 (𝑦 ∈ ((𝐻𝑁) ∩ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))}) ↔ (𝑦 ∈ (𝐻𝑁) ∧ 𝑦 ∈ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))}))
321 vex 3413 . . . . . . . 8 𝑦 ∈ V
322 fveq2 6662 . . . . . . . . . 10 (𝑓 = 𝑦 → (𝑄𝑓) = (𝑄𝑦))
323322fveq1d 6664 . . . . . . . . 9 (𝑓 = 𝑦 → ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)))
324322fveq1d 6664 . . . . . . . . . 10 (𝑓 = 𝑦 → ((𝑄𝑓)‘𝐴) = ((𝑄𝑦)‘𝐴))
325324oveq2d 7171 . . . . . . . . 9 (𝑓 = 𝑦 → ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴)))
326323, 325eqeq12d 2774 . . . . . . . 8 (𝑓 = 𝑦 → (((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴)) ↔ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))
327321, 326elab 3590 . . . . . . 7 (𝑦 ∈ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))} ↔ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴)))
328327anbi2i 625 . . . . . 6 ((𝑦 ∈ (𝐻𝑁) ∧ 𝑦 ∈ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))}) ↔ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))
329320, 328bitri 278 . . . . 5 (𝑦 ∈ ((𝐻𝑁) ∩ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))}) ↔ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))
330319, 329anbi12i 629 . . . 4 ((𝑥 ∈ ((𝐻𝑁) ∩ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))}) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))})) ↔ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴)))))
33160adantr 484 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → 𝑆 ∈ Ring)
332182adantr 484 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → (𝑁 𝐿) ∈ 𝐾)
333 eqid 2758 . . . . . . . . 9 (𝑆s (Base‘(𝑆s 𝐼))) = (𝑆s (Base‘(𝑆s 𝐼)))
334 eqid 2758 . . . . . . . . 9 (Base‘(𝑆s (Base‘(𝑆s 𝐼)))) = (Base‘(𝑆s (Base‘(𝑆s 𝐼))))
33550adantr 484 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → 𝑆 ∈ CRing)
336 fvexd 6677 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → (Base‘(𝑆s 𝐼)) ∈ V)
337 eqid 2758 . . . . . . . . . . . . . . 15 (𝑆s (𝐾m 𝐼)) = (𝑆s (𝐾m 𝐼))
33847, 4, 10, 337, 48evlsrhm 20856 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ ((𝐼 mPoly 𝑈) RingHom (𝑆s (𝐾m 𝐼))))
3398, 50, 9, 338syl3anc 1368 . . . . . . . . . . . . 13 (𝜑𝑄 ∈ ((𝐼 mPoly 𝑈) RingHom (𝑆s (𝐾m 𝐼))))
340 eqid 2758 . . . . . . . . . . . . . 14 (Base‘(𝑆s (𝐾m 𝐼))) = (Base‘(𝑆s (𝐾m 𝐼)))
34149, 340rhmf 19554 . . . . . . . . . . . . 13 (𝑄 ∈ ((𝐼 mPoly 𝑈) RingHom (𝑆s (𝐾m 𝐼))) → 𝑄:(Base‘(𝐼 mPoly 𝑈))⟶(Base‘(𝑆s (𝐾m 𝐼))))
342339, 341syl 17 . . . . . . . . . . . 12 (𝜑𝑄:(Base‘(𝐼 mPoly 𝑈))⟶(Base‘(𝑆s (𝐾m 𝐼))))
343342adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → 𝑄:(Base‘(𝐼 mPoly 𝑈))⟶(Base‘(𝑆s (𝐾m 𝐼))))
3448adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐻𝑁)) → 𝐼𝑉)
34512adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐻𝑁)) → 𝑈 ∈ Ring)
34614adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐻𝑁)) → 𝑁 ∈ ℕ0)
347 simpr 488 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐻𝑁)) → 𝑥 ∈ (𝐻𝑁))
3481, 4, 49, 344, 345, 346, 347mhpmpl 20892 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐻𝑁)) → 𝑥 ∈ (Base‘(𝐼 mPoly 𝑈)))
349348adantrr 716 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴)))) → 𝑥 ∈ (Base‘(𝐼 mPoly 𝑈)))
350349adantrr 716 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → 𝑥 ∈ (Base‘(𝐼 mPoly 𝑈)))
351343, 350ffvelrnd 6848 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → (𝑄𝑥) ∈ (Base‘(𝑆s (𝐾m 𝐼))))
352 eqid 2758 . . . . . . . . . . . . . . 15 (𝑆s 𝐼) = (𝑆s 𝐼)
353352, 48pwsbas 16823 . . . . . . . . . . . . . 14 ((𝑆 ∈ CRing ∧ 𝐼𝑉) → (𝐾m 𝐼) = (Base‘(𝑆s 𝐼)))
35450, 8, 353syl2anc 587 . . . . . . . . . . . . 13 (𝜑 → (𝐾m 𝐼) = (Base‘(𝑆s 𝐼)))
355354oveq2d 7171 . . . . . . . . . . . 12 (𝜑 → (𝑆s (𝐾m 𝐼)) = (𝑆s (Base‘(𝑆s 𝐼))))
356355fveq2d 6666 . . . . . . . . . . 11 (𝜑 → (Base‘(𝑆s (𝐾m 𝐼))) = (Base‘(𝑆s (Base‘(𝑆s 𝐼)))))
