Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mhphf Structured version   Visualization version   GIF version

Theorem mhphf 42612
Description: A homogeneous polynomial defines a homogeneous function. Equivalently, an algebraic form is a homogeneous function. (An algebraic form is the function corresponding to a homogeneous polynomial, which in this case is the (𝑄𝑋) which corresponds to 𝑋). (Contributed by SN, 28-Jul-2024.) (Proof shortened by SN, 8-Mar-2025.)
Hypotheses
Ref Expression
mhphf.q 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
mhphf.h 𝐻 = (𝐼 mHomP 𝑈)
mhphf.u 𝑈 = (𝑆s 𝑅)
mhphf.k 𝐾 = (Base‘𝑆)
mhphf.m · = (.r𝑆)
mhphf.e = (.g‘(mulGrp‘𝑆))
mhphf.s (𝜑𝑆 ∈ CRing)
mhphf.r (𝜑𝑅 ∈ (SubRing‘𝑆))
mhphf.l (𝜑𝐿𝑅)
mhphf.x (𝜑𝑋 ∈ (𝐻𝑁))
mhphf.a (𝜑𝐴 ∈ (𝐾m 𝐼))
Assertion
Ref Expression
mhphf (𝜑 → ((𝑄𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴)))

Proof of Theorem mhphf
Dummy variables 𝑏 𝑖 𝑘 𝑗 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhphf.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ (𝐾m 𝐼))
2 elmapi 8890 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ (𝐾m 𝐼) → 𝐴:𝐼𝐾)
31, 2syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐴:𝐼𝐾)
43ffnd 6736 . . . . . . . . . . . . . . 15 (𝜑𝐴 Fn 𝐼)
51, 4fndmexd 7927 . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ V)
65adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 𝐼 ∈ V)
7 mhphf.l . . . . . . . . . . . . . 14 (𝜑𝐿𝑅)
87adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 𝐿𝑅)
94adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 𝐴 Fn 𝐼)
10 eqidd 2737 . . . . . . . . . . . . 13 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → (𝐴𝑖) = (𝐴𝑖))
116, 8, 9, 10ofc1 7726 . . . . . . . . . . . 12 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖) = (𝐿 · (𝐴𝑖)))
1211oveq2d 7448 . . . . . . . . . . 11 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖)) = ((𝑏𝑖) (𝐿 · (𝐴𝑖))))
13 mhphf.s . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ CRing)
14 eqid 2736 . . . . . . . . . . . . . . 15 (mulGrp‘𝑆) = (mulGrp‘𝑆)
1514crngmgp 20239 . . . . . . . . . . . . . 14 (𝑆 ∈ CRing → (mulGrp‘𝑆) ∈ CMnd)
1613, 15syl 17 . . . . . . . . . . . . 13 (𝜑 → (mulGrp‘𝑆) ∈ CMnd)
1716ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → (mulGrp‘𝑆) ∈ CMnd)
18 elrabi 3686 . . . . . . . . . . . . . . 15 (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} → 𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
19 eqid 2736 . . . . . . . . . . . . . . . 16 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
2019psrbagf 21939 . . . . . . . . . . . . . . 15 (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑏:𝐼⟶ℕ0)
2118, 20syl 17 . . . . . . . . . . . . . 14 (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} → 𝑏:𝐼⟶ℕ0)
2221adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 𝑏:𝐼⟶ℕ0)
2322ffvelcdmda 7103 . . . . . . . . . . . 12 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → (𝑏𝑖) ∈ ℕ0)
24 mhphf.r . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ (SubRing‘𝑆))
25 mhphf.k . . . . . . . . . . . . . . . 16 𝐾 = (Base‘𝑆)
2625subrgss 20573 . . . . . . . . . . . . . . 15 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐾)
2724, 26syl 17 . . . . . . . . . . . . . 14 (𝜑𝑅𝐾)
2827, 7sseldd 3983 . . . . . . . . . . . . 13 (𝜑𝐿𝐾)
2928ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → 𝐿𝐾)
303adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 𝐴:𝐼𝐾)
3130ffvelcdmda 7103 . . . . . . . . . . . 12 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → (𝐴𝑖) ∈ 𝐾)
3214, 25mgpbas 20143 . . . . . . . . . . . . 13 𝐾 = (Base‘(mulGrp‘𝑆))
33 mhphf.e . . . . . . . . . . . . 13 = (.g‘(mulGrp‘𝑆))
34 mhphf.m . . . . . . . . . . . . . 14 · = (.r𝑆)
3514, 34mgpplusg 20142 . . . . . . . . . . . . 13 · = (+g‘(mulGrp‘𝑆))
3632, 33, 35mulgnn0di 19844 . . . . . . . . . . . 12 (((mulGrp‘𝑆) ∈ CMnd ∧ ((𝑏𝑖) ∈ ℕ0𝐿𝐾 ∧ (𝐴𝑖) ∈ 𝐾)) → ((𝑏𝑖) (𝐿 · (𝐴𝑖))) = (((𝑏𝑖) 𝐿) · ((𝑏𝑖) (𝐴𝑖))))
3717, 23, 29, 31, 36syl13anc 1373 . . . . . . . . . . 11 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → ((𝑏𝑖) (𝐿 · (𝐴𝑖))) = (((𝑏𝑖) 𝐿) · ((𝑏𝑖) (𝐴𝑖))))
3812, 37eqtrd 2776 . . . . . . . . . 10 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖)) = (((𝑏𝑖) 𝐿) · ((𝑏𝑖) (𝐴𝑖))))
3938mpteq2dva 5241 . . . . . . . . 9 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑖𝐼 ↦ ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖))) = (𝑖𝐼 ↦ (((𝑏𝑖) 𝐿) · ((𝑏𝑖) (𝐴𝑖)))))
4039oveq2d 7448 . . . . . . . 8 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖)))) = ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ (((𝑏𝑖) 𝐿) · ((𝑏𝑖) (𝐴𝑖))))))
41 eqid 2736 . . . . . . . . . 10 (1r𝑆) = (1r𝑆)
4214, 41ringidval 20181 . . . . . . . . 9 (1r𝑆) = (0g‘(mulGrp‘𝑆))
4313adantr 480 . . . . . . . . . 10 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 𝑆 ∈ CRing)
4443, 15syl 17 . . . . . . . . 9 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (mulGrp‘𝑆) ∈ CMnd)
4513crngringd 20244 . . . . . . . . . . . 12 (𝜑𝑆 ∈ Ring)
4614ringmgp 20237 . . . . . . . . . . . 12 (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd)
4745, 46syl 17 . . . . . . . . . . 11 (𝜑 → (mulGrp‘𝑆) ∈ Mnd)
4847ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → (mulGrp‘𝑆) ∈ Mnd)
4932, 33, 48, 23, 29mulgnn0cld 19114 . . . . . . . . 9 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → ((𝑏𝑖) 𝐿) ∈ 𝐾)
5032, 33, 48, 23, 31mulgnn0cld 19114 . . . . . . . . 9 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → ((𝑏𝑖) (𝐴𝑖)) ∈ 𝐾)
51 eqidd 2737 . . . . . . . . 9 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑖𝐼 ↦ ((𝑏𝑖) 𝐿)) = (𝑖𝐼 ↦ ((𝑏𝑖) 𝐿)))
52 eqidd 2737 . . . . . . . . 9 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))) = (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))
535mptexd 7245 . . . . . . . . . . 11 (𝜑 → (𝑖𝐼 ↦ ((𝑏𝑖) 𝐿)) ∈ V)
5453adantr 480 . . . . . . . . . 10 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑖𝐼 ↦ ((𝑏𝑖) 𝐿)) ∈ V)
55 fvexd 6920 . . . . . . . . . 10 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (1r𝑆) ∈ V)
56 funmpt 6603 . . . . . . . . . . 11 Fun (𝑖𝐼 ↦ ((𝑏𝑖) 𝐿))
5756a1i 11 . . . . . . . . . 10 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → Fun (𝑖𝐼 ↦ ((𝑏𝑖) 𝐿)))
5819psrbagfsupp 21940 . . . . . . . . . . . 12 (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑏 finSupp 0)
5918, 58syl 17 . . . . . . . . . . 11 (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} → 𝑏 finSupp 0)
6059adantl 481 . . . . . . . . . 10 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 𝑏 finSupp 0)
6122feqmptd 6976 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 𝑏 = (𝑖𝐼 ↦ (𝑏𝑖)))
6261oveq1d 7447 . . . . . . . . . . . 12 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑏 supp 0) = ((𝑖𝐼 ↦ (𝑏𝑖)) supp 0))
