Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mhphf Structured version   Visualization version   GIF version

Theorem mhphf 41634
Description: A homogeneous polynomial defines a homogeneous function. Equivalently, an algebraic form is a homogeneous function. (An algebraic form is the function corresponding to a homogeneous polynomial, which in this case is the (𝑄𝑋) which corresponds to 𝑋). (Contributed by SN, 28-Jul-2024.) (Proof shortened by SN, 8-Mar-2025.)
Hypotheses
Ref Expression
mhphf.q 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
mhphf.h 𝐻 = (𝐼 mHomP 𝑈)
mhphf.u 𝑈 = (𝑆s 𝑅)
mhphf.k 𝐾 = (Base‘𝑆)
mhphf.m · = (.r𝑆)
mhphf.e = (.g‘(mulGrp‘𝑆))
mhphf.i (𝜑𝐼𝑉)
mhphf.s (𝜑𝑆 ∈ CRing)
mhphf.r (𝜑𝑅 ∈ (SubRing‘𝑆))
mhphf.l (𝜑𝐿𝑅)
mhphf.n (𝜑𝑁 ∈ ℕ0)
mhphf.x (𝜑𝑋 ∈ (𝐻𝑁))
mhphf.a (𝜑𝐴 ∈ (𝐾m 𝐼))
Assertion
Ref Expression
mhphf (𝜑 → ((𝑄𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴)))

Proof of Theorem mhphf
Dummy variables 𝑏 𝑖 𝑘 𝑗 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhphf.i . . . . . . . . . . . . . 14 (𝜑𝐼𝑉)
21adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 𝐼𝑉)
3 mhphf.l . . . . . . . . . . . . . 14 (𝜑𝐿𝑅)
43adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 𝐿𝑅)
5 mhphf.a . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ (𝐾m 𝐼))
6 elmapi 8849 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (𝐾m 𝐼) → 𝐴:𝐼𝐾)
75, 6syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐴:𝐼𝐾)
87ffnd 6718 . . . . . . . . . . . . . 14 (𝜑𝐴 Fn 𝐼)
98adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 𝐴 Fn 𝐼)
10 eqidd 2732 . . . . . . . . . . . . 13 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → (𝐴𝑖) = (𝐴𝑖))
112, 4, 9, 10ofc1 7700 . . . . . . . . . . . 12 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖) = (𝐿 · (𝐴𝑖)))
1211oveq2d 7428 . . . . . . . . . . 11 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖)) = ((𝑏𝑖) (𝐿 · (𝐴𝑖))))
13 mhphf.s . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ CRing)
14 eqid 2731 . . . . . . . . . . . . . . 15 (mulGrp‘𝑆) = (mulGrp‘𝑆)
1514crngmgp 20142 . . . . . . . . . . . . . 14 (𝑆 ∈ CRing → (mulGrp‘𝑆) ∈ CMnd)
1613, 15syl 17 . . . . . . . . . . . . 13 (𝜑 → (mulGrp‘𝑆) ∈ CMnd)
1716ad2antrr 723 . . . . . . . . . . . 12 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → (mulGrp‘𝑆) ∈ CMnd)
18 elrabi 3677 . . . . . . . . . . . . . . 15 (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} → 𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
19 eqid 2731 . . . . . . . . . . . . . . . 16 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
2019psrbagf 21781 . . . . . . . . . . . . . . 15 (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑏:𝐼⟶ℕ0)
2118, 20syl 17 . . . . . . . . . . . . . 14 (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} → 𝑏:𝐼⟶ℕ0)
2221adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 𝑏:𝐼⟶ℕ0)
2322ffvelcdmda 7086 . . . . . . . . . . . 12 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → (𝑏𝑖) ∈ ℕ0)
24 mhphf.r . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ (SubRing‘𝑆))
25 mhphf.k . . . . . . . . . . . . . . . 16 𝐾 = (Base‘𝑆)
2625subrgss 20470 . . . . . . . . . . . . . . 15 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐾)
2724, 26syl 17 . . . . . . . . . . . . . 14 (𝜑𝑅𝐾)
2827, 3sseldd 3983 . . . . . . . . . . . . 13 (𝜑𝐿𝐾)
2928ad2antrr 723 . . . . . . . . . . . 12 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → 𝐿𝐾)
307adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 𝐴:𝐼𝐾)