357356adantr 484 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → (Base‘(𝑆s (𝐾m 𝐼))) = (Base‘(𝑆s (Base‘(𝑆s 𝐼)))))
358351, 357eleqtrd 2854 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → (𝑄𝑥) ∈ (Base‘(𝑆s (Base‘(𝑆s 𝐼)))))
359333, 48, 334, 335, 336, 358pwselbas 16825 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → (𝑄𝑥):(Base‘(𝑆s 𝐼))⟶𝐾)
36054, 354eleqtrd 2854 . . . . . . . . 9 (𝜑𝐴 ∈ (Base‘(𝑆s 𝐼)))
361360adantr 484 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → 𝐴 ∈ (Base‘(𝑆s 𝐼)))
362359, 361ffvelrnd 6848 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → ((𝑄𝑥)‘𝐴) ∈ 𝐾)
3638adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐻𝑁)) → 𝐼𝑉)
36412adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐻𝑁)) → 𝑈 ∈ Ring)
36514adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐻𝑁)) → 𝑁 ∈ ℕ0)
366 simpr 488 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐻𝑁)) → 𝑦 ∈ (𝐻𝑁))
3671, 4, 49, 363, 364, 365, 366mhpmpl 20892 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐻𝑁)) → 𝑦 ∈ (Base‘(𝐼 mPoly 𝑈)))
368367adantrr 716 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴)))) → 𝑦 ∈ (Base‘(𝐼 mPoly 𝑈)))
369368adantrl 715 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → 𝑦 ∈ (Base‘(𝐼 mPoly 𝑈)))
370343, 369ffvelrnd 6848 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → (𝑄𝑦) ∈ (Base‘(𝑆s (𝐾m 𝐼))))
371370, 357eleqtrd 2854 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → (𝑄𝑦) ∈ (Base‘(𝑆s (Base‘(𝑆s 𝐼)))))
372333, 48, 334, 335, 336, 371pwselbas 16825 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → (𝑄𝑦):(Base‘(𝑆s 𝐼))⟶𝐾)
373372, 361ffvelrnd 6848 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → ((𝑄𝑦)‘𝐴) ∈ 𝐾)
374 eqid 2758 . . . . . . . 8 (+g𝑆) = (+g𝑆)
37548, 374, 29ringdi 19392 . . . . . . 7 ((𝑆 ∈ Ring ∧ ((𝑁 𝐿) ∈ 𝐾 ∧ ((𝑄𝑥)‘𝐴) ∈ 𝐾 ∧ ((𝑄𝑦)‘𝐴) ∈ 𝐾)) → ((𝑁 𝐿) · (((𝑄𝑥)‘𝐴)(+g𝑆)((𝑄𝑦)‘𝐴))) = (((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))(+g𝑆)((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))
376331, 332, 362, 373, 375syl13anc 1369 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → ((𝑁 𝐿) · (((𝑄𝑥)‘𝐴)(+g𝑆)((𝑄𝑦)‘𝐴))) = (((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))(+g𝑆)((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))
3778adantr 484 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → 𝐼𝑉)
3789adantr 484 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → 𝑅 ∈ (SubRing‘𝑆))
37954adantr 484 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → 𝐴 ∈ (𝐾m 𝐼))
380 eqidd 2759 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) → ((𝑄𝑥)‘𝐴) = ((𝑄𝑥)‘𝐴))
381348, 380anim12dan 621 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴)))) → (𝑥 ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄𝑥)‘𝐴) = ((𝑄𝑥)‘𝐴)))
382381adantrr 716 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → (𝑥 ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄𝑥)‘𝐴) = ((𝑄𝑥)‘𝐴)))
383 eqidd 2759 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))) → ((𝑄𝑦)‘𝐴) = ((𝑄𝑦)‘𝐴))
384367, 383anim12dan 621 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴)))) → (𝑦 ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄𝑦)‘𝐴) = ((𝑄𝑦)‘𝐴)))
385384adantrl 715 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → (𝑦 ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄𝑦)‘𝐴) = ((𝑄𝑦)‘𝐴)))
38647, 4, 10, 48, 49, 377, 335, 378, 379, 382, 385, 5, 374evlsaddval 39810 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → ((𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘𝐴) = (((𝑄𝑥)‘𝐴)(+g𝑆)((𝑄𝑦)‘𝐴))))
387386simprd 499 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘𝐴) = (((𝑄𝑥)‘𝐴)(+g𝑆)((𝑄𝑦)‘𝐴)))
388387oveq2d 7171 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → ((𝑁 𝐿) · ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘𝐴)) = ((𝑁 𝐿) · (((𝑄𝑥)‘𝐴)(+g𝑆)((𝑄𝑦)‘𝐴))))
