Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mhphf Structured version   Visualization version   GIF version

Theorem mhphf 41830
Description: A homogeneous polynomial defines a homogeneous function. Equivalently, an algebraic form is a homogeneous function. (An algebraic form is the function corresponding to a homogeneous polynomial, which in this case is the (π‘„β€˜π‘‹) which corresponds to 𝑋). (Contributed by SN, 28-Jul-2024.) (Proof shortened by SN, 8-Mar-2025.)
Hypotheses
Ref Expression
mhphf.q 𝑄 = ((𝐼 evalSub 𝑆)β€˜π‘…)
mhphf.h 𝐻 = (𝐼 mHomP π‘ˆ)
mhphf.u π‘ˆ = (𝑆 β†Ύs 𝑅)
mhphf.k 𝐾 = (Baseβ€˜π‘†)
mhphf.m Β· = (.rβ€˜π‘†)
mhphf.e ↑ = (.gβ€˜(mulGrpβ€˜π‘†))
mhphf.i (πœ‘ β†’ 𝐼 ∈ 𝑉)
mhphf.s (πœ‘ β†’ 𝑆 ∈ CRing)
mhphf.r (πœ‘ β†’ 𝑅 ∈ (SubRingβ€˜π‘†))
mhphf.l (πœ‘ β†’ 𝐿 ∈ 𝑅)
mhphf.n (πœ‘ β†’ 𝑁 ∈ β„•0)
mhphf.x (πœ‘ β†’ 𝑋 ∈ (π»β€˜π‘))
mhphf.a (πœ‘ β†’ 𝐴 ∈ (𝐾 ↑m 𝐼))
Assertion
Ref Expression
mhphf (πœ‘ β†’ ((π‘„β€˜π‘‹)β€˜((𝐼 Γ— {𝐿}) ∘f Β· 𝐴)) = ((𝑁 ↑ 𝐿) Β· ((π‘„β€˜π‘‹)β€˜π΄)))

Proof of Theorem mhphf
Dummy variables 𝑏 𝑖 π‘˜ 𝑗 𝑔 β„Ž are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhphf.i . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝐼 ∈ 𝑉)
21adantr 480 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) β†’ 𝐼 ∈ 𝑉)
3 mhphf.l . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝐿 ∈ 𝑅)
43adantr 480 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) β†’ 𝐿 ∈ 𝑅)
5 mhphf.a . . . . . . . . . . . . . . . 16 (πœ‘ β†’ 𝐴 ∈ (𝐾 ↑m 𝐼))
6 elmapi 8868 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (𝐾 ↑m 𝐼) β†’ 𝐴:𝐼⟢𝐾)
75, 6syl 17 . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝐴:𝐼⟢𝐾)
87ffnd 6723 . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝐴 Fn 𝐼)
98adantr 480 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) β†’ 𝐴 Fn 𝐼)
10 eqidd 2729 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) ∧ 𝑖 ∈ 𝐼) β†’ (π΄β€˜π‘–) = (π΄β€˜π‘–))
112, 4, 9, 10ofc1 7711 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) ∧ 𝑖 ∈ 𝐼) β†’ (((𝐼 Γ— {𝐿}) ∘f Β· 𝐴)β€˜π‘–) = (𝐿 Β· (π΄β€˜π‘–)))
1211oveq2d 7436 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) ∧ 𝑖 ∈ 𝐼) β†’ ((π‘β€˜π‘–) ↑ (((𝐼 Γ— {𝐿}) ∘f Β· 𝐴)β€˜π‘–)) = ((π‘β€˜π‘–) ↑ (𝐿 Β· (π΄β€˜π‘–))))
13 mhphf.s . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝑆 ∈ CRing)
14 eqid 2728 . . . . . . . . . . . . . . 15 (mulGrpβ€˜π‘†) = (mulGrpβ€˜π‘†)
1514crngmgp 20181 . . . . . . . . . . . . . 14 (𝑆 ∈ CRing β†’ (mulGrpβ€˜π‘†) ∈ CMnd)
1613, 15syl 17 . . . . . . . . . . . . 13 (πœ‘ β†’ (mulGrpβ€˜π‘†) ∈ CMnd)
1716ad2antrr 725 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) ∧ 𝑖 ∈ 𝐼) β†’ (mulGrpβ€˜π‘†) ∈ CMnd)
18 elrabi 3676 . . . . . . . . . . . . . . 15 (𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁} β†’ 𝑏 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin})