3130ffvelcdmda 7086 . . . . . . . . . . . 12 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → (𝐴𝑖) ∈ 𝐾)
3214, 25mgpbas 20041 . . . . . . . . . . . . 13 𝐾 = (Base‘(mulGrp‘𝑆))
33 mhphf.e . . . . . . . . . . . . 13 = (.g‘(mulGrp‘𝑆))
34 mhphf.m . . . . . . . . . . . . . 14 · = (.r𝑆)
3514, 34mgpplusg 20039 . . . . . . . . . . . . 13 · = (+g‘(mulGrp‘𝑆))
3632, 33, 35mulgnn0di 19741 . . . . . . . . . . . 12 (((mulGrp‘𝑆) ∈ CMnd ∧ ((𝑏𝑖) ∈ ℕ0𝐿𝐾 ∧ (𝐴𝑖) ∈ 𝐾)) → ((𝑏𝑖) (𝐿 · (𝐴𝑖))) = (((𝑏𝑖) 𝐿) · ((𝑏𝑖) (𝐴𝑖))))
3717, 23, 29, 31, 36syl13anc 1371 . . . . . . . . . . 11 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → ((𝑏𝑖) (𝐿 · (𝐴𝑖))) = (((𝑏𝑖) 𝐿) · ((𝑏𝑖) (𝐴𝑖))))
3812, 37eqtrd 2771 . . . . . . . . . 10 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖)) = (((𝑏𝑖) 𝐿) · ((𝑏𝑖) (𝐴𝑖))))
3938mpteq2dva 5248 . . . . . . . . 9 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑖𝐼 ↦ ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖))) = (𝑖𝐼 ↦ (((𝑏𝑖) 𝐿) · ((𝑏𝑖) (𝐴𝑖)))))
4039oveq2d 7428 . . . . . . . 8 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖)))) = ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ (((𝑏𝑖) 𝐿) · ((𝑏𝑖) (𝐴𝑖))))))
41 eqid 2731 . . . . . . . . . 10 (1r𝑆) = (1r𝑆)
4214, 41ringidval 20084 . . . . . . . . 9 (1r𝑆) = (0g‘(mulGrp‘𝑆))
4313adantr 480 . . . . . . . . . 10 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 𝑆 ∈ CRing)
4443, 15syl 17 . . . . . . . . 9 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (mulGrp‘𝑆) ∈ CMnd)
4513crngringd 20147 . . . . . . . . . . . 12 (𝜑𝑆 ∈ Ring)
4614ringmgp 20140 . . . . . . . . . . . 12 (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd)
4745, 46syl 17 . . . . . . . . . . 11 (𝜑 → (mulGrp‘𝑆) ∈ Mnd)
4847ad2antrr 723 . . . . . . . . . 10 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → (mulGrp‘𝑆) ∈ Mnd)
4932, 33, 48, 23, 29mulgnn0cld 19018 . . . . . . . . 9 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → ((𝑏𝑖) 𝐿) ∈ 𝐾)
5032, 33, 48, 23, 31mulgnn0cld 19018 . . . . . . . . 9 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑖𝐼) → ((𝑏𝑖) (𝐴𝑖)) ∈ 𝐾)
51 eqidd 2732 . . . . . . . . 9 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑖𝐼 ↦ ((𝑏𝑖) 𝐿)) = (𝑖𝐼 ↦ ((𝑏𝑖) 𝐿)))
52 eqidd 2732 . . . . . . . . 9 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))) = (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))
531mptexd 7228 . . . . . . . . . . 11 (𝜑 → (𝑖𝐼 ↦ ((𝑏𝑖) 𝐿)) ∈ V)
5453adantr 480 . . . . . . . . . 10 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑖𝐼 ↦ ((𝑏𝑖) 𝐿)) ∈ V)
55 fvexd 6906 . . . . . . . . . 10 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (1r𝑆) ∈ V)
56 funmpt 6586 . . . . . . . . . . 11 Fun (𝑖𝐼 ↦ ((𝑏𝑖) 𝐿))
5756a1i 11 . . . . . . . . . 10 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → Fun (𝑖𝐼 ↦ ((𝑏𝑖) 𝐿)))
5819psrbagfsupp 21783 . . . . . . . . . . . 12 (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑏 finSupp 0)
5918, 58syl 17 . . . . . . . . . . 11 (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} → 𝑏 finSupp 0)
6059adantl 481 . . . . . . . . . 10 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 𝑏 finSupp 0)
6122feqmptd 6960 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 𝑏 = (𝑖𝐼 ↦ (𝑏𝑖)))
6261oveq1d 7427 . . . . . . . . . . . 12 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑏 supp 0) = ((𝑖𝐼 ↦ (𝑏𝑖)) supp 0))
6362eqimsscd 4039 . . . . . . . . . . 11 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((𝑖𝐼 ↦ (𝑏𝑖)) supp 0) ⊆ (𝑏 supp 0))
6432, 42, 33mulg0 19000 . . . . . . . . . . . 12 (𝑘𝐾 → (0 𝑘) = (1r𝑆))
6564adantl 481 . . . . . . . . . . 11 (((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ∧ 𝑘𝐾) → (0 𝑘) = (1r𝑆))
66 0zd 12577 . . . . . . . . . . 11 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → 0 ∈ ℤ)
6763, 65, 23, 29, 66suppssov1 8188 . . . . . . . . . 10 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((𝑖𝐼 ↦ ((𝑏𝑖) 𝐿)) supp (1r𝑆)) ⊆ (𝑏 supp 0))
6854, 55, 57, 60, 67fsuppsssuppgd 41533 . . . . . . . . 9 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑖𝐼 ↦ ((𝑏𝑖) 𝐿)) finSupp (1r𝑆))
691mptexd 7228 . . . . . . . . . . 11 (𝜑 → (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))) ∈ V)
7069adantr 480 . . . . . . . . . 10 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))) ∈ V)
71 funmpt 6586 . . . . . . . . . . 11 Fun (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))
7271a1i 11 . . . . . . . . . 10 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → Fun (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))
7363, 65, 23, 31, 66suppssov1 8188 . . . . . . . . . 10 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))) supp (1r𝑆)) ⊆ (𝑏 supp 0))
7470, 55, 72, 60, 73fsuppsssuppgd 41533 . . . . . . . . 9 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))) finSupp (1r𝑆))
7532, 42, 35, 44, 2, 49, 50, 51, 52, 68, 74gsummptfsadd 19840 . . . . . . . 8 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ (((𝑏𝑖) 𝐿) · ((𝑏𝑖) (𝐴𝑖))))) = (((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) 𝐿))) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))))
76 eqid 2731 . . . . . . . . . 10 {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} = {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}
77 mhphf.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
7819, 76, 32, 33, 1, 47, 28, 77mhphflem 41633 . . . . . . . . 9 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) 𝐿))) = (𝑁 𝐿))
7978oveq1d 7427 . . . . . . . 8 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) 𝐿))) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))) = ((𝑁 𝐿) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))))
8040, 75, 793eqtrd 2775 . . . . . . 7 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖)))) = ((𝑁 𝐿) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))))
8180oveq2d 7428 . . . . . 6 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖))))) = ((𝑋𝑏) · ((𝑁 𝐿) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))))
82 eqid 2731 . . . . . . . . . . 11 (𝐼 mPoly 𝑈) = (𝐼 mPoly 𝑈)
83 eqid 2731 . . . . . . . . . . 11 (Base‘𝑈) = (Base‘𝑈)
84 eqid 2731 . . . . . . . . . . 11 (Base‘(𝐼 mPoly 𝑈)) = (Base‘(𝐼 mPoly 𝑈))
85 mhphf.h . . . . . . . . . . . 12 𝐻 = (𝐼 mHomP 𝑈)
86 mhphf.u . . . . . . . . . . . . . 14 𝑈 = (𝑆s 𝑅)
8786ovexi 7446 . . . . . . . . . . . . 13 𝑈 ∈ V
8887a1i 11 . . . . . . . . . . . 12 (𝜑𝑈 ∈ V)
89 mhphf.x . . . . . . . . . . . 12 (𝜑𝑋 ∈ (𝐻𝑁))
9085, 82, 84, 1, 88, 77, 89mhpmpl 21996 . . . . . . . . . . 11 (𝜑𝑋 ∈ (Base‘(𝐼 mPoly 𝑈)))
9182, 83, 84, 19, 90mplelf 21868 . . . . . . . . . 10 (𝜑𝑋:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑈))
9286subrgbas 20479 . . . . . . . . . . . 12 (𝑅 ∈ (SubRing‘𝑆) → 𝑅 = (Base‘𝑈))
9392, 26eqsstrrd 4021 . . . . . . . . . . 11 (𝑅 ∈ (SubRing‘𝑆) → (Base‘𝑈) ⊆ 𝐾)
9424, 93syl 17 . . . . . . . . . 10 (𝜑 → (Base‘𝑈) ⊆ 𝐾)
9591, 94fssd 6735 . . . . . . . . 9 (𝜑𝑋:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶𝐾)
9695ffvelcdmda 7086 . . . . . . . 8 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑋𝑏) ∈ 𝐾)
9718, 96sylan2 592 . . . . . . 7 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑋𝑏) ∈ 𝐾)
9832, 33, 47, 77, 28mulgnn0cld 19018 . . . . . . . 8 (𝜑 → (𝑁 𝐿) ∈ 𝐾)
9998adantr 480 . . . . . . 7 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝑁 𝐿) ∈ 𝐾)
1001adantr 480 . . . . . . . . 9 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐼𝑉)
10113adantr 480 . . . . . . . . 9 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑆 ∈ CRing)
1025adantr 480 . . . . . . . . 9 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐴 ∈ (𝐾m 𝐼))
103 simpr 484 . . . . . . . . 9 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
10419, 25, 14, 33, 100, 101, 102, 103evlsvvvallem 41598 . . . . . . . 8 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))) ∈ 𝐾)
10518, 104sylan2 592 . . . . . . 7 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))) ∈ 𝐾)
10625, 34, 43, 97, 99, 105crng12d 41555 . . . . . 6 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((𝑋𝑏) · ((𝑁 𝐿) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))) = ((𝑁 𝐿) · ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))))
10781, 106eqtrd 2771 . . . . 5 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖))))) = ((𝑁 𝐿) · ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))))
108107mpteq2dva 5248 . . . 4 (𝜑 → (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖)))))) = (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑁 𝐿) · ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))))))
109108oveq2d 7428 . . 3 (𝜑 → (𝑆 Σg (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖))))))) = (𝑆 Σg (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑁 𝐿) · ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))))))
110 eqid 2731 . . . 4 (0g𝑆) = (0g𝑆)
111 ovex 7445 . . . . . . 7 (ℕ0m 𝐼) ∈ V
112111rabex 5332 . . . . . 6 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V
113112rabex 5332 . . . . 5 {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∈ V
114113a1i 11 . . . 4 (𝜑 → {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∈ V)
11545adantr 480 . . . . . 6 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑆 ∈ Ring)
11625, 34, 115, 96, 104ringcld 20158 . . . . 5 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))) ∈ 𝐾)
11718, 116sylan2 592 . . . 4 ((𝜑𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))) ∈ 𝐾)
118 ssrab2 4077 . . . . . 6 {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ⊆ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
119 mptss 6042 . . . . . 6 ({𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ⊆ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))) ⊆ (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))))
120118, 119mp1i 13 . . . . 5 (𝜑 → (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))) ⊆ (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))))
12119, 82, 86, 84, 25, 14, 33, 34, 1, 13, 24, 90, 5evlsvvvallem2 41599 . . . . 5 (𝜑 → (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))) finSupp (0g𝑆))
122120, 121fsuppss 41534 . . . 4 (𝜑 → (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))) finSupp (0g𝑆))
12325, 110, 34, 45, 114, 98, 117, 122gsummulc2 20212 . . 3 (𝜑 → (𝑆 Σg (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑁 𝐿) · ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))))) = ((𝑁 𝐿) · (𝑆 Σg (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))))))
124109, 123eqtrd 2771 . 2 (𝜑 → (𝑆 Σg (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖))))))) = ((𝑁 𝐿) · (𝑆 Σg (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))))))
125 mhphf.q . . 3 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
12625fvexi 6905 . . . . 5 𝐾 ∈ V
127126a1i 11 . . . 4 (𝜑𝐾 ∈ V)
12825, 34ringcl 20151 . . . . . . 7 ((𝑆 ∈ Ring ∧ 𝑗𝐾𝑘𝐾) → (𝑗 · 𝑘) ∈ 𝐾)
12945, 128syl3an1 1162 . . . . . 6 ((𝜑𝑗𝐾𝑘𝐾) → (𝑗 · 𝑘) ∈ 𝐾)
1301293expb 1119 . . . . 5 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → (𝑗 · 𝑘) ∈ 𝐾)
131 fconst6g 6780 . . . . . 6 (𝐿𝐾 → (𝐼 × {𝐿}):𝐼𝐾)
13228, 131syl 17 . . . . 5 (𝜑 → (𝐼 × {𝐿}):𝐼𝐾)
133 inidm 4218 . . . . 5 (𝐼𝐼) = 𝐼
134130, 132, 7, 1, 1, 133off 7692 . . . 4 (𝜑 → ((𝐼 × {𝐿}) ∘f · 𝐴):𝐼𝐾)
135127, 1, 134elmapdd 8841 . . 3 (𝜑 → ((𝐼 × {𝐿}) ∘f · 𝐴) ∈ (𝐾m 𝐼))
136125, 85, 86, 19, 76, 25, 14, 33, 34, 1, 13, 24, 77, 89, 135evlsmhpvvval 41632 . 2 (𝜑 → ((𝑄𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = (𝑆 Σg (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (((𝐼 × {𝐿}) ∘f · 𝐴)‘𝑖))))))))
137125, 85, 86, 19, 76, 25, 14, 33, 34, 1, 13, 24, 77, 89, 5evlsmhpvvval 41632 . . 3 (𝜑 → ((𝑄𝑋)‘𝐴) = (𝑆 Σg (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))))))
138137oveq2d 7428 . 2 (𝜑 → ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴)) = ((𝑁 𝐿) · (𝑆 Σg (𝑏 ∈ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↦ ((𝑋𝑏) · ((mulGrp‘𝑆) Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖)))))))))
139124, 136, 1383eqtr4d 2781 1 (𝜑 → ((𝑄𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  {crab 3431  Vcvv 3473  wss 3948  {csn 4628   class class class wbr 5148  cmpt 5231   × cxp 5674  ccnv 5675  cima 5679  Fun wfun 6537   Fn wfn 6538  wf 6539  cfv 6543  (class class class)co 7412  f cof 7672   supp csupp 8151  m cmap 8826  Fincfn 8945   finSupp cfsupp 9367  0cc0 11116  cn 12219  0cn0 12479  cz 12565  Basecbs 17151  s cress 17180  .rcmulr 17205  0gc0g 17392   Σg cgsu 17393  Mndcmnd 18665  .gcmg 18993  CMndccmn 19696  mulGrpcmgp 20035  1rcur 20082  Ringcrg 20134  CRingccrg 20135  SubRingcsubrg 20465  fldccnfld 21233   mPoly cmpl 21769   evalSub ces 21944   mHomP cmhp 21983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-addf 11195  ax-mulf 11196
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-ofr 7675  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8152  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-map 8828  df-pm 8829  df-ixp 8898  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fsupp 9368  df-sup 9443  df-oi 9511  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-fz 13492  df-fzo 13635  df-seq 13974  df-hash 14298  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-starv 17219  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-unif 17227  df-hom 17228  df-cco 17229  df-0g 17394  df-gsum 17395  df-prds 17400  df-pws 17402  df-mre 17537  df-mrc 17538  df-acs 17540  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-mhm 18711  df-submnd 18712  df-grp 18864  df-minusg 18865  df-sbg 18866  df-mulg 18994  df-subg 19046  df-ghm 19135  df-cntz 19229  df-cmn 19698  df-abl 19699  df-mgp 20036  df-rng 20054  df-ur 20083  df-srg 20088  df-ring 20136  df-cring 20137  df-rhm 20370  df-subrng 20442  df-subrg 20467  df-lmod 20704  df-lss 20775  df-lsp 20815  df-cnfld 21234  df-assa 21718  df-asp 21719  df-ascl 21720  df-psr 21772  df-mvr 21773  df-mpl 21774  df-evls 21946  df-mhp 21990
This theorem is referenced by:  mhphf2  41635  mhphf3  41636
  Copyright terms: Public domain W3C validator