| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | nnawordex 8675 | . . 3
⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼 ⊆ 𝐽 ↔ ∃𝑘 ∈ ω (𝐼 +o 𝑘) = 𝐽)) | 
| 2 |  | oveq2 7439 | . . . . . . . . . 10
⊢ (𝑘 = ∅ → (𝐼 +o 𝑘) = (𝐼 +o ∅)) | 
| 3 | 2 | fveq2d 6910 | . . . . . . . . 9
⊢ (𝑘 = ∅ → (𝑅‘(𝐼 +o 𝑘)) = (𝑅‘(𝐼 +o ∅))) | 
| 4 | 3 | sseq2d 4016 | . . . . . . . 8
⊢ (𝑘 = ∅ → ((𝑅‘𝐼) ⊆ (𝑅‘(𝐼 +