38958a1i 11 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → 𝐾 ∈ V)
39063adantlr 714 . . . . . . . . . 10 (((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) ∧ (𝑗𝐾𝑘𝐾)) → (𝑗 · 𝑘) ∈ 𝐾)
39168adantr 484 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → (𝐼 × {𝐿}):𝐼𝐾)
39270adantr 484 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → 𝐴:𝐼𝐾)
393390, 391, 392, 377, 377, 71off 7427 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → ((𝐼 × {𝐿}) ∘f · 𝐴):𝐼𝐾)
394389, 377, 393elmapdd 39751 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → ((𝐼 × {𝐿}) ∘f · 𝐴) ∈ (𝐾m 𝐼))
395 simpr 488 . . . . . . . . . 10 ((𝜑 ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) → ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴)))
396348, 395anim12dan 621 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴)))) → (𝑥 ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))))
397396adantrr 716 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → (𝑥 ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))))
398 simpr 488 . . . . . . . . . 10 ((𝜑 ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))) → ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴)))
399367, 398anim12dan 621 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴)))) → (𝑦 ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))
400399adantrl 715 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → (𝑦 ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))
40147, 4, 10, 48, 49, 377, 335, 378, 394, 397, 400, 5, 374evlsaddval 39810 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → ((𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = (((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))(+g𝑆)((𝑁 𝐿) · ((𝑄𝑦)‘𝐴)))))
402401simprd 499 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = (((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))(+g𝑆)((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))
403376, 388, 4023eqtr4rd 2804 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘𝐴)))
404 ovex 7188 . . . . . 6 (𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) ∈ V
405 fveq2 6662 . . . . . . . 8 (𝑓 = (𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) → (𝑄𝑓) = (𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦)))
406405fveq1d 6664 . . . . . . 7 (𝑓 = (𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) → ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘((𝐼 × {𝐿}) ∘f · 𝐴)))
407405fveq1d 6664 . . . . . . . 8 (𝑓 = (𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) → ((𝑄𝑓)‘𝐴) = ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘𝐴))
408407oveq2d 7171 . . . . . . 7 (𝑓 = (𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) → ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴)) = ((𝑁 𝐿) · ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘𝐴)))
409406, 408eqeq12d 2774 . . . . . 6 (𝑓 = (𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) → (((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴)) ↔ ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘𝐴))))
410404, 409elab 3590 . . . . 5 ((𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) ∈ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))} ↔ ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘𝐴)))
411403, 410sylibr 237 . . . 4 ((𝜑 ∧ ((𝑥 ∈ (𝐻𝑁) ∧ ((𝑄𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻𝑁) ∧ ((𝑄𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑦)‘𝐴))))) → (𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) ∈ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))})
412330, 411sylan2b 596 . . 3 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))}) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))}))) → (𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) ∈ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))})