19 eqid 2728 . . . . . . . . . . . . . . . 16 {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} = {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}
2019psrbagf 21851 . . . . . . . . . . . . . . 15 (𝑏 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} β†’ 𝑏:πΌβŸΆβ„•0)
2118, 20syl 17 . . . . . . . . . . . . . 14 (𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁} β†’ 𝑏:πΌβŸΆβ„•0)
2221adantl 481 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) β†’ 𝑏:πΌβŸΆβ„•0)
2322ffvelcdmda 7094 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) ∧ 𝑖 ∈ 𝐼) β†’ (π‘β€˜π‘–) ∈ β„•0)
24 mhphf.r . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝑅 ∈ (SubRingβ€˜π‘†))
25 mhphf.k . . . . . . . . . . . . . . . 16 𝐾 = (Baseβ€˜π‘†)
2625subrgss 20511 . . . . . . . . . . . . . . 15 (𝑅 ∈ (SubRingβ€˜π‘†) β†’ 𝑅 βŠ† 𝐾)
2724, 26syl 17 . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝑅 βŠ† 𝐾)
2827, 3sseldd 3981 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝐿 ∈ 𝐾)
2928ad2antrr 725 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) ∧ 𝑖 ∈ 𝐼) β†’ 𝐿 ∈ 𝐾)
307adantr 480 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) β†’ 𝐴:𝐼⟢𝐾)
3130ffvelcdmda 7094 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) ∧ 𝑖 ∈ 𝐼) β†’ (π΄β€˜π‘–) ∈ 𝐾)
3214, 25mgpbas 20080 . . . . . . . . . . . . 13 𝐾 = (Baseβ€˜(mulGrpβ€˜π‘†))
33 mhphf.e . . . . . . . . . . . . 13 ↑ = (.gβ€˜(mulGrpβ€˜π‘†))
34 mhphf.m . . . . . . . . . . . . . 14 Β· = (.rβ€˜π‘†)
3514, 34mgpplusg 20078 . . . . . . . . . . . . 13 Β· = (+gβ€˜(mulGrpβ€˜π‘†))
3632, 33, 35mulgnn0di 19780 . . . . . . . . . . . 12 (((mulGrpβ€˜π‘†) ∈ CMnd ∧ ((π‘β€˜π‘–) ∈ β„•0 ∧ 𝐿 ∈ 𝐾 ∧ (π΄β€˜π‘–) ∈ 𝐾)) β†’ ((π‘β€˜π‘–) ↑ (𝐿 Β· (π΄β€˜π‘–))) = (((π‘β€˜π‘–) ↑ 𝐿) Β· ((π‘β€˜π‘–) ↑ (π΄β€˜π‘–))))
3717, 23, 29, 31, 36syl13anc 1370 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) ∧ 𝑖 ∈ 𝐼) β†’ ((π‘β€˜π‘–) ↑ (𝐿 Β· (π΄β€˜π‘–))) = (((π‘β€˜π‘–) ↑ 𝐿) Β· ((π‘β€˜π‘–) ↑ (π΄β€˜π‘–))))
3812, 37eqtrd 2768 . . . . . . . . . 10 (((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) ∧ 𝑖 ∈ 𝐼) β†’ ((π‘β€˜π‘–) ↑ (((𝐼 Γ— {𝐿}) ∘f Β· 𝐴)β€˜π‘–)) = (((π‘β€˜π‘–) ↑ 𝐿) Β· ((π‘β€˜π‘–) ↑ (π΄β€˜π‘–))))
3938mpteq2dva 5248 . . . . . . . . 9 ((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) β†’ (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (((𝐼 Γ— {𝐿}) ∘f Β· 𝐴)β€˜π‘–))) = (𝑖 ∈ 𝐼 ↦ (((π‘β€˜π‘–) ↑ 𝐿) Β· ((π‘β€˜π‘–) ↑ (π΄β€˜π‘–)))))
4039oveq2d 7436 . . . . . . . 8 ((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) β†’ ((mulGrpβ€˜π‘†) Ξ£g (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (((𝐼 Γ— {𝐿}) ∘f Β· 𝐴)β€˜π‘–)))) = ((mulGrpβ€˜π‘†) Ξ£g (𝑖 ∈ 𝐼 ↦ (((π‘β€˜π‘–) ↑ 𝐿) Β· ((π‘β€˜π‘–) ↑ (π΄β€˜π‘–))))))
41 eqid 2728 . . . . . . . . . 10 (1rβ€˜π‘†) = (1rβ€˜π‘†)
4214, 41ringidval 20123 . . . . . . . . 9 (1rβ€˜π‘†) = (0gβ€˜(mulGrpβ€˜π‘†))
4313adantr 480 . . . . . . . . . 10 ((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) β†’ 𝑆 ∈ CRing)
4443, 15syl 17 . . . . . . . . 9 ((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) β†’ (mulGrpβ€˜π‘†) ∈ CMnd)
4513crngringd 20186 . . . . . . . . . . . 12 (πœ‘ β†’ 𝑆 ∈ Ring)
4614ringmgp 20179 . . . . . . . . . . . 12 (𝑆 ∈ Ring β†’ (mulGrpβ€˜π‘†) ∈ Mnd)
4745, 46syl 17 . . . . . . . . . . 11 (πœ‘ β†’ (mulGrpβ€˜π‘†) ∈ Mnd)
4847ad2antrr 725 . . . . . . . . . 10 (((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) ∧ 𝑖 ∈ 𝐼) β†’ (mulGrpβ€˜π‘†) ∈ Mnd)
4932, 33, 48, 23, 29mulgnn0cld 19050 . . . . . . . . 9 (((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) ∧ 𝑖 ∈ 𝐼) β†’ ((π‘β€˜π‘–) ↑ 𝐿) ∈ 𝐾)
5032, 33, 48, 23, 31mulgnn0cld 19050 . . . . . . . . 9 (((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) ∧ 𝑖 ∈ 𝐼) β†’ ((π‘β€˜π‘–) ↑ (π΄β€˜π‘–)) ∈ 𝐾)
51 eqidd 2729 . . . . . . . . 9 ((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) β†’ (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ 𝐿)) = (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ 𝐿)))
52 eqidd 2729 . . . . . . . . 9 ((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) β†’ (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (π΄β€˜π‘–))) = (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (π΄β€˜π‘–))))
531mptexd 7236 . . . . . . . . . . 11 (πœ‘ β†’ (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ 𝐿)) ∈ V)
5453adantr 480 . . . . . . . . . 10 ((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) β†’ (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ 𝐿)) ∈ V)
55 fvexd 6912 . . . . . . . . . 10 ((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) β†’ (1rβ€˜π‘†) ∈ V)
56 funmpt 6591 . . . . . . . . . . 11 Fun (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ 𝐿))
5756a1i 11 . . . . . . . . . 10 ((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) β†’ Fun (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ 𝐿)))
5819psrbagfsupp 21853 . . . . . . . . . . . 12 (𝑏 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} β†’ 𝑏 finSupp 0)
5918, 58syl 17 . . . . . . . . . . 11 (𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁} β†’ 𝑏 finSupp 0)
6059adantl 481 . . . . . . . . . 10 ((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) β†’ 𝑏 finSupp 0)
6122feqmptd 6967 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) β†’ 𝑏 = (𝑖 ∈ 𝐼 ↦ (π‘β€˜π‘–)))
6261oveq1d 7435 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) β†’ (𝑏 supp 0) = ((𝑖 ∈ 𝐼 ↦ (π‘β€˜π‘–)) supp 0))
6362eqimsscd 4037 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) β†’ ((𝑖 ∈ 𝐼 ↦ (π‘β€˜π‘–)) supp 0) βŠ† (𝑏 supp 0))
6432, 42, 33mulg0 19030 . . . . . . . . . . . 12 (π‘˜ ∈ 𝐾 β†’ (0 ↑ π‘˜) = (1rβ€˜π‘†))
6564adantl 481 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) ∧ π‘˜ ∈ 𝐾) β†’ (0 ↑ π‘˜) = (1rβ€˜π‘†))
66 0zd 12601 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) β†’ 0 ∈ β„€)
6763, 65, 23, 29, 66suppssov1 8203 . . . . . . . . . 10 ((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) β†’ ((𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ 𝐿)) supp (1rβ€˜π‘†)) βŠ† (𝑏 supp 0))
6854, 55, 57, 60, 67fsuppsssuppgd 9406 . . . . . . . . 9 ((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) β†’ (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ 𝐿)) finSupp (1rβ€˜π‘†))
691mptexd 7236 . . . . . . . . . . 11 (πœ‘ β†’ (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (π΄β€˜π‘–))) ∈ V)
7069adantr 480 . . . . . . . . . 10 ((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) β†’ (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (π΄β€˜π‘–))) ∈ V)
71 funmpt 6591 . . . . . . . . . . 11 Fun (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (π΄β€˜π‘–)))
7271a1i 11 . . . . . . . . . 10 ((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) β†’ Fun (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (π΄β€˜π‘–))))
7363, 65, 23, 31, 66suppssov1 8203 . . . . . . . . . 10 ((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) β†’ ((𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (π΄β€˜π‘–))) supp (1rβ€˜π‘†)) βŠ† (𝑏 supp 0))
7470, 55, 72, 60, 73fsuppsssuppgd 9406 . . . . . . . . 9 ((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) β†’ (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (π΄β€˜π‘–))) finSupp (1rβ€˜π‘†))
7532, 42, 35, 44, 2, 49, 50, 51, 52, 68, 74gsummptfsadd 19879 . . . . . . . 8 ((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) β†’ ((mulGrpβ€˜π‘†) Ξ£g (𝑖 ∈ 𝐼 ↦ (((π‘β€˜π‘–) ↑ 𝐿) Β· ((π‘β€˜π‘–) ↑ (π΄β€˜π‘–))))) = (((mulGrpβ€˜π‘†) Ξ£g (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ 𝐿))) Β· ((mulGrpβ€˜π‘†) Ξ£g (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (π΄β€˜π‘–))))))
76 eqid 2728 . . . . . . . . . 10 {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁} = {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}
77 mhphf.n . . . . . . . . . 10 (πœ‘ β†’ 𝑁 ∈ β„•0)
7819, 76, 32, 33, 1, 47, 28, 77mhphflem 41829 . . . . . . . . 9 ((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) β†’ ((mulGrpβ€˜π‘†) Ξ£g (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ 𝐿))) = (𝑁 ↑ 𝐿))
7978oveq1d 7435 . . . . . . . 8 ((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) β†’ (((mulGrpβ€˜π‘†) Ξ£g (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ 𝐿))) Β· ((mulGrpβ€˜π‘†) Ξ£g (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (π΄β€˜π‘–))))) = ((𝑁 ↑ 𝐿) Β· ((mulGrpβ€˜π‘†) Ξ£g (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (π΄β€˜π‘–))))))
8040, 75, 793eqtrd 2772 . . . . . . 7 ((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) β†’ ((mulGrpβ€˜π‘†) Ξ£g (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (((𝐼 Γ— {𝐿}) ∘f Β· 𝐴)β€˜π‘–)))) = ((𝑁 ↑ 𝐿) Β· ((mulGrpβ€˜π‘†) Ξ£g (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (π΄β€˜π‘–))))))
8180oveq2d 7436 . . . . . 6 ((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) β†’ ((π‘‹β€˜π‘) Β· ((mulGrpβ€˜π‘†) Ξ£g (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (((𝐼 Γ— {𝐿}) ∘f Β· 𝐴)β€˜π‘–))))) = ((π‘‹β€˜π‘) Β· ((𝑁 ↑ 𝐿) Β· ((mulGrpβ€˜π‘†) Ξ£g (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (π΄β€˜π‘–)))))))
82 eqid 2728 . . . . . . . . . . 11 (𝐼 mPoly π‘ˆ) = (𝐼 mPoly π‘ˆ)
83 eqid 2728 . . . . . . . . . . 11 (Baseβ€˜π‘ˆ) = (Baseβ€˜π‘ˆ)
84 eqid 2728 . . . . . . . . . . 11 (Baseβ€˜(𝐼 mPoly π‘ˆ)) = (Baseβ€˜(𝐼 mPoly π‘ˆ))
85 mhphf.h . . . . . . . . . . . 12 𝐻 = (𝐼 mHomP π‘ˆ)
86 mhphf.u . . . . . . . . . . . . . 14 π‘ˆ = (𝑆 β†Ύs 𝑅)
8786ovexi 7454 . . . . . . . . . . . . 13 π‘ˆ ∈ V
8887a1i 11 . . . . . . . . . . . 12 (πœ‘ β†’ π‘ˆ ∈ V)
89 mhphf.x . . . . . . . . . . . 12 (πœ‘ β†’ 𝑋 ∈ (π»β€˜π‘))
9085, 82, 84, 1, 88, 77, 89mhpmpl 22068 . . . . . . . . . . 11 (πœ‘ β†’ 𝑋 ∈ (Baseβ€˜(𝐼 mPoly π‘ˆ)))
9182, 83, 84, 19, 90mplelf 21940 . . . . . . . . . 10 (πœ‘ β†’ 𝑋:{β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}⟢(Baseβ€˜π‘ˆ))
9286subrgbas 20520 . . . . . . . . . . . 12 (𝑅 ∈ (SubRingβ€˜π‘†) β†’ 𝑅 = (Baseβ€˜π‘ˆ))
9392, 26eqsstrrd 4019 . . . . . . . . . . 11 (𝑅 ∈ (SubRingβ€˜π‘†) β†’ (Baseβ€˜π‘ˆ) βŠ† 𝐾)
9424, 93syl 17 . . . . . . . . . 10 (πœ‘ β†’ (Baseβ€˜π‘ˆ) βŠ† 𝐾)
9591, 94fssd 6740 . . . . . . . . 9 (πœ‘ β†’ 𝑋:{β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}⟢𝐾)
9695ffvelcdmda 7094 . . . . . . . 8 ((πœ‘ ∧ 𝑏 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}) β†’ (π‘‹β€˜π‘) ∈ 𝐾)
9718, 96sylan2 592 . . . . . . 7 ((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) β†’ (π‘‹β€˜π‘) ∈ 𝐾)
9832, 33, 47, 77, 28mulgnn0cld 19050 . . . . . . . 8 (πœ‘ β†’ (𝑁 ↑ 𝐿) ∈ 𝐾)
9998adantr 480 . . . . . . 7 ((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) β†’ (𝑁 ↑ 𝐿) ∈ 𝐾)
1001adantr 480 . . . . . . . . 9 ((πœ‘ ∧ 𝑏 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}) β†’ 𝐼 ∈ 𝑉)
10113adantr 480 . . . . . . . . 9 ((πœ‘ ∧ 𝑏 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}) β†’ 𝑆 ∈ CRing)
1025adantr 480 . . . . . . . . 9 ((πœ‘ ∧ 𝑏 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}) β†’ 𝐴 ∈ (𝐾 ↑m 𝐼))
103 simpr 484 . . . . . . . . 9 ((πœ‘ ∧ 𝑏 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}) β†’ 𝑏 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin})
10419, 25, 14, 33, 100, 101, 102, 103evlsvvvallem 41794 . . . . . . . 8 ((πœ‘ ∧ 𝑏 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}) β†’ ((mulGrpβ€˜π‘†) Ξ£g (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (π΄β€˜π‘–)))) ∈ 𝐾)
10518, 104sylan2 592 . . . . . . 7 ((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) β†’ ((mulGrpβ€˜π‘†) Ξ£g (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (π΄β€˜π‘–)))) ∈ 𝐾)
10625, 34, 43, 97, 99, 105crng12d 20198 . . . . . 6 ((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) β†’ ((π‘‹β€˜π‘) Β· ((𝑁 ↑ 𝐿) Β· ((mulGrpβ€˜π‘†) Ξ£g (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (π΄β€˜π‘–)))))) = ((𝑁 ↑ 𝐿) Β· ((π‘‹β€˜π‘) Β· ((mulGrpβ€˜π‘†) Ξ£g (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (π΄β€˜π‘–)))))))
10781, 106eqtrd 2768 . . . . 5 ((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) β†’ ((π‘‹β€˜π‘) Β· ((mulGrpβ€˜π‘†) Ξ£g (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (((𝐼 Γ— {𝐿}) ∘f Β· 𝐴)β€˜π‘–))))) = ((𝑁 ↑ 𝐿) Β· ((π‘‹β€˜π‘) Β· ((mulGrpβ€˜π‘†) Ξ£g (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (π΄β€˜π‘–)))))))
108107mpteq2dva 5248 . . . 4 (πœ‘ β†’ (𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁} ↦ ((π‘‹β€˜π‘) Β· ((mulGrpβ€˜π‘†) Ξ£g (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (((𝐼 Γ— {𝐿}) ∘f Β· 𝐴)β€˜π‘–)))))) = (𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁} ↦ ((𝑁 ↑ 𝐿) Β· ((π‘‹β€˜π‘) Β· ((mulGrpβ€˜π‘†) Ξ£g (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (π΄β€˜π‘–))))))))
109108oveq2d 7436 . . 3 (πœ‘ β†’ (𝑆 Ξ£g (𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁} ↦ ((π‘‹β€˜π‘) Β· ((mulGrpβ€˜π‘†) Ξ£g (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (((𝐼 Γ— {𝐿}) ∘f Β· 𝐴)β€˜π‘–))))))) = (𝑆 Ξ£g (𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁} ↦ ((𝑁 ↑ 𝐿) Β· ((π‘‹β€˜π‘) Β· ((mulGrpβ€˜π‘†) Ξ£g (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (π΄β€˜π‘–)))))))))
110 eqid 2728 . . . 4 (0gβ€˜π‘†) = (0gβ€˜π‘†)
111 ovex 7453 . . . . . . 7 (β„•0 ↑m 𝐼) ∈ V
112111rabex 5334 . . . . . 6 {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∈ V
113112rabex 5334 . . . . 5 {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁} ∈ V
114113a1i 11 . . . 4 (πœ‘ β†’ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁} ∈ V)
11545adantr 480 . . . . . 6 ((πœ‘ ∧ 𝑏 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}) β†’ 𝑆 ∈ Ring)
11625, 34, 115, 96, 104ringcld 20199 . . . . 5 ((πœ‘ ∧ 𝑏 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}) β†’ ((π‘‹β€˜π‘) Β· ((mulGrpβ€˜π‘†) Ξ£g (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (π΄β€˜π‘–))))) ∈ 𝐾)
11718, 116sylan2 592 . . . 4 ((πœ‘ ∧ 𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁}) β†’ ((π‘‹β€˜π‘) Β· ((mulGrpβ€˜π‘†) Ξ£g (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (π΄β€˜π‘–))))) ∈ 𝐾)
118 ssrab2 4075 . . . . . 6 {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁} βŠ† {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}
119 mptss 6046 . . . . . 6 ({𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁} βŠ† {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} β†’ (𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁} ↦ ((π‘‹β€˜π‘) Β· ((mulGrpβ€˜π‘†) Ξ£g (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (π΄β€˜π‘–)))))) βŠ† (𝑏 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ↦ ((π‘‹β€˜π‘) Β· ((mulGrpβ€˜π‘†) Ξ£g (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (π΄β€˜π‘–)))))))
120118, 119mp1i 13 . . . . 5 (πœ‘ β†’ (𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁} ↦ ((π‘‹β€˜π‘) Β· ((mulGrpβ€˜π‘†) Ξ£g (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (π΄β€˜π‘–)))))) βŠ† (𝑏 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ↦ ((π‘‹β€˜π‘) Β· ((mulGrpβ€˜π‘†) Ξ£g (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (π΄β€˜π‘–)))))))
12119, 82, 86, 84, 25, 14, 33, 34, 1, 13, 24, 90, 5evlsvvvallem2 41795 . . . . 5 (πœ‘ β†’ (𝑏 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ↦ ((π‘‹β€˜π‘) Β· ((mulGrpβ€˜π‘†) Ξ£g (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (π΄β€˜π‘–)))))) finSupp (0gβ€˜π‘†))
122120, 121fsuppss 9407 . . . 4 (πœ‘ β†’ (𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁} ↦ ((π‘‹β€˜π‘) Β· ((mulGrpβ€˜π‘†) Ξ£g (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (π΄β€˜π‘–)))))) finSupp (0gβ€˜π‘†))
12325, 110, 34, 45, 114, 98, 117, 122gsummulc2 20253 . . 3 (πœ‘ β†’ (𝑆 Ξ£g (𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁} ↦ ((𝑁 ↑ 𝐿) Β· ((π‘‹β€˜π‘) Β· ((mulGrpβ€˜π‘†) Ξ£g (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (π΄β€˜π‘–)))))))) = ((𝑁 ↑ 𝐿) Β· (𝑆 Ξ£g (𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁} ↦ ((π‘‹β€˜π‘) Β· ((mulGrpβ€˜π‘†) Ξ£g (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (π΄β€˜π‘–)))))))))
124109, 123eqtrd 2768 . 2 (πœ‘ β†’ (𝑆 Ξ£g (𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁} ↦ ((π‘‹β€˜π‘) Β· ((mulGrpβ€˜π‘†) Ξ£g (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (((𝐼 Γ— {𝐿}) ∘f Β· 𝐴)β€˜π‘–))))))) = ((𝑁 ↑ 𝐿) Β· (𝑆 Ξ£g (𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁} ↦ ((π‘‹β€˜π‘) Β· ((mulGrpβ€˜π‘†) Ξ£g (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (π΄β€˜π‘–)))))))))
125 mhphf.q . . 3 𝑄 = ((𝐼 evalSub 𝑆)β€˜π‘…)
12625fvexi 6911 . . . . 5 𝐾 ∈ V
127126a1i 11 . . . 4 (πœ‘ β†’ 𝐾 ∈ V)
12825, 34ringcl 20190 . . . . . . 7 ((𝑆 ∈ Ring ∧ 𝑗 ∈ 𝐾 ∧ π‘˜ ∈ 𝐾) β†’ (𝑗 Β· π‘˜) ∈ 𝐾)
12945, 128syl3an1 1161 . . . . . 6 ((πœ‘ ∧ 𝑗 ∈ 𝐾 ∧ π‘˜ ∈ 𝐾) β†’ (𝑗 Β· π‘˜) ∈ 𝐾)
1301293expb 1118 . . . . 5 ((πœ‘ ∧ (𝑗 ∈ 𝐾 ∧ π‘˜ ∈ 𝐾)) β†’ (𝑗 Β· π‘˜) ∈ 𝐾)
131 fconst6g 6786 . . . . . 6 (𝐿 ∈ 𝐾 β†’ (𝐼 Γ— {𝐿}):𝐼⟢𝐾)
13228, 131syl 17 . . . . 5 (πœ‘ β†’ (𝐼 Γ— {𝐿}):𝐼⟢𝐾)
133 inidm 4219 . . . . 5 (𝐼 ∩ 𝐼) = 𝐼
134130, 132, 7, 1, 1, 133off 7703 . . . 4 (πœ‘ β†’ ((𝐼 Γ— {𝐿}) ∘f Β· 𝐴):𝐼⟢𝐾)
135127, 1, 134elmapdd 8860 . . 3 (πœ‘ β†’ ((𝐼 Γ— {𝐿}) ∘f Β· 𝐴) ∈ (𝐾 ↑m 𝐼))
136125, 85, 86, 19, 76, 25, 14, 33, 34, 1, 13, 24, 77, 89, 135evlsmhpvvval 41828 . 2 (πœ‘ β†’ ((π‘„β€˜π‘‹)β€˜((𝐼 Γ— {𝐿}) ∘f Β· 𝐴)) = (𝑆 Ξ£g (𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁} ↦ ((π‘‹β€˜π‘) Β· ((mulGrpβ€˜π‘†) Ξ£g (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (((𝐼 Γ— {𝐿}) ∘f Β· 𝐴)β€˜π‘–))))))))
137125, 85, 86, 19, 76, 25, 14, 33, 34, 1, 13, 24, 77, 89, 5evlsmhpvvval 41828 . . 3 (πœ‘ β†’ ((π‘„β€˜π‘‹)β€˜π΄) = (𝑆 Ξ£g (𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁} ↦ ((π‘‹β€˜π‘) Β· ((mulGrpβ€˜π‘†) Ξ£g (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (π΄β€˜π‘–))))))))
138137oveq2d 7436 . 2 (πœ‘ β†’ ((𝑁 ↑ 𝐿) Β· ((π‘„β€˜π‘‹)β€˜π΄)) = ((𝑁 ↑ 𝐿) Β· (𝑆 Ξ£g (𝑏 ∈ {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑁} ↦ ((π‘‹β€˜π‘) Β· ((mulGrpβ€˜π‘†) Ξ£g (𝑖 ∈ 𝐼 ↦ ((π‘β€˜π‘–) ↑ (π΄β€˜π‘–)))))))))
139124, 136, 1383eqtr4d 2778 1 (πœ‘ β†’ ((π‘„β€˜π‘‹)β€˜((𝐼 Γ— {𝐿}) ∘f Β· 𝐴)) = ((𝑁 ↑ 𝐿) Β· ((π‘„β€˜π‘‹)β€˜π΄)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1534   ∈ wcel 2099  {crab 3429  Vcvv 3471   βŠ† wss 3947  {csn 4629   class class class wbr 5148   ↦ cmpt 5231   Γ— cxp 5676  β—‘ccnv 5677   β€œ cima 5681  Fun wfun 6542   Fn wfn 6543  βŸΆwf 6544  β€˜cfv 6548  (class class class)co 7420   ∘f cof 7683   supp csupp 8165   ↑m cmap 8845  Fincfn 8964   finSupp cfsupp 9386  0cc0 11139  β„•cn 12243  β„•0cn0 12503  β„€cz 12589  Basecbs 17180   β†Ύs cress 17209  .rcmulr 17234  0gc0g 17421   Ξ£g cgsu 17422  Mndcmnd 18694  .gcmg 19023  CMndccmn 19735  mulGrpcmgp 20074  1rcur 20121  Ringcrg 20173  CRingccrg 20174  SubRingcsubrg 20506  β„‚fldccnfld 21279   mPoly cmpl 21839   evalSub ces 22016   mHomP cmhp 22055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-addf 11218
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-isom 6557  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-of 7685  df-ofr 7686  df-om 7871  df-1st 7993  df-2nd 7994  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9387  df-sup 9466  df-oi 9534  df-card 9963  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-2 12306  df-3 12307  df-4 12308  df-5 12309  df-6 12310  df-7 12311  df-8 12312  df-9 12313  df-n0 12504  df-z 12590  df-dec 12709  df-uz 12854  df-fz 13518  df-fzo 13661  df-seq 14000  df-hash 14323  df-struct 17116  df-sets 17133  df-slot 17151  df-ndx 17163  df-base 17181  df-ress 17210  df-plusg 17246  df-mulr 17247  df-starv 17248  df-sca 17249  df-vsca 17250  df-ip 17251  df-tset 17252  df-ple 17253  df-ds 17255  df-unif 17256  df-hom 17257  df-cco 17258  df-0g 17423  df-gsum 17424  df-prds 17429  df-pws 17431  df-mre 17566  df-mrc 17567  df-acs 17569  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-mhm 18740  df-submnd 18741  df-grp 18893  df-minusg 18894  df-sbg 18895  df-mulg 19024  df-subg 19078  df-ghm 19168  df-cntz 19268  df-cmn 19737  df-abl 19738  df-mgp 20075  df-rng 20093  df-ur 20122  df-srg 20127  df-ring 20175  df-cring 20176  df-rhm 20411  df-subrng 20483  df-subrg 20508  df-lmod 20745  df-lss 20816  df-lsp 20856  df-cnfld 21280  df-assa 21787  df-asp 21788  df-ascl 21789  df-psr 21842  df-mvr 21843  df-mpl 21844  df-evls 22018  df-mhp 22062
This theorem is referenced by:  mhphf2  41831  mhphf3  41832
  Copyright terms: Public domain W3C validator