MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  precsexlem7 Structured version   Visualization version   GIF version

Theorem precsexlem7 28115
Description: Lemma for surreal reciprocal. Show that 𝑅 is non-strictly increasing in its argument. (Contributed by Scott Fenton, 15-Mar-2025.)
Hypotheses
Ref Expression
precsexlem.1 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
precsexlem.2 𝐿 = (1st𝐹)
precsexlem.3 𝑅 = (2nd𝐹)
Assertion
Ref Expression
precsexlem7 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝐼𝐽) → (𝑅𝐼) ⊆ (𝑅𝐽))
Distinct variable groups:   𝐴,𝑎,𝑙,𝑝,𝑟,𝑥,𝑥𝐿,𝑥𝑅,𝑦𝑅   𝐹,𝑙,𝑝   𝐼,𝑎,𝑙,𝑝,𝑟,𝑥,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝐿,𝑎,𝑙,𝑥𝐿,𝑥𝑅,𝑦𝐿   𝑅,𝑎,𝑙,𝑟,𝑥𝐿,𝑥𝑅,𝑦𝑅
Allowed substitution hints:   𝐴(𝑦𝐿)   𝑅(𝑥,𝑝,𝑦𝐿)   𝐹(𝑥,𝑟,𝑎,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐽(𝑥,𝑟,𝑝,𝑎,𝑙,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐿(𝑥,𝑟,𝑝,𝑦𝑅)

Proof of Theorem precsexlem7
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnawordex 8601 . . 3 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼𝐽 ↔ ∃𝑘 ∈ ω (𝐼 +o 𝑘) = 𝐽))
2 oveq2 7395 . . . . . . . . . 10 (𝑘 = ∅ → (𝐼 +o 𝑘) = (𝐼 +o ∅))
32fveq2d 6862 . . . . . . . . 9 (𝑘 = ∅ → (𝑅‘(𝐼 +o 𝑘)) = (𝑅‘(𝐼 +o ∅)))
43sseq2d 3979 . . . . . . . 8 (𝑘 = ∅ → ((𝑅𝐼) ⊆ (𝑅‘(𝐼 +o 𝑘)) ↔ (𝑅𝐼) ⊆ (𝑅‘(𝐼 +o ∅))))
5 oveq2 7395 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐼 +o 𝑘) = (𝐼 +o 𝑗))
65fveq2d 6862 . . . . . . . . 9 (𝑘 = 𝑗 → (𝑅‘(𝐼 +o 𝑘)) = (𝑅‘(𝐼 +o 𝑗)))
76sseq2d 3979 . . . . . . . 8 (𝑘 = 𝑗 → ((𝑅𝐼) ⊆ (𝑅‘(𝐼 +o 𝑘)) ↔ (𝑅𝐼) ⊆ (𝑅‘(𝐼 +o 𝑗))))
8 oveq2 7395 . . . . . . . . . 10 (𝑘 = suc 𝑗 → (𝐼 +o 𝑘) = (𝐼 +o suc 𝑗))
98fveq2d 6862 . . . . . . . . 9 (𝑘 = suc 𝑗 → (𝑅‘(𝐼 +o 𝑘)) = (𝑅‘(𝐼 +o suc 𝑗)))
109sseq2d 3979 . . . . . . . 8 (𝑘 = suc 𝑗 → ((𝑅𝐼) ⊆ (𝑅‘(𝐼 +o 𝑘)) ↔ (𝑅𝐼) ⊆ (𝑅‘(𝐼 +o suc 𝑗))))
11 nna0 8568 . . . . . . . . . 10 (𝐼 ∈ ω → (𝐼 +o ∅) = 𝐼)
1211fveq2d 6862 . . . . . . . . 9 (𝐼 ∈ ω → (𝑅‘(𝐼 +o ∅)) = (𝑅𝐼))
1312eqimsscd 4004 . . . . . . . 8 (𝐼 ∈ ω → (𝑅𝐼) ⊆ (𝑅‘(𝐼 +o ∅)))
14 nnacl 8575 . . . . . . . . . . . 12 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝐼 +o 𝑗) ∈ ω)
15 ssun1 4141 . . . . . . . . . . . . 13 (𝑅‘(𝐼 +o 𝑗)) ⊆ ((𝑅‘(𝐼 +o 𝑗)) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿‘(𝐼 +o 𝑗))𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘(𝐼 +o 𝑗))𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))
16 precsexlem.1 . . . . . . . . . . . . . 14 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
17 precsexlem.2 . . . . . . . . . . . . . 14 𝐿 = (1st𝐹)
18 precsexlem.3 . . . . . . . . . . . . . 14 𝑅 = (2nd𝐹)
1916, 17, 18precsexlem5 28113 . . . . . . . . . . . . 13 ((𝐼 +o 𝑗) ∈ ω → (𝑅‘suc (𝐼 +o 𝑗)) = ((𝑅‘(𝐼 +o 𝑗)) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿‘(𝐼 +o 𝑗))𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘(𝐼 +o 𝑗))𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
2015, 19sseqtrrid 3990 . . . . . . . . . . . 12 ((𝐼 +o 𝑗) ∈ ω → (𝑅‘(𝐼 +o 𝑗)) ⊆ (𝑅‘suc (𝐼 +o 𝑗)))
2114, 20syl 17 . . . . . . . . . . 11 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝑅‘(𝐼 +o 𝑗)) ⊆ (𝑅‘suc (𝐼 +o 𝑗)))
22 nnasuc 8570 . . . . . . . . . . . 12 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝐼 +o suc 𝑗) = suc (𝐼 +o 𝑗))
2322fveq2d 6862 . . . . . . . . . . 11 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝑅‘(𝐼 +o suc 𝑗)) = (𝑅‘suc (𝐼 +o 𝑗)))
2421, 23sseqtrrd 3984 . . . . . . . . . 10 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝑅‘(𝐼 +o 𝑗)) ⊆ (𝑅‘(𝐼 +o suc 𝑗)))
25 sstr2 3953 . . . . . . . . . 10 ((𝑅𝐼) ⊆ (𝑅‘(𝐼 +o 𝑗)) → ((𝑅‘(𝐼 +o 𝑗)) ⊆ (𝑅‘(𝐼 +o suc 𝑗)) → (𝑅𝐼) ⊆ (𝑅‘(𝐼 +o suc 𝑗))))
2624, 25syl5com 31 . . . . . . . . 9 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑅𝐼) ⊆ (𝑅‘(𝐼 +o 𝑗)) → (𝑅𝐼) ⊆ (𝑅‘(𝐼 +o suc 𝑗))))
2726expcom 413 . . . . . . . 8 (𝑗 ∈ ω → (𝐼 ∈ ω → ((𝑅𝐼) ⊆ (𝑅‘(𝐼 +o 𝑗)) → (𝑅𝐼) ⊆ (𝑅‘(𝐼 +o suc 𝑗)))))
284, 7, 10, 13, 27finds2 7874 . . . . . . 7 (𝑘 ∈ ω → (𝐼 ∈ ω → (𝑅𝐼) ⊆ (𝑅‘(𝐼 +o 𝑘))))
2928impcom 407 . . . . . 6 ((𝐼 ∈ ω ∧ 𝑘 ∈ ω) → (𝑅𝐼) ⊆ (𝑅‘(𝐼 +o 𝑘)))
30 fveq2 6858 . . . . . . 7 ((𝐼 +o 𝑘) = 𝐽 → (𝑅‘(𝐼 +o 𝑘)) = (𝑅𝐽))
3130sseq2d 3979 . . . . . 6 ((𝐼 +o 𝑘) = 𝐽 → ((𝑅𝐼) ⊆ (𝑅‘(𝐼 +o 𝑘)) ↔ (𝑅𝐼) ⊆ (𝑅𝐽)))
3229, 31syl5ibcom 245 . . . . 5 ((𝐼 ∈ ω ∧ 𝑘 ∈ ω) → ((𝐼 +o 𝑘) = 𝐽 → (𝑅𝐼) ⊆ (𝑅𝐽)))
3332rexlimdva 3134 . . . 4 (𝐼 ∈ ω → (∃𝑘 ∈ ω (𝐼 +o 𝑘) = 𝐽 → (𝑅𝐼) ⊆ (𝑅𝐽)))
3433adantr 480 . . 3 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (∃𝑘 ∈ ω (𝐼 +o 𝑘) = 𝐽 → (𝑅𝐼) ⊆ (𝑅𝐽)))
351, 34sylbid 240 . 2 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼𝐽 → (𝑅𝐼) ⊆ (𝑅𝐽)))
36353impia 1117 1 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝐼𝐽) → (𝑅𝐼) ⊆ (𝑅𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  {crab 3405  Vcvv 3447  csb 3862  cun 3912  wss 3914  c0 4296  {csn 4589  cop 4595   class class class wbr 5107  cmpt 5188  ccom 5642  suc csuc 6334  cfv 6511  (class class class)co 7387  ωcom 7842  1st c1st 7966  2nd c2nd 7967  reccrdg 8377   +o coa 8431   <s cslt 27552   0s c0s 27734   1s c1s 27735   L cleft 27753   R cright 27754   +s cadds 27866   -s csubs 27926   ·s cmuls 28009   /su cdivs 28090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-oadd 8438
This theorem is referenced by:  precsexlem10  28118
  Copyright terms: Public domain W3C validator