4131, 2, 3, 4, 5, 6, 7, 8, 13, 14, 15, 85, 309, 412mhpind 39816 . 2 (𝜑𝑋 ∈ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))})
414 fveq2 6662 . . . . . 6 (𝑓 = 𝑋 → (𝑄𝑓) = (𝑄𝑋))
415414fveq1d 6664 . . . . 5 (𝑓 = 𝑋 → ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑄𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)))
416414fveq1d 6664 . . . . . 6 (𝑓 = 𝑋 → ((𝑄𝑓)‘𝐴) = ((𝑄𝑋)‘𝐴))
417416oveq2d 7171 . . . . 5 (𝑓 = 𝑋 → ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴)) = ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴)))
418415, 417eqeq12d 2774 . . . 4 (𝑓 = 𝑋 → (((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴)) ↔ ((𝑄𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴))))
419418elabg 3589 . . 3 (𝑋 ∈ (𝐻𝑁) → (𝑋 ∈ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))} ↔ ((𝑄𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴))))
42015, 419syl 17 . 2 (𝜑 → (𝑋 ∈ {𝑓 ∣ ((𝑄𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑓)‘𝐴))} ↔ ((𝑄𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴))))
421413, 420mpbid 235 1 (𝜑 → ((𝑄𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  {cab 2735  {crab 3074  Vcvv 3409  cdif 3857  cin 3859  wss 3860  ifcif 4423  {csn 4525   class class class wbr 5035  cmpt 5115   × cxp 5525  ccnv 5526  cima 5530  Fun wfun 6333   Fn wfn 6334  wf 6335  cfv 6339  (class class class)co 7155  f cof 7408   supp csupp 7840  m cmap 8421  Fincfn 8532   finSupp cfsupp 8871  0cc0 10580  cn 11679  0cn0 11939  Basecbs 16546  s cress 16547  +gcplusg 16628  .rcmulr 16629  Scalarcsca 16631   ·𝑠 cvsca 16632  0gc0g 16776   Σg cgsu 16777  s cpws 16783  Mndcmnd 17982  SubMndcsubmnd 18026  .gcmg 18296  CMndccmn 18978  mulGrpcmgp 19312  1rcur 19324  Ringcrg 19370  CRingccrg 19371   RingHom crh 19540  SubRingcsubrg 19604  LModclmod 19707  fldccnfld 20171  AssAlgcasa 20620  algSccascl 20622   mPwSer cmps 20671   mPoly cmpl 20673   evalSub ces 20838   mHomP cmhp 20877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657  ax-addf 10659  ax-mulf 10660
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-iin 4889  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-se 5487  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7410  df-ofr 7411  df-om 7585  df-1st 7698  df-2nd 7699  df-supp 7841  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-oadd 8121  df-er 8304  df-map 8423  df-pm 8424  df-ixp 8485  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-fsupp 8872  df-sup 8944  df-oi 9012  df-dju 9368  df-card 9406  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-nn 11680  df-2 11742  df-3 11743  df-4 11744  df-5 11745  df-6 11746  df-7 11747  df-8 11748  df-9 11749  df-n0 11940  df-z 12026  df-dec 12143  df-uz 12288  df-fz 12945  df-fzo 13088  df-seq 13424  df-hash 13746  df-struct 16548  df-ndx 16549  df-slot 16550  df-base 16552  df-sets 16553  df-ress 16554  df-plusg 16641  df-mulr 16642  df-starv 16643  df-sca 16644  df-vsca 16645  df-ip 16646  df-tset 16647  df-ple 16648  df-ds 16650  df-unif 16651  df-hom 16652  df-cco 16653  df-0g 16778  df-gsum 16779  df-prds 16784  df-pws 16786  df-mre 16920  df-mrc 16921  df-acs 16923  df-mgm 17923  df-sgrp 17972  df-mnd 17983  df-mhm 18027  df-submnd 18028  df-grp 18177  df-minusg 18178  df-sbg 18179  df-mulg 18297  df-subg 18348  df-ghm 18428  df-cntz 18519  df-cmn 18980  df-abl 18981  df-mgp 19313  df-ur 19325  df-srg 19329  df-ring 19372  df-cring 19373  df-rnghom 19543  df-subrg 19606  df-lmod 19709  df-lss 19777  df-lsp 19817  df-cnfld 20172  df-assa 20623  df-asp 20624  df-ascl 20625  df-psr 20676  df-mvr 20677  df-mpl 20678  df-evls 20840  df-mhp 20881
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator