Step | Hyp | Ref
| Expression |
1 | | mhphf.h |
. . 3
⊢ 𝐻 = (𝐼 mHomP 𝑈) |
2 | | eqid 2738 |
. . 3
⊢
(Base‘𝑈) =
(Base‘𝑈) |
3 | | eqid 2738 |
. . 3
⊢
(0g‘𝑈) = (0g‘𝑈) |
4 | | eqid 2738 |
. . 3
⊢ (𝐼 mPoly 𝑈) = (𝐼 mPoly 𝑈) |
5 | | eqid 2738 |
. . 3
⊢
(+g‘(𝐼 mPoly 𝑈)) = (+g‘(𝐼 mPoly 𝑈)) |
6 | | eqid 2738 |
. . 3
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
7 | | eqid 2738 |
. . 3
⊢ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} = {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} |
8 | | mhphf.i |
. . 3
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
9 | | mhphf.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
10 | | mhphf.u |
. . . . . 6
⊢ 𝑈 = (𝑆 ↾s 𝑅) |
11 | 10 | subrgring 19942 |
. . . . 5
⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring) |
12 | 9, 11 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑈 ∈ Ring) |
13 | 12 | ringgrpd 19707 |
. . 3
⊢ (𝜑 → 𝑈 ∈ Grp) |
14 | | mhphf.n |
. . 3
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
15 | | mhphf.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) |
16 | 4, 8, 12 | mplsca 21127 |
. . . . . . 7
⊢ (𝜑 → 𝑈 = (Scalar‘(𝐼 mPoly 𝑈))) |
17 | 16 | fveq2d 6760 |
. . . . . 6
⊢ (𝜑 → (0g‘𝑈) =
(0g‘(Scalar‘(𝐼 mPoly 𝑈)))) |
18 | 17 | fveq2d 6760 |
. . . . 5
⊢ (𝜑 → ((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)) = ((algSc‘(𝐼 mPoly 𝑈))‘(0g‘(Scalar‘(𝐼 mPoly 𝑈))))) |
19 | | eqid 2738 |
. . . . . 6
⊢
(algSc‘(𝐼
mPoly 𝑈)) =
(algSc‘(𝐼 mPoly 𝑈)) |
20 | | eqid 2738 |
. . . . . 6
⊢
(Scalar‘(𝐼
mPoly 𝑈)) =
(Scalar‘(𝐼 mPoly
𝑈)) |
21 | 4 | mpllmod 21133 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑈 ∈ Ring) → (𝐼 mPoly 𝑈) ∈ LMod) |
22 | 8, 12, 21 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → (𝐼 mPoly 𝑈) ∈ LMod) |
23 | 4 | mplring 21134 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑈 ∈ Ring) → (𝐼 mPoly 𝑈) ∈ Ring) |
24 | 8, 12, 23 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → (𝐼 mPoly 𝑈) ∈ Ring) |
25 | 19, 20, 22, 24 | ascl0 20998 |
. . . . 5
⊢ (𝜑 → ((algSc‘(𝐼 mPoly 𝑈))‘(0g‘(Scalar‘(𝐼 mPoly 𝑈)))) = (0g‘(𝐼 mPoly 𝑈))) |
26 | | eqid 2738 |
. . . . . 6
⊢
(0g‘(𝐼 mPoly 𝑈)) = (0g‘(𝐼 mPoly 𝑈)) |
27 | 4, 6, 3, 26, 8, 13 | mpl0 21122 |
. . . . 5
⊢ (𝜑 →
(0g‘(𝐼
mPoly 𝑈)) = ({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(0g‘𝑈)})) |
28 | 18, 25, 27 | 3eqtrrd 2783 |
. . . 4
⊢ (𝜑 → ({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(0g‘𝑈)})
= ((algSc‘(𝐼 mPoly
𝑈))‘(0g‘𝑈))) |
29 | | mhphf.m |
. . . . . . . . . 10
⊢ · =
(.r‘𝑆) |
30 | 10, 29 | ressmulr 16943 |
. . . . . . . . 9
⊢ (𝑅 ∈ (SubRing‘𝑆) → · =
(.r‘𝑈)) |
31 | 9, 30 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → · =
(.r‘𝑈)) |
32 | 31 | oveqd 7272 |
. . . . . . 7
⊢ (𝜑 → ((𝑁 ↑ 𝐿) ·
(0g‘𝑈)) =
((𝑁 ↑ 𝐿)(.r‘𝑈)(0g‘𝑈))) |
33 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(mulGrp‘𝑆) =
(mulGrp‘𝑆) |
34 | 33 | subrgsubm 19952 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ∈ (SubMnd‘(mulGrp‘𝑆))) |
35 | 9, 34 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ (SubMnd‘(mulGrp‘𝑆))) |
36 | | mhphf.l |
. . . . . . . . . 10
⊢ (𝜑 → 𝐿 ∈ 𝑅) |
37 | | mhphf.e |
. . . . . . . . . . 11
⊢ ↑ =
(.g‘(mulGrp‘𝑆)) |
38 | 37 | submmulgcl 18661 |
. . . . . . . . . 10
⊢ ((𝑅 ∈
(SubMnd‘(mulGrp‘𝑆)) ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ 𝑅) → (𝑁 ↑ 𝐿) ∈ 𝑅) |
39 | 35, 14, 36, 38 | syl3anc 1369 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁 ↑ 𝐿) ∈ 𝑅) |
40 | 10 | subrgbas 19948 |
. . . . . . . . . 10
⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 = (Base‘𝑈)) |
41 | 9, 40 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 = (Base‘𝑈)) |
42 | 39, 41 | eleqtrd 2841 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 ↑ 𝐿) ∈ (Base‘𝑈)) |
43 | | eqid 2738 |
. . . . . . . . 9
⊢
(.r‘𝑈) = (.r‘𝑈) |
44 | 2, 43, 3 | ringrz 19742 |
. . . . . . . 8
⊢ ((𝑈 ∈ Ring ∧ (𝑁 ↑ 𝐿) ∈ (Base‘𝑈)) → ((𝑁 ↑ 𝐿)(.r‘𝑈)(0g‘𝑈)) = (0g‘𝑈)) |
45 | 12, 42, 44 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → ((𝑁 ↑ 𝐿)(.r‘𝑈)(0g‘𝑈)) = (0g‘𝑈)) |
46 | 32, 45 | eqtrd 2778 |
. . . . . 6
⊢ (𝜑 → ((𝑁 ↑ 𝐿) ·
(0g‘𝑈)) =
(0g‘𝑈)) |
47 | | mhphf.q |
. . . . . . . . 9
⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) |
48 | | mhphf.k |
. . . . . . . . 9
⊢ 𝐾 = (Base‘𝑆) |
49 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘(𝐼 mPoly
𝑈)) = (Base‘(𝐼 mPoly 𝑈)) |
50 | | mhphf.s |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ CRing) |
51 | 2, 3 | ring0cl 19723 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ Ring →
(0g‘𝑈)
∈ (Base‘𝑈)) |
52 | 12, 51 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (0g‘𝑈) ∈ (Base‘𝑈)) |
53 | 52, 41 | eleqtrrd 2842 |
. . . . . . . . 9
⊢ (𝜑 → (0g‘𝑈) ∈ 𝑅) |
54 | | mhphf.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
55 | 47, 4, 10, 48, 49, 19, 8, 50, 9, 53, 54 | evlsscaval 40196 |
. . . . . . . 8
⊢ (𝜑 → (((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)))‘𝐴) = (0g‘𝑈))) |
56 | 55 | simprd 495 |
. . . . . . 7
⊢ (𝜑 → ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)))‘𝐴) = (0g‘𝑈)) |
57 | 56 | oveq2d 7271 |
. . . . . 6
⊢ (𝜑 → ((𝑁 ↑ 𝐿) · ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)))‘𝐴)) = ((𝑁 ↑ 𝐿) ·
(0g‘𝑈))) |
58 | 48 | fvexi 6770 |
. . . . . . . . . 10
⊢ 𝐾 ∈ V |
59 | 58 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ V) |
60 | 50 | crngringd 19711 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 ∈ Ring) |
61 | 48, 29 | ringcl 19715 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ Ring ∧ 𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾) → (𝑗 · 𝑘) ∈ 𝐾) |
62 | 60, 61 | syl3an1 1161 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾) → (𝑗 · 𝑘) ∈ 𝐾) |
63 | 62 | 3expb 1118 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾)) → (𝑗 · 𝑘) ∈ 𝐾) |
64 | 48 | subrgss 19940 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐾) |
65 | 9, 64 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑅 ⊆ 𝐾) |
66 | 65, 36 | sseldd 3918 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐿 ∈ 𝐾) |
67 | | fconst6g 6647 |
. . . . . . . . . . 11
⊢ (𝐿 ∈ 𝐾 → (𝐼 × {𝐿}):𝐼⟶𝐾) |
68 | 66, 67 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐼 × {𝐿}):𝐼⟶𝐾) |
69 | | elmapi 8595 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (𝐾 ↑m 𝐼) → 𝐴:𝐼⟶𝐾) |
70 | 54, 69 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴:𝐼⟶𝐾) |
71 | | inidm 4149 |
. . . . . . . . . 10
⊢ (𝐼 ∩ 𝐼) = 𝐼 |
72 | 63, 68, 70, 8, 8, 71 | off 7529 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐼 × {𝐿}) ∘f · 𝐴):𝐼⟶𝐾) |
73 | 59, 8, 72 | elmapdd 40142 |
. . . . . . . 8
⊢ (𝜑 → ((𝐼 × {𝐿}) ∘f · 𝐴) ∈ (𝐾 ↑m 𝐼)) |
74 | 47, 4, 10, 48, 49, 19, 8, 50, 9, 53, 73 | evlsscaval 40196 |
. . . . . . 7
⊢ (𝜑 → (((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = (0g‘𝑈))) |
75 | 74 | simprd 495 |
. . . . . 6
⊢ (𝜑 → ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = (0g‘𝑈)) |
76 | 46, 57, 75 | 3eqtr4rd 2789 |
. . . . 5
⊢ (𝜑 → ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)))‘𝐴))) |
77 | | fvex 6769 |
. . . . . 6
⊢
((algSc‘(𝐼
mPoly 𝑈))‘(0g‘𝑈)) ∈ V |
78 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑓 = ((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)) → (𝑄‘𝑓) = (𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)))) |
79 | 78 | fveq1d 6758 |
. . . . . . 7
⊢ (𝑓 = ((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)) → ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)))‘((𝐼 × {𝐿}) ∘f · 𝐴))) |
80 | 78 | fveq1d 6758 |
. . . . . . . 8
⊢ (𝑓 = ((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)) → ((𝑄‘𝑓)‘𝐴) = ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)))‘𝐴)) |
81 | 80 | oveq2d 7271 |
. . . . . . 7
⊢ (𝑓 = ((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)) → ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)))‘𝐴))) |
82 | 79, 81 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑓 = ((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)) → (((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴)) ↔ ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)))‘𝐴)))) |
83 | 77, 82 | elab 3602 |
. . . . 5
⊢
(((algSc‘(𝐼
mPoly 𝑈))‘(0g‘𝑈)) ∈ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))} ↔ ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)))‘𝐴))) |
84 | 76, 83 | sylibr 233 |
. . . 4
⊢ (𝜑 → ((algSc‘(𝐼 mPoly 𝑈))‘(0g‘𝑈)) ∈ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))}) |
85 | 28, 84 | eqeltrd 2839 |
. . 3
⊢ (𝜑 → ({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(0g‘𝑈)})
∈ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))}) |
86 | 10 | subrgcrng 19943 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑈 ∈ CRing) |
87 | 50, 9, 86 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ CRing) |
88 | 4 | mplassa 21137 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑈 ∈ CRing) → (𝐼 mPoly 𝑈) ∈ AssAlg) |
89 | 8, 87, 88 | syl2anc 583 |
. . . . . . . 8
⊢ (𝜑 → (𝐼 mPoly 𝑈) ∈ AssAlg) |
90 | 89 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝐼 mPoly 𝑈) ∈ AssAlg) |
91 | 16 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (𝜑 → (Base‘𝑈) =
(Base‘(Scalar‘(𝐼 mPoly 𝑈)))) |
92 | 91 | eleq2d 2824 |
. . . . . . . . 9
⊢ (𝜑 → (𝑏 ∈ (Base‘𝑈) ↔ 𝑏 ∈ (Base‘(Scalar‘(𝐼 mPoly 𝑈))))) |
93 | 92 | biimpa 476 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ (Base‘𝑈)) → 𝑏 ∈ (Base‘(Scalar‘(𝐼 mPoly 𝑈)))) |
94 | 93 | adantrl 712 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑏 ∈ (Base‘(Scalar‘(𝐼 mPoly 𝑈)))) |
95 | | fvexd 6771 |
. . . . . . . . . . 11
⊢ (𝜑 → (Base‘𝑈) ∈ V) |
96 | | ovex 7288 |
. . . . . . . . . . . . 13
⊢
(ℕ0 ↑m 𝐼) ∈ V |
97 | 96 | rabex 5251 |
. . . . . . . . . . . 12
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V |
98 | 97 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V) |
99 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢
(1r‘𝑈) = (1r‘𝑈) |
100 | 2, 99 | ringidcl 19722 |
. . . . . . . . . . . . . . 15
⊢ (𝑈 ∈ Ring →
(1r‘𝑈)
∈ (Base‘𝑈)) |
101 | 12, 100 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (1r‘𝑈) ∈ (Base‘𝑈)) |
102 | 101, 52 | ifcld 4502 |
. . . . . . . . . . . . 13
⊢ (𝜑 → if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)) ∈ (Base‘𝑈)) |
103 | 102 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)) ∈ (Base‘𝑈)) |
104 | 103 | fmpttd 6971 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))):{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑈)) |
105 | 95, 98, 104 | elmapdd 40142 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))) ∈ ((Base‘𝑈) ↑m {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin})) |
106 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝐼 mPwSer 𝑈) = (𝐼 mPwSer 𝑈) |
107 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Base‘(𝐼
mPwSer 𝑈)) =
(Base‘(𝐼 mPwSer 𝑈)) |
108 | 106, 2, 6, 107, 8 | psrbas 21057 |
. . . . . . . . . 10
⊢ (𝜑 → (Base‘(𝐼 mPwSer 𝑈)) = ((Base‘𝑈) ↑m {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin})) |
109 | 105, 108 | eleqtrrd 2842 |
. . . . . . . . 9
⊢ (𝜑 → (𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))) ∈ (Base‘(𝐼 mPwSer 𝑈))) |
110 | 97 | mptex 7081 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))) ∈ V |
111 | 110 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))) ∈ V) |
112 | | fvexd 6771 |
. . . . . . . . . 10
⊢ (𝜑 → (0g‘𝑈) ∈ V) |
113 | | funmpt 6456 |
. . . . . . . . . . 11
⊢ Fun
(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))) |
114 | 113 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → Fun (𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))) |
115 | | snfi 8788 |
. . . . . . . . . . . 12
⊢ {𝑎} ∈ Fin |
116 | 115 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝑎} ∈ Fin) |
117 | | eldifsnneq 4721 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ ({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∖ {𝑎}) → ¬ 𝑤 = 𝑎) |
118 | 117 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ ({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∖ {𝑎})) → ¬ 𝑤 = 𝑎) |
119 | 118 | iffalsed 4467 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ ({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∖ {𝑎})) → if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)) = (0g‘𝑈)) |
120 | 119, 98 | suppss2 7987 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))) supp (0g‘𝑈)) ⊆ {𝑎}) |
121 | 116, 120 | ssfid 8971 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))) supp (0g‘𝑈)) ∈ Fin) |
122 | 111, 112,
114, 121 | isfsuppd 40143 |
. . . . . . . . 9
⊢ (𝜑 → (𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))) finSupp (0g‘𝑈)) |
123 | 4, 106, 107, 3, 49 | mplelbas 21109 |
. . . . . . . . 9
⊢ ((𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))) ∈ (Base‘(𝐼 mPoly 𝑈)) ↔ ((𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))) ∈ (Base‘(𝐼 mPwSer 𝑈)) ∧ (𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))) finSupp (0g‘𝑈))) |
124 | 109, 122,
123 | sylanbrc 582 |
. . . . . . . 8
⊢ (𝜑 → (𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))) ∈ (Base‘(𝐼 mPoly 𝑈))) |
125 | 124 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))) ∈ (Base‘(𝐼 mPoly 𝑈))) |
126 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘(Scalar‘(𝐼 mPoly 𝑈))) = (Base‘(Scalar‘(𝐼 mPoly 𝑈))) |
127 | | eqid 2738 |
. . . . . . . 8
⊢
(.r‘(𝐼 mPoly 𝑈)) = (.r‘(𝐼 mPoly 𝑈)) |
128 | | eqid 2738 |
. . . . . . . 8
⊢ (
·𝑠 ‘(𝐼 mPoly 𝑈)) = ( ·𝑠
‘(𝐼 mPoly 𝑈)) |
129 | 19, 20, 126, 49, 127, 128 | asclmul1 21000 |
. . . . . . 7
⊢ (((𝐼 mPoly 𝑈) ∈ AssAlg ∧ 𝑏 ∈ (Base‘(Scalar‘(𝐼 mPoly 𝑈))) ∧ (𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))) ∈ (Base‘(𝐼 mPoly 𝑈))) → (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))) = (𝑏( ·𝑠
‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))))) |
130 | 90, 94, 125, 129 | syl3anc 1369 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))) = (𝑏( ·𝑠
‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))))) |
131 | | simprr 769 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑏 ∈ (Base‘𝑈)) |
132 | 4, 128, 2, 49, 43, 6, 131, 125 | mplvsca 21129 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑏( ·𝑠
‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))) = (({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑏}) ∘f
(.r‘𝑈)(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))))) |
133 | 130, 132 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))) = (({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑏}) ∘f
(.r‘𝑈)(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))))) |
134 | | vex 3426 |
. . . . . . 7
⊢ 𝑏 ∈ V |
135 | | fnconstg 6646 |
. . . . . . 7
⊢ (𝑏 ∈ V → ({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑏}) Fn {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
136 | 134, 135 | mp1i 13 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑏}) Fn {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
137 | | fvex 6769 |
. . . . . . . . 9
⊢
(1r‘𝑈) ∈ V |
138 | | fvex 6769 |
. . . . . . . . 9
⊢
(0g‘𝑈) ∈ V |
139 | 137, 138 | ifex 4506 |
. . . . . . . 8
⊢ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)) ∈ V |
140 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))) = (𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))) |
141 | 139, 140 | fnmpti 6560 |
. . . . . . 7
⊢ (𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))) Fn {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
142 | 141 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))) Fn {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
143 | 97 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V) |
144 | | inidm 4149 |
. . . . . 6
⊢ ({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∩ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
145 | 134 | fvconst2 7061 |
. . . . . . 7
⊢ (𝑠 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → (({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑏})‘𝑠) = 𝑏) |
146 | 145 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑠 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑏})‘𝑠) = 𝑏) |
147 | | equequ1 2029 |
. . . . . . . . 9
⊢ (𝑤 = 𝑠 → (𝑤 = 𝑎 ↔ 𝑠 = 𝑎)) |
148 | 147 | ifbid 4479 |
. . . . . . . 8
⊢ (𝑤 = 𝑠 → if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)) = if(𝑠 = 𝑎, (1r‘𝑈), (0g‘𝑈))) |
149 | 137, 138 | ifex 4506 |
. . . . . . . 8
⊢ if(𝑠 = 𝑎, (1r‘𝑈), (0g‘𝑈)) ∈ V |
150 | 148, 140,
149 | fvmpt 6857 |
. . . . . . 7
⊢ (𝑠 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → ((𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))‘𝑠) = if(𝑠 = 𝑎, (1r‘𝑈), (0g‘𝑈))) |
151 | 150 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑠 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))‘𝑠) = if(𝑠 = 𝑎, (1r‘𝑈), (0g‘𝑈))) |
152 | 136, 142,
143, 143, 144, 146, 151 | offval 7520 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑏}) ∘f
(.r‘𝑈)(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))) = (𝑠 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑏(.r‘𝑈)if(𝑠 = 𝑎, (1r‘𝑈), (0g‘𝑈))))) |
153 | | ovif2 7351 |
. . . . . . 7
⊢ (𝑏(.r‘𝑈)if(𝑠 = 𝑎, (1r‘𝑈), (0g‘𝑈))) = if(𝑠 = 𝑎, (𝑏(.r‘𝑈)(1r‘𝑈)), (𝑏(.r‘𝑈)(0g‘𝑈))) |
154 | 12 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑠 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑈 ∈ Ring) |
155 | | simplrr 774 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑠 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑏 ∈ (Base‘𝑈)) |
156 | 2, 43, 99 | ringridm 19726 |
. . . . . . . . 9
⊢ ((𝑈 ∈ Ring ∧ 𝑏 ∈ (Base‘𝑈)) → (𝑏(.r‘𝑈)(1r‘𝑈)) = 𝑏) |
157 | 154, 155,
156 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑠 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑏(.r‘𝑈)(1r‘𝑈)) = 𝑏) |
158 | 2, 43, 3 | ringrz 19742 |
. . . . . . . . 9
⊢ ((𝑈 ∈ Ring ∧ 𝑏 ∈ (Base‘𝑈)) → (𝑏(.r‘𝑈)(0g‘𝑈)) = (0g‘𝑈)) |
159 | 154, 155,
158 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑠 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑏(.r‘𝑈)(0g‘𝑈)) = (0g‘𝑈)) |
160 | 157, 159 | ifeq12d 4477 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑠 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → if(𝑠 = 𝑎, (𝑏(.r‘𝑈)(1r‘𝑈)), (𝑏(.r‘𝑈)(0g‘𝑈))) = if(𝑠 = 𝑎, 𝑏, (0g‘𝑈))) |
161 | 153, 160 | syl5eq 2791 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑠 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑏(.r‘𝑈)if(𝑠 = 𝑎, (1r‘𝑈), (0g‘𝑈))) = if(𝑠 = 𝑎, 𝑏, (0g‘𝑈))) |
162 | 161 | mpteq2dva 5170 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑠 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑏(.r‘𝑈)if(𝑠 = 𝑎, (1r‘𝑈), (0g‘𝑈)))) = (𝑠 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑠 = 𝑎, 𝑏, (0g‘𝑈)))) |
163 | 133, 152,
162 | 3eqtrd 2782 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))) = (𝑠 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑠 = 𝑎, 𝑏, (0g‘𝑈)))) |
164 | 8 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝐼 ∈ 𝑉) |
165 | 50 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑆 ∈ CRing) |
166 | 9 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑅 ∈ (SubRing‘𝑆)) |
167 | 73 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝐼 × {𝐿}) ∘f · 𝐴) ∈ (𝐾 ↑m 𝐼)) |
168 | 12 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑈 ∈ Ring) |
169 | 4, 49, 2, 19, 164, 168 | mplasclf 21183 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (algSc‘(𝐼 mPoly 𝑈)):(Base‘𝑈)⟶(Base‘(𝐼 mPoly 𝑈))) |
170 | 169, 131 | ffvelrnd 6944 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((algSc‘(𝐼 mPoly 𝑈))‘𝑏) ∈ (Base‘(𝐼 mPoly 𝑈))) |
171 | | eqidd 2739 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘((𝐼 × {𝐿}) ∘f · 𝐴))) |
172 | 170, 171 | jca 511 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((algSc‘(𝐼 mPoly 𝑈))‘𝑏) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘((𝐼 × {𝐿}) ∘f · 𝐴)))) |
173 | | elrabi 3611 |
. . . . . . . . . 10
⊢ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} → 𝑎 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
174 | 173 | ad2antrl 724 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑎 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
175 | 47, 4, 10, 49, 48, 33, 37, 3, 99, 6, 140, 164, 165, 166, 167, 174 | evlsbagval 40198 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((mulGrp‘𝑆) Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣)))))) |
176 | 47, 4, 10, 48, 49, 164, 165, 166, 167, 172, 175, 127, 29 | evlsmulval 40201 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = (((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘((𝐼 × {𝐿}) ∘f · 𝐴)) ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣))))))) |
177 | 176 | simprd 495 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = (((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘((𝐼 × {𝐿}) ∘f · 𝐴)) ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣)))))) |
178 | 33 | ringmgp 19704 |
. . . . . . . . . . . . 13
⊢ (𝑆 ∈ Ring →
(mulGrp‘𝑆) ∈
Mnd) |
179 | 60, 178 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (mulGrp‘𝑆) ∈ Mnd) |
180 | 33, 48 | mgpbas 19641 |
. . . . . . . . . . . . 13
⊢ 𝐾 =
(Base‘(mulGrp‘𝑆)) |
181 | 180, 37 | mulgnn0cl 18635 |
. . . . . . . . . . . 12
⊢
(((mulGrp‘𝑆)
∈ Mnd ∧ 𝑁 ∈
ℕ0 ∧ 𝐿
∈ 𝐾) → (𝑁 ↑ 𝐿) ∈ 𝐾) |
182 | 179, 14, 66, 181 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁 ↑ 𝐿) ∈ 𝐾) |
183 | 182 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑁 ↑ 𝐿) ∈ 𝐾) |
184 | 41, 65 | eqsstrrd 3956 |
. . . . . . . . . . . 12
⊢ (𝜑 → (Base‘𝑈) ⊆ 𝐾) |
185 | 184 | sselda 3917 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ∈ (Base‘𝑈)) → 𝑏 ∈ 𝐾) |
186 | 185 | adantrl 712 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑏 ∈ 𝐾) |
187 | 48, 29 | crngcom 19716 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ CRing ∧ (𝑁 ↑ 𝐿) ∈ 𝐾 ∧ 𝑏 ∈ 𝐾) → ((𝑁 ↑ 𝐿) · 𝑏) = (𝑏 · (𝑁 ↑ 𝐿))) |
188 | 165, 183,
186, 187 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑁 ↑ 𝐿) · 𝑏) = (𝑏 · (𝑁 ↑ 𝐿))) |
189 | 188 | oveq1d 7270 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((𝑁 ↑ 𝐿) · 𝑏) ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))))) = ((𝑏 · (𝑁 ↑ 𝐿)) ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣)))))) |
190 | 165 | crngringd 19711 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑆 ∈ Ring) |
191 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(1r‘𝑆) = (1r‘𝑆) |
192 | 33, 191 | ringidval 19654 |
. . . . . . . . . 10
⊢
(1r‘𝑆) = (0g‘(mulGrp‘𝑆)) |
193 | 33 | crngmgp 19706 |
. . . . . . . . . . . 12
⊢ (𝑆 ∈ CRing →
(mulGrp‘𝑆) ∈
CMnd) |
194 | 50, 193 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (mulGrp‘𝑆) ∈ CMnd) |
195 | 194 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (mulGrp‘𝑆) ∈ CMnd) |
196 | 179 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣 ∈ 𝐼) → (mulGrp‘𝑆) ∈ Mnd) |
197 | | elrabi 3611 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → 𝑎 ∈ (ℕ0
↑m 𝐼)) |
198 | | elmapi 8595 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 ∈ (ℕ0
↑m 𝐼)
→ 𝑎:𝐼⟶ℕ0) |
199 | 173, 197,
198 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} → 𝑎:𝐼⟶ℕ0) |
200 | 199 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → 𝑎:𝐼⟶ℕ0) |
201 | 200 | adantrr 713 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑎:𝐼⟶ℕ0) |
202 | 201 | ffvelrnda 6943 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣 ∈ 𝐼) → (𝑎‘𝑣) ∈
ℕ0) |
203 | 70 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣 ∈ 𝐼) → 𝐴:𝐼⟶𝐾) |
204 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣 ∈ 𝐼) → 𝑣 ∈ 𝐼) |
205 | 203, 204 | ffvelrnd 6944 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣 ∈ 𝐼) → (𝐴‘𝑣) ∈ 𝐾) |
206 | 180, 37 | mulgnn0cl 18635 |
. . . . . . . . . . . 12
⊢
(((mulGrp‘𝑆)
∈ Mnd ∧ (𝑎‘𝑣) ∈ ℕ0 ∧ (𝐴‘𝑣) ∈ 𝐾) → ((𝑎‘𝑣) ↑ (𝐴‘𝑣)) ∈ 𝐾) |
207 | 196, 202,
205, 206 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣 ∈ 𝐼) → ((𝑎‘𝑣) ↑ (𝐴‘𝑣)) ∈ 𝐾) |
208 | 207 | fmpttd 6971 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))):𝐼⟶𝐾) |
209 | 6 | psrbagfsupp 21033 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → 𝑎 finSupp 0) |
210 | 209 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑎 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑎 finSupp 0) |
211 | 210 | fsuppimpd 9065 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑎 supp 0) ∈
Fin) |
212 | 173, 211 | sylan2 592 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → (𝑎 supp 0) ∈ Fin) |
213 | 212 | adantrr 713 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑎 supp 0) ∈ Fin) |
214 | 201 | feqmptd 6819 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑎 = (𝑣 ∈ 𝐼 ↦ (𝑎‘𝑣))) |
215 | 214 | oveq1d 7270 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑎 supp 0) = ((𝑣 ∈ 𝐼 ↦ (𝑎‘𝑣)) supp 0)) |
216 | | ssidd 3940 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑎 supp 0) ⊆ (𝑎 supp 0)) |
217 | 215, 216 | eqsstrrd 3956 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑣 ∈ 𝐼 ↦ (𝑎‘𝑣)) supp 0) ⊆ (𝑎 supp 0)) |
218 | 180, 192,
37 | mulg0 18622 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ 𝐾 → (0 ↑ 𝑘) = (1r‘𝑆)) |
219 | 218 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑘 ∈ 𝐾) → (0 ↑ 𝑘) = (1r‘𝑆)) |
220 | | c0ex 10900 |
. . . . . . . . . . . . 13
⊢ 0 ∈
V |
221 | 220 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 0 ∈ V) |
222 | 217, 219,
202, 205, 221 | suppssov1 7985 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))) supp (1r‘𝑆)) ⊆ (𝑎 supp 0)) |
223 | 213, 222 | ssfid 8971 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))) supp (1r‘𝑆)) ∈ Fin) |
224 | 180, 192,
195, 164, 208, 223 | gsumcl2 19430 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((mulGrp‘𝑆) Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣)))) ∈ 𝐾) |
225 | 48, 29 | ringass 19718 |
. . . . . . . . 9
⊢ ((𝑆 ∈ Ring ∧ ((𝑁 ↑ 𝐿) ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ ((mulGrp‘𝑆) Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣)))) ∈ 𝐾)) → (((𝑁 ↑ 𝐿) · 𝑏) ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))))) = ((𝑁 ↑ 𝐿) · (𝑏 ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))))))) |
226 | 190, 183,
186, 224, 225 | syl13anc 1370 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((𝑁 ↑ 𝐿) · 𝑏) ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))))) = ((𝑁 ↑ 𝐿) · (𝑏 ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))))))) |
227 | 48, 29 | ringass 19718 |
. . . . . . . . 9
⊢ ((𝑆 ∈ Ring ∧ (𝑏 ∈ 𝐾 ∧ (𝑁 ↑ 𝐿) ∈ 𝐾 ∧ ((mulGrp‘𝑆) Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣)))) ∈ 𝐾)) → ((𝑏 · (𝑁 ↑ 𝐿)) ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))))) = (𝑏 · ((𝑁 ↑ 𝐿) ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))))))) |
228 | 190, 186,
183, 224, 227 | syl13anc 1370 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑏 · (𝑁 ↑ 𝐿)) ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))))) = (𝑏 · ((𝑁 ↑ 𝐿) ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))))))) |
229 | 189, 226,
228 | 3eqtr3d 2786 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑁 ↑ 𝐿) · (𝑏 ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣)))))) = (𝑏 · ((𝑁 ↑ 𝐿) ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))))))) |
230 | 54 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
231 | 41 | eleq2d 2824 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑏 ∈ 𝑅 ↔ 𝑏 ∈ (Base‘𝑈))) |
232 | 231 | biimpar 477 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ∈ (Base‘𝑈)) → 𝑏 ∈ 𝑅) |
233 | 232 | adantrl 712 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝑏 ∈ 𝑅) |
234 | 47, 4, 10, 48, 49, 19, 164, 165, 166, 233, 230 | evlsscaval 40196 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((algSc‘(𝐼 mPoly 𝑈))‘𝑏) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘𝐴) = 𝑏)) |
235 | 47, 4, 10, 49, 48, 33, 37, 3, 99, 6, 140, 164, 165, 166, 230, 174 | evlsbagval 40198 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈))))‘𝐴) = ((mulGrp‘𝑆) Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣)))))) |
236 | 47, 4, 10, 48, 49, 164, 165, 166, 230, 234, 235, 127, 29 | evlsmulval 40201 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))))‘𝐴) = (𝑏 ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))))))) |
237 | 236 | simprd 495 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))))‘𝐴) = (𝑏 ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣)))))) |
238 | 237 | oveq2d 7271 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑁 ↑ 𝐿) · ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))))‘𝐴)) = ((𝑁 ↑ 𝐿) · (𝑏 ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))))))) |
239 | 47, 4, 10, 48, 49, 19, 164, 165, 166, 233, 167 | evlsscaval 40196 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((algSc‘(𝐼 mPoly 𝑈))‘𝑏) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = 𝑏)) |
240 | 239 | simprd 495 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = 𝑏) |
241 | | fconst6g 6647 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐿 ∈ 𝑅 → (𝐼 × {𝐿}):𝐼⟶𝑅) |
242 | 36, 241 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐼 × {𝐿}):𝐼⟶𝑅) |
243 | 242 | ffnd 6585 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐼 × {𝐿}) Fn 𝐼) |
244 | 243 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝐼 × {𝐿}) Fn 𝐼) |
245 | 70 | ffnd 6585 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 Fn 𝐼) |
246 | 245 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → 𝐴 Fn 𝐼) |
247 | 36 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣 ∈ 𝐼) → 𝐿 ∈ 𝑅) |
248 | | fvconst2g 7059 |
. . . . . . . . . . . . . . 15
⊢ ((𝐿 ∈ 𝑅 ∧ 𝑣 ∈ 𝐼) → ((𝐼 × {𝐿})‘𝑣) = 𝐿) |
249 | 247, 204,
248 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣 ∈ 𝐼) → ((𝐼 × {𝐿})‘𝑣) = 𝐿) |
250 | | eqidd 2739 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣 ∈ 𝐼) → (𝐴‘𝑣) = (𝐴‘𝑣)) |
251 | 244, 246,
164, 164, 71, 249, 250 | ofval 7522 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣 ∈ 𝐼) → (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣) = (𝐿 · (𝐴‘𝑣))) |
252 | 251 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣 ∈ 𝐼) → ((𝑎‘𝑣) ↑ (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣)) = ((𝑎‘𝑣) ↑ (𝐿 · (𝐴‘𝑣)))) |
253 | 194 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣 ∈ 𝐼) → (mulGrp‘𝑆) ∈ CMnd) |
254 | 66 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣 ∈ 𝐼) → 𝐿 ∈ 𝐾) |
255 | 33, 29 | mgpplusg 19639 |
. . . . . . . . . . . . . 14
⊢ · =
(+g‘(mulGrp‘𝑆)) |
256 | 180, 37, 255 | mulgnn0di 19342 |
. . . . . . . . . . . . 13
⊢
(((mulGrp‘𝑆)
∈ CMnd ∧ ((𝑎‘𝑣) ∈ ℕ0 ∧ 𝐿 ∈ 𝐾 ∧ (𝐴‘𝑣) ∈ 𝐾)) → ((𝑎‘𝑣) ↑ (𝐿 · (𝐴‘𝑣))) = (((𝑎‘𝑣) ↑ 𝐿) · ((𝑎‘𝑣) ↑ (𝐴‘𝑣)))) |
257 | 253, 202,
254, 205, 256 | syl13anc 1370 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣 ∈ 𝐼) → ((𝑎‘𝑣) ↑ (𝐿 · (𝐴‘𝑣))) = (((𝑎‘𝑣) ↑ 𝐿) · ((𝑎‘𝑣) ↑ (𝐴‘𝑣)))) |
258 | 252, 257 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) ∧ 𝑣 ∈ 𝐼) → ((𝑎‘𝑣) ↑ (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣)) = (((𝑎‘𝑣) ↑ 𝐿) · ((𝑎‘𝑣) ↑ (𝐴‘𝑣)))) |
259 | 258 | mpteq2dva 5170 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣))) = (𝑣 ∈ 𝐼 ↦ (((𝑎‘𝑣) ↑ 𝐿) · ((𝑎‘𝑣) ↑ (𝐴‘𝑣))))) |
260 | 259 | oveq2d 7271 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((mulGrp‘𝑆) Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣)))) = ((mulGrp‘𝑆) Σg (𝑣 ∈ 𝐼 ↦ (((𝑎‘𝑣) ↑ 𝐿) · ((𝑎‘𝑣) ↑ (𝐴‘𝑣)))))) |
261 | 194 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → (mulGrp‘𝑆) ∈ CMnd) |
262 | 8 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → 𝐼 ∈ 𝑉) |
263 | 179 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) ∧ 𝑣 ∈ 𝐼) → (mulGrp‘𝑆) ∈ Mnd) |
264 | 200 | ffvelrnda 6943 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) ∧ 𝑣 ∈ 𝐼) → (𝑎‘𝑣) ∈
ℕ0) |
265 | 66 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) ∧ 𝑣 ∈ 𝐼) → 𝐿 ∈ 𝐾) |
266 | 180, 37 | mulgnn0cl 18635 |
. . . . . . . . . . . . 13
⊢
(((mulGrp‘𝑆)
∈ Mnd ∧ (𝑎‘𝑣) ∈ ℕ0 ∧ 𝐿 ∈ 𝐾) → ((𝑎‘𝑣) ↑ 𝐿) ∈ 𝐾) |
267 | 263, 264,
265, 266 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) ∧ 𝑣 ∈ 𝐼) → ((𝑎‘𝑣) ↑ 𝐿) ∈ 𝐾) |
268 | 70 | ffvelrnda 6943 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐼) → (𝐴‘𝑣) ∈ 𝐾) |
269 | 268 | adantlr 711 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) ∧ 𝑣 ∈ 𝐼) → (𝐴‘𝑣) ∈ 𝐾) |
270 | 263, 264,
269, 206 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) ∧ 𝑣 ∈ 𝐼) → ((𝑎‘𝑣) ↑ (𝐴‘𝑣)) ∈ 𝐾) |
271 | | eqidd 2739 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ 𝐿)) = (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ 𝐿))) |
272 | | eqidd 2739 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))) = (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣)))) |
273 | 262 | mptexd 7082 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ 𝐿)) ∈ V) |
274 | | fvexd 6771 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → (1r‘𝑆) ∈ V) |
275 | | funmpt 6456 |
. . . . . . . . . . . . . 14
⊢ Fun
(𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ 𝐿)) |
276 | 275 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → Fun (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ 𝐿))) |
277 | 200 | feqmptd 6819 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → 𝑎 = (𝑣 ∈ 𝐼 ↦ (𝑎‘𝑣))) |
278 | 277 | oveq1d 7270 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → (𝑎 supp 0) = ((𝑣 ∈ 𝐼 ↦ (𝑎‘𝑣)) supp 0)) |
279 | | ssidd 3940 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → (𝑎 supp 0) ⊆ (𝑎 supp 0)) |
280 | 278, 279 | eqsstrrd 3956 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → ((𝑣 ∈ 𝐼 ↦ (𝑎‘𝑣)) supp 0) ⊆ (𝑎 supp 0)) |
281 | 218 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) ∧ 𝑘 ∈ 𝐾) → (0 ↑ 𝑘) = (1r‘𝑆)) |
282 | 220 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → 0 ∈ V) |
283 | 280, 281,
264, 265, 282 | suppssov1 7985 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → ((𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ 𝐿)) supp (1r‘𝑆)) ⊆ (𝑎 supp 0)) |
284 | 212, 283 | ssfid 8971 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → ((𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ 𝐿)) supp (1r‘𝑆)) ∈ Fin) |
285 | 273, 274,
276, 284 | isfsuppd 40143 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ 𝐿)) finSupp (1r‘𝑆)) |
286 | 262 | mptexd 7082 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))) ∈ V) |
287 | | funmpt 6456 |
. . . . . . . . . . . . . 14
⊢ Fun
(𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))) |
288 | 287 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → Fun (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣)))) |
289 | 280, 281,
264, 269, 282 | suppssov1 7985 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → ((𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))) supp (1r‘𝑆)) ⊆ (𝑎 supp 0)) |
290 | 212, 289 | ssfid 8971 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → ((𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))) supp (1r‘𝑆)) ∈ Fin) |
291 | 286, 274,
288, 290 | isfsuppd 40143 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))) finSupp (1r‘𝑆)) |
292 | 180, 192,
255, 261, 262, 267, 270, 271, 272, 285, 291 | gsummptfsadd 19440 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → ((mulGrp‘𝑆) Σg (𝑣 ∈ 𝐼 ↦ (((𝑎‘𝑣) ↑ 𝐿) · ((𝑎‘𝑣) ↑ (𝐴‘𝑣))))) = (((mulGrp‘𝑆) Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ 𝐿))) ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣)))))) |
293 | 6, 7, 180, 37, 8, 179, 66, 14 | mhphflem 40207 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → ((mulGrp‘𝑆) Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ 𝐿))) = (𝑁 ↑ 𝐿)) |
294 | 293 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → (((mulGrp‘𝑆) Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ 𝐿))) ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))))) = ((𝑁 ↑ 𝐿) ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣)))))) |
295 | 292, 294 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁}) → ((mulGrp‘𝑆) Σg (𝑣 ∈ 𝐼 ↦ (((𝑎‘𝑣) ↑ 𝐿) · ((𝑎‘𝑣) ↑ (𝐴‘𝑣))))) = ((𝑁 ↑ 𝐿) ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣)))))) |
296 | 295 | adantrr 713 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((mulGrp‘𝑆) Σg (𝑣 ∈ 𝐼 ↦ (((𝑎‘𝑣) ↑ 𝐿) · ((𝑎‘𝑣) ↑ (𝐴‘𝑣))))) = ((𝑁 ↑ 𝐿) ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣)))))) |
297 | 260, 296 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((mulGrp‘𝑆) Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣)))) = ((𝑁 ↑ 𝐿) ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣)))))) |
298 | 240, 297 | oveq12d 7273 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘((𝐼 × {𝐿}) ∘f · 𝐴)) ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣))))) = (𝑏 · ((𝑁 ↑ 𝐿) ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (𝐴‘𝑣))))))) |
299 | 229, 238,
298 | 3eqtr4rd 2789 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((𝑄‘((algSc‘(𝐼 mPoly 𝑈))‘𝑏))‘((𝐼 × {𝐿}) ∘f · 𝐴)) ·
((mulGrp‘𝑆)
Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) ↑ (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑣))))) = ((𝑁 ↑ 𝐿) · ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))))‘𝐴))) |
300 | 177, 299 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))))‘𝐴))) |
301 | | ovex 7288 |
. . . . . 6
⊢
(((algSc‘(𝐼
mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))) ∈ V |
302 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑓 = (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))) → (𝑄‘𝑓) = (𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))))) |
303 | 302 | fveq1d 6758 |
. . . . . . 7
⊢ (𝑓 = (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))) → ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))))‘((𝐼 × {𝐿}) ∘f · 𝐴))) |
304 | 302 | fveq1d 6758 |
. . . . . . . 8
⊢ (𝑓 = (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))) → ((𝑄‘𝑓)‘𝐴) = ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))))‘𝐴)) |
305 | 304 | oveq2d 7271 |
. . . . . . 7
⊢ (𝑓 = (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))) → ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))))‘𝐴))) |
306 | 303, 305 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑓 = (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))) → (((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴)) ↔ ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))))‘𝐴)))) |
307 | 301, 306 | elab 3602 |
. . . . 5
⊢
((((algSc‘(𝐼
mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))) ∈ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))} ↔ ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘(((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))))‘𝐴))) |
308 | 300, 307 | sylibr 233 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (((algSc‘(𝐼 mPoly 𝑈))‘𝑏)(.r‘(𝐼 mPoly 𝑈))(𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑤 = 𝑎, (1r‘𝑈), (0g‘𝑈)))) ∈ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))}) |
309 | 163, 308 | eqeltrrd 2840 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑠 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑠 = 𝑎, 𝑏, (0g‘𝑈))) ∈ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))}) |
310 | | elin 3899 |
. . . . . 6
⊢ (𝑥 ∈ ((𝐻‘𝑁) ∩ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))}) ↔ (𝑥 ∈ (𝐻‘𝑁) ∧ 𝑥 ∈ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))})) |
311 | | vex 3426 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
312 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑥 → (𝑄‘𝑓) = (𝑄‘𝑥)) |
313 | 312 | fveq1d 6758 |
. . . . . . . . 9
⊢ (𝑓 = 𝑥 → ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴))) |
314 | 312 | fveq1d 6758 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑥 → ((𝑄‘𝑓)‘𝐴) = ((𝑄‘𝑥)‘𝐴)) |
315 | 314 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝑓 = 𝑥 → ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) |
316 | 313, 315 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑓 = 𝑥 → (((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴)) ↔ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴)))) |
317 | 311, 316 | elab 3602 |
. . . . . . 7
⊢ (𝑥 ∈ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))} ↔ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) |
318 | 317 | anbi2i 622 |
. . . . . 6
⊢ ((𝑥 ∈ (𝐻‘𝑁) ∧ 𝑥 ∈ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))}) ↔ (𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴)))) |
319 | 310, 318 | bitri 274 |
. . . . 5
⊢ (𝑥 ∈ ((𝐻‘𝑁) ∩ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))}) ↔ (𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴)))) |
320 | | elin 3899 |
. . . . . 6
⊢ (𝑦 ∈ ((𝐻‘𝑁) ∩ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))}) ↔ (𝑦 ∈ (𝐻‘𝑁) ∧ 𝑦 ∈ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))})) |
321 | | vex 3426 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
322 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑦 → (𝑄‘𝑓) = (𝑄‘𝑦)) |
323 | 322 | fveq1d 6758 |
. . . . . . . . 9
⊢ (𝑓 = 𝑦 → ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴))) |
324 | 322 | fveq1d 6758 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑦 → ((𝑄‘𝑓)‘𝐴) = ((𝑄‘𝑦)‘𝐴)) |
325 | 324 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝑓 = 𝑦 → ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))) |
326 | 323, 325 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑓 = 𝑦 → (((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴)) ↔ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴)))) |
327 | 321, 326 | elab 3602 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))} ↔ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))) |
328 | 327 | anbi2i 622 |
. . . . . 6
⊢ ((𝑦 ∈ (𝐻‘𝑁) ∧ 𝑦 ∈ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))}) ↔ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴)))) |
329 | 320, 328 | bitri 274 |
. . . . 5
⊢ (𝑦 ∈ ((𝐻‘𝑁) ∩ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))}) ↔ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴)))) |
330 | 319, 329 | anbi12i 626 |
. . . 4
⊢ ((𝑥 ∈ ((𝐻‘𝑁) ∩ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))}) ∧ 𝑦 ∈ ((𝐻‘𝑁) ∩ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))})) ↔ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) |
331 | 60 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → 𝑆 ∈ Ring) |
332 | 182 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → (𝑁 ↑ 𝐿) ∈ 𝐾) |
333 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑆 ↑s
(Base‘(𝑆
↑s 𝐼))) = (𝑆 ↑s
(Base‘(𝑆
↑s 𝐼))) |
334 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘(𝑆
↑s (Base‘(𝑆 ↑s 𝐼)))) = (Base‘(𝑆 ↑s
(Base‘(𝑆
↑s 𝐼)))) |
335 | 50 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → 𝑆 ∈ CRing) |
336 | | fvexd 6771 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → (Base‘(𝑆 ↑s 𝐼)) ∈ V) |
337 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ (𝑆 ↑s
(𝐾 ↑m 𝐼)) = (𝑆 ↑s (𝐾 ↑m 𝐼)) |
338 | 47, 4, 10, 337, 48 | evlsrhm 21208 |
. . . . . . . . . . . . . 14
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ ((𝐼 mPoly 𝑈) RingHom (𝑆 ↑s (𝐾 ↑m 𝐼)))) |
339 | 8, 50, 9, 338 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑄 ∈ ((𝐼 mPoly 𝑈) RingHom (𝑆 ↑s (𝐾 ↑m 𝐼)))) |
340 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(Base‘(𝑆
↑s (𝐾 ↑m 𝐼))) = (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼))) |
341 | 49, 340 | rhmf 19885 |
. . . . . . . . . . . . 13
⊢ (𝑄 ∈ ((𝐼 mPoly 𝑈) RingHom (𝑆 ↑s (𝐾 ↑m 𝐼))) → 𝑄:(Base‘(𝐼 mPoly 𝑈))⟶(Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
342 | 339, 341 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑄:(Base‘(𝐼 mPoly 𝑈))⟶(Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
343 | 342 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → 𝑄:(Base‘(𝐼 mPoly 𝑈))⟶(Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
344 | 8 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) → 𝐼 ∈ 𝑉) |
345 | 12 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) → 𝑈 ∈ Ring) |
346 | 14 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) → 𝑁 ∈
ℕ0) |
347 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) → 𝑥 ∈ (𝐻‘𝑁)) |
348 | 1, 4, 49, 344, 345, 346, 347 | mhpmpl 21244 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐻‘𝑁)) → 𝑥 ∈ (Base‘(𝐼 mPoly 𝑈))) |
349 | 348 | adantrr 713 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴)))) → 𝑥 ∈ (Base‘(𝐼 mPoly 𝑈))) |
350 | 349 | adantrr 713 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → 𝑥 ∈ (Base‘(𝐼 mPoly 𝑈))) |
351 | 343, 350 | ffvelrnd 6944 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → (𝑄‘𝑥) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
352 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ (𝑆 ↑s 𝐼) = (𝑆 ↑s 𝐼) |
353 | 352, 48 | pwsbas 17115 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈ CRing ∧ 𝐼 ∈ 𝑉) → (𝐾 ↑m 𝐼) = (Base‘(𝑆 ↑s 𝐼))) |
354 | 50, 8, 353 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐾 ↑m 𝐼) = (Base‘(𝑆 ↑s 𝐼))) |
355 | 354 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑆 ↑s (𝐾 ↑m 𝐼)) = (𝑆 ↑s
(Base‘(𝑆
↑s 𝐼)))) |
356 | 355 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ (𝜑 → (Base‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) = (Base‘(𝑆 ↑s
(Base‘(𝑆
↑s 𝐼))))) |
357 | 356 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼))) = (Base‘(𝑆 ↑s
(Base‘(𝑆
↑s 𝐼))))) |
358 | 351, 357 | eleqtrd 2841 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → (𝑄‘𝑥) ∈ (Base‘(𝑆 ↑s
(Base‘(𝑆
↑s 𝐼))))) |
359 | 333, 48, 334, 335, 336, 358 | pwselbas 17117 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → (𝑄‘𝑥):(Base‘(𝑆 ↑s 𝐼))⟶𝐾) |
360 | 54, 354 | eleqtrd 2841 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ (Base‘(𝑆 ↑s 𝐼))) |
361 | 360 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → 𝐴 ∈ (Base‘(𝑆 ↑s 𝐼))) |
362 | 359, 361 | ffvelrnd 6944 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → ((𝑄‘𝑥)‘𝐴) ∈ 𝐾) |
363 | 8 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐻‘𝑁)) → 𝐼 ∈ 𝑉) |
364 | 12 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐻‘𝑁)) → 𝑈 ∈ Ring) |
365 | 14 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐻‘𝑁)) → 𝑁 ∈
ℕ0) |
366 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐻‘𝑁)) → 𝑦 ∈ (𝐻‘𝑁)) |
367 | 1, 4, 49, 363, 364, 365, 366 | mhpmpl 21244 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐻‘𝑁)) → 𝑦 ∈ (Base‘(𝐼 mPoly 𝑈))) |
368 | 367 | adantrr 713 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴)))) → 𝑦 ∈ (Base‘(𝐼 mPoly 𝑈))) |
369 | 368 | adantrl 712 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → 𝑦 ∈ (Base‘(𝐼 mPoly 𝑈))) |
370 | 343, 369 | ffvelrnd 6944 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → (𝑄‘𝑦) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
371 | 370, 357 | eleqtrd 2841 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → (𝑄‘𝑦) ∈ (Base‘(𝑆 ↑s
(Base‘(𝑆
↑s 𝐼))))) |
372 | 333, 48, 334, 335, 336, 371 | pwselbas 17117 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → (𝑄‘𝑦):(Base‘(𝑆 ↑s 𝐼))⟶𝐾) |
373 | 372, 361 | ffvelrnd 6944 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → ((𝑄‘𝑦)‘𝐴) ∈ 𝐾) |
374 | | eqid 2738 |
. . . . . . . 8
⊢
(+g‘𝑆) = (+g‘𝑆) |
375 | 48, 374, 29 | ringdi 19720 |
. . . . . . 7
⊢ ((𝑆 ∈ Ring ∧ ((𝑁 ↑ 𝐿) ∈ 𝐾 ∧ ((𝑄‘𝑥)‘𝐴) ∈ 𝐾 ∧ ((𝑄‘𝑦)‘𝐴) ∈ 𝐾)) → ((𝑁 ↑ 𝐿) · (((𝑄‘𝑥)‘𝐴)(+g‘𝑆)((𝑄‘𝑦)‘𝐴))) = (((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))(+g‘𝑆)((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴)))) |
376 | 331, 332,
362, 373, 375 | syl13anc 1370 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → ((𝑁 ↑ 𝐿) · (((𝑄‘𝑥)‘𝐴)(+g‘𝑆)((𝑄‘𝑦)‘𝐴))) = (((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))(+g‘𝑆)((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴)))) |
377 | 8 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → 𝐼 ∈ 𝑉) |
378 | 9 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → 𝑅 ∈ (SubRing‘𝑆)) |
379 | 54 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
380 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) → ((𝑄‘𝑥)‘𝐴) = ((𝑄‘𝑥)‘𝐴)) |
381 | 348, 380 | anim12dan 618 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴)))) → (𝑥 ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘𝑥)‘𝐴) = ((𝑄‘𝑥)‘𝐴))) |
382 | 381 | adantrr 713 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → (𝑥 ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘𝑥)‘𝐴) = ((𝑄‘𝑥)‘𝐴))) |
383 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))) → ((𝑄‘𝑦)‘𝐴) = ((𝑄‘𝑦)‘𝐴)) |
384 | 367, 383 | anim12dan 618 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴)))) → (𝑦 ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘𝑦)‘𝐴) = ((𝑄‘𝑦)‘𝐴))) |
385 | 384 | adantrl 712 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → (𝑦 ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘𝑦)‘𝐴) = ((𝑄‘𝑦)‘𝐴))) |
386 | 47, 4, 10, 48, 49, 377, 335, 378, 379, 382, 385, 5, 374 | evlsaddval 40200 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → ((𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘𝐴) = (((𝑄‘𝑥)‘𝐴)(+g‘𝑆)((𝑄‘𝑦)‘𝐴)))) |
387 | 386 | simprd 495 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘𝐴) = (((𝑄‘𝑥)‘𝐴)(+g‘𝑆)((𝑄‘𝑦)‘𝐴))) |
388 | 387 | oveq2d 7271 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → ((𝑁 ↑ 𝐿) · ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘𝐴)) = ((𝑁 ↑ 𝐿) · (((𝑄‘𝑥)‘𝐴)(+g‘𝑆)((𝑄‘𝑦)‘𝐴)))) |
389 | 58 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → 𝐾 ∈ V) |
390 | 63 | adantlr 711 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) ∧ (𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾)) → (𝑗 · 𝑘) ∈ 𝐾) |
391 | 68 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → (𝐼 × {𝐿}):𝐼⟶𝐾) |
392 | 70 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → 𝐴:𝐼⟶𝐾) |
393 | 390, 391,
392, 377, 377, 71 | off 7529 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → ((𝐼 × {𝐿}) ∘f · 𝐴):𝐼⟶𝐾) |
394 | 389, 377,
393 | elmapdd 40142 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → ((𝐼 × {𝐿}) ∘f · 𝐴) ∈ (𝐾 ↑m 𝐼)) |
395 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) → ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) |
396 | 348, 395 | anim12dan 618 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴)))) → (𝑥 ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴)))) |
397 | 396 | adantrr 713 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → (𝑥 ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴)))) |
398 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))) → ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))) |
399 | 367, 398 | anim12dan 618 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴)))) → (𝑦 ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴)))) |
400 | 399 | adantrl 712 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → (𝑦 ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴)))) |
401 | 47, 4, 10, 48, 49, 377, 335, 378, 394, 397, 400, 5, 374 | evlsaddval 40200 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → ((𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) ∈ (Base‘(𝐼 mPoly 𝑈)) ∧ ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = (((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))(+g‘𝑆)((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) |
402 | 401 | simprd 495 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = (((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))(+g‘𝑆)((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴)))) |
403 | 376, 388,
402 | 3eqtr4rd 2789 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘𝐴))) |
404 | | ovex 7288 |
. . . . . 6
⊢ (𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) ∈ V |
405 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑓 = (𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) → (𝑄‘𝑓) = (𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))) |
406 | 405 | fveq1d 6758 |
. . . . . . 7
⊢ (𝑓 = (𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) → ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘((𝐼 × {𝐿}) ∘f · 𝐴))) |
407 | 405 | fveq1d 6758 |
. . . . . . . 8
⊢ (𝑓 = (𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) → ((𝑄‘𝑓)‘𝐴) = ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘𝐴)) |
408 | 407 | oveq2d 7271 |
. . . . . . 7
⊢ (𝑓 = (𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) → ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘𝐴))) |
409 | 406, 408 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑓 = (𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) → (((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴)) ↔ ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘𝐴)))) |
410 | 404, 409 | elab 3602 |
. . . . 5
⊢ ((𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) ∈ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))} ↔ ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘(𝑥(+g‘(𝐼 mPoly 𝑈))𝑦))‘𝐴))) |
411 | 403, 410 | sylibr 233 |
. . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑥)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑥)‘𝐴))) ∧ (𝑦 ∈ (𝐻‘𝑁) ∧ ((𝑄‘𝑦)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑦)‘𝐴))))) → (𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) ∈ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))}) |
412 | 330, 411 | sylan2b 593 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐻‘𝑁) ∩ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))}) ∧ 𝑦 ∈ ((𝐻‘𝑁) ∩ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))}))) → (𝑥(+g‘(𝐼 mPoly 𝑈))𝑦) ∈ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))}) |
413 | 1, 2, 3, 4, 5, 6, 7, 8, 13, 14, 15, 85, 309, 412 | mhpind 40206 |
. 2
⊢ (𝜑 → 𝑋 ∈ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))}) |
414 | | fveq2 6756 |
. . . . . 6
⊢ (𝑓 = 𝑋 → (𝑄‘𝑓) = (𝑄‘𝑋)) |
415 | 414 | fveq1d 6758 |
. . . . 5
⊢ (𝑓 = 𝑋 → ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑄‘𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴))) |
416 | 414 | fveq1d 6758 |
. . . . . 6
⊢ (𝑓 = 𝑋 → ((𝑄‘𝑓)‘𝐴) = ((𝑄‘𝑋)‘𝐴)) |
417 | 416 | oveq2d 7271 |
. . . . 5
⊢ (𝑓 = 𝑋 → ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑋)‘𝐴))) |
418 | 415, 417 | eqeq12d 2754 |
. . . 4
⊢ (𝑓 = 𝑋 → (((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴)) ↔ ((𝑄‘𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑋)‘𝐴)))) |
419 | 418 | elabg 3600 |
. . 3
⊢ (𝑋 ∈ (𝐻‘𝑁) → (𝑋 ∈ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))} ↔ ((𝑄‘𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑋)‘𝐴)))) |
420 | 15, 419 | syl 17 |
. 2
⊢ (𝜑 → (𝑋 ∈ {𝑓 ∣ ((𝑄‘𝑓)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑓)‘𝐴))} ↔ ((𝑄‘𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑋)‘𝐴)))) |
421 | 413, 420 | mpbid 231 |
1
⊢ (𝜑 → ((𝑄‘𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑋)‘𝐴))) |