6362eqimsscd 4040 . . . . . . . . . . 11 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((𝑖𝐼 ↦ (𝑏𝑖)) supp 0) ⊆ (𝑏 supp 0))
6432, 42, 33mulg0 19093 . . . . . . . . . . . 12 (𝑘𝐾 → (0 𝑘) = (1r𝑆))
6564adantl 481 . . . . . . . . . . 11 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑘𝐾) → (0 𝑘) = (1r𝑆))
66 0zd 12627 . . . . . . . . . . 11 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 0 ∈ ℤ)
6763, 65, 23, 29, 66suppssov1 8223 . . . . . . . . . 10 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((𝑖𝐼 ↦ ((𝑏𝑖) 𝐿)) supp (1r𝑆)) ⊆ (𝑏 supp 0))
6854, 55, 57, 60, 67fsuppsssuppgd 9423 . . . . . . . . 9 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑖𝐼 ↦ ((𝑏𝑖) 𝐿)) finSupp (1r𝑆))
695mptexd 7245 . . . . . . . . . . 11 (𝜑 → (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))) ∈ V)
7069adantr 480 . . . . . . . . . 10 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))) ∈ V)
71 funmpt 6603 . . . . . . . . . . 11 Fun (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))
7271a1i 11 . . . . . . . . . 10 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → Fun (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))
7363, 65, 23, 31, 66suppssov1 8223 . . . . . . . . . 10 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))) supp (1r𝑆)) ⊆ (𝑏 supp 0))
7470, 55, 72, 60, 73fsuppsssuppgd 9423 . . . . . . . . 9 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))) finSupp (1r𝑆))
7532, 42, 35, 44, 6, 49, 50, 51, 52, 68, 74gsummptfsadd 19943 . . . . . . . 8 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ (((𝑏𝑖) 𝐿) · ((𝑏𝑖) (𝐴𝑖))))) = (((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) 𝐿))) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))))
76 eqid 2736 . . . . . . . . . 10 {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} = {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}
77 mhphf.h . . . . . . . . . . 11 𝐻 = (𝐼 mHomP 𝑈)
78 mhphf.x . . . . . . . . . . 11 (𝜑𝑋 ∈ (𝐻𝑁))
7977, 78mhprcl 22148 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
8019, 76, 32, 33, 5, 47, 28, 79mhphflem 42611 . . . . . . . . 9 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) 𝐿))) = (𝑁 𝐿))
8180oveq1d 7447 . . . . . . . 8 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) 𝐿))) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))) = ((𝑁 𝐿) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))))
8240, 75, 813eqtrd 2780 . . . . . . 7 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖)))) = ((𝑁 𝐿) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))))
8382oveq2d 7448 . . . . . 6 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖))))) = ((𝑋𝑏) · ((𝑁 𝐿) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))))
84 eqid 2736 . . . . . . . . . . 11 (𝐼 mPoly 𝑈) = (𝐼 mPoly 𝑈)
85 eqid 2736 . . . . . . . . . . 11 (Base‘𝑈) = (Base‘𝑈)
86 eqid 2736 . . . . . . . . . . 11 (Base‘(𝐼 mPoly 𝑈)) = (Base‘(𝐼 mPoly 𝑈))
8777, 84, 86, 78mhpmpl 22149 . . . . . . . . . . 11 (𝜑𝑋 ∈ (Base‘(𝐼 mPoly 𝑈)))
8884, 85, 86, 19, 87mplelf 22019 . . . . . . . . . 10 (𝜑𝑋:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑈))
89 mhphf.u . . . . . . . . . . . . 13 𝑈 = (𝑆s 𝑅)
9089subrgbas 20582 . . . . . . . . . . . 12 (𝑅 ∈ (SubRing‘𝑆) → 𝑅 = (Base‘𝑈))
9190, 26eqsstrrd 4018 . . . . . . . . . . 11 (𝑅 ∈ (SubRing‘𝑆) → (Base‘𝑈) ⊆ 𝐾)
9224, 91syl 17 . . . . . . . . . 10 (𝜑 → (Base‘𝑈) ⊆ 𝐾)
9388, 92fssd 6752 . . . . . . . . 9 (𝜑𝑋:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶𝐾)
9493ffvelcdmda 7103 . . . . . . . 8 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑋𝑏) ∈ 𝐾)
9518, 94sylan2 593 . . . . . . 7 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑋𝑏) ∈ 𝐾)
9632, 33, 47, 79, 28mulgnn0cld 19114 . . . . . . . 8 (𝜑 → (𝑁 𝐿) ∈ 𝐾)
9796adantr 480 . . . . . . 7 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑁 𝐿) ∈ 𝐾)
985adantr 480 . . . . . . . . 9 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐼 ∈ V)
9913adantr 480 . . . . . . . . 9 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑆 ∈ CRing)
1001adantr 480 . . . . . . . . 9 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐴 ∈ (𝐾m 𝐼))
101 simpr 484 . . . . . . . . 9 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
10219, 25, 14, 33, 98, 99, 100, 101evlsvvvallem 42576 . . . . . . . 8 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))) ∈ 𝐾)
10318, 102sylan2 593 . . . . . . 7 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))) ∈ 𝐾)
10425, 34, 43, 95, 97, 103crng12d 20256 . . . . . 6 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((𝑋𝑏) · ((𝑁 𝐿) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))) = ((𝑁 𝐿) · ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))))
10583, 104eqtrd 2776 . . . . 5 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖))))) = ((𝑁 𝐿) · ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))))
106105mpteq2dva 5241 . . . 4 (𝜑 → (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖)))))) = (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑁 𝐿) · ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))))))
107106oveq2d 7448 . . 3 (𝜑 → (𝑆 Σg (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖))))))) = (𝑆 Σg (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑁 𝐿) · ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))))))
108 eqid 2736 . . . 4 (0g𝑆) = (0g𝑆)
109 ovex 7465 . . . . . . 7 (ℕ0m 𝐼) ∈ V
110109rabex 5338 . . . . . 6 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V
111110rabex 5338 . . . . 5 {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∈ V
112111a1i 11 . . . 4 (𝜑 → {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∈ V)
11345adantr 480 . . . . . 6 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑆 ∈ Ring)
11425, 34, 113, 94, 102ringcld 20258 . . . . 5 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))) ∈ 𝐾)
11518, 114sylan2 593 . . . 4 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))) ∈ 𝐾)
116 ssrab2 4079 . . . . . 6 {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ⊆ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
117 mptss 6059 . . . . . 6 ({𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ⊆ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))) ⊆ (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))))
118116, 117mp1i 13 . . . . 5 (𝜑 → (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))) ⊆ (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))))
11919, 84, 89, 86, 25, 14, 33, 34, 5, 13, 24, 87, 1evlsvvvallem2 42577 . . . . 5 (𝜑 → (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))) finSupp (0g𝑆))
120118, 119fsuppss 9424 . . . 4 (𝜑 → (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))) finSupp (0g𝑆))
12125, 108, 34, 45, 112, 96, 115, 120gsummulc2 20315 . . 3 (𝜑 → (𝑆 Σg (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑁 𝐿) · ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))))) = ((𝑁 𝐿) · (𝑆 Σg (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))))))
122107, 121eqtrd 2776 . 2 (𝜑 → (𝑆 Σg (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖))))))) = ((𝑁 𝐿) · (𝑆 Σg (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))))))
123 mhphf.q . . 3 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
12425fvexi 6919 . . . . 5 𝐾 ∈ V
125124a1i 11 . . . 4 (𝜑𝐾 ∈ V)
12625, 34ringcl 20248 . . . . . . 7 ((𝑆 ∈ Ring ∧ 𝑗𝐾𝑘𝐾) → (𝑗 · 𝑘) ∈ 𝐾)
12745, 126syl3an1 1163 . . . . . 6 ((𝜑𝑗𝐾𝑘𝐾) → (𝑗 · 𝑘) ∈ 𝐾)
1281273expb 1120 . . . . 5 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → (𝑗 · 𝑘) ∈ 𝐾)
129 fconst6g 6796 . . . . . 6 (𝐿𝐾 → (𝐼 × {𝐿}):𝐼𝐾)
13028, 129syl 17 . . . . 5 (𝜑 → (𝐼 × {𝐿}):𝐼𝐾)
131 inidm 4226 . . . . 5 (𝐼𝐼) = 𝐼
132128, 130, 3, 5, 5, 131off 7716 . . . 4 (𝜑 → ((𝐼 × {𝐿}) ∘f · 𝐴):𝐼𝐾)
133125, 5, 132elmapdd 8882 . . 3 (𝜑 → ((𝐼 × {𝐿}) ∘f · 𝐴) ∈ (𝐾m 𝐼))
134123, 77, 89, 19, 76, 25, 14, 33, 34, 13, 24, 78, 133evlsmhpvvval 42610 . 2 (𝜑 → ((𝑄𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = (𝑆 Σg (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖))))))))
135123, 77, 89, 19, 76, 25, 14, 33, 34, 13, 24, 78, 1evlsmhpvvval 42610 . . 3 (𝜑 → ((𝑄𝑋)‘𝐴) = (𝑆 Σg (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))))))
136135oveq2d 7448 . 2 (𝜑 → ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴)) = ((𝑁 𝐿) · (𝑆 Σg (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))))))
137122, 134, 1363eqtr4d 2786 1 (𝜑 → ((𝑄𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {crab 3435  Vcvv 3479  wss 3950  {csn 4625   class class class wbr 5142  cmpt 5224   × cxp 5682  ccnv 5683  cima 5687  Fun wfun 6554   Fn wfn 6555  wf 6556  cfv 6560  (class class class)co 7432  f cof 7696   supp csupp 8186  m cmap 8867  Fincfn 8986   finSupp cfsupp 9402  0cc0 11156  cn 12267  0cn0 12528  cz 12615  Basecbs 17248  s cress 17275  .rcmulr 17299  0gc0g 17485   Σg cgsu 17486  Mndcmnd 18748  .gcmg 19086  CMndccmn 19799  mulGrpcmgp 20138  1rcur 20179  Ringcrg 20231  CRingccrg 20232  SubRingcsubrg 20570  fldccnfld 21365   mPoly cmpl 21927   evalSub ces 22097   mHomP cmhp 22134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-addf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-ofr 7699  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-sup 9483  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-fzo 13696  df-seq 14044  df-hash 14371  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-0g 17487  df-gsum 17488  df-prds 17493  df-pws 17495  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-submnd 18798  df-grp 18955  df-minusg 18956  df-sbg 18957  df-mulg 19087  df-subg 19142  df-ghm 19232  df-cntz 19336  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-srg 20185  df-ring 20233  df-cring 20234  df-rhm 20473  df-subrng 20547  df-subrg 20571  df-lmod 20861  df-lss 20931  df-lsp 20971  df-cnfld 21366  df-assa 21874  df-asp 21875  df-ascl 21876  df-psr 21930  df-mvr 21931  df-mpl 21932  df-evls 22099  df-mhp 22141
This theorem is referenced by:  mhphf2  42613  mhphf3  42614
  Copyright terms: Public domain W3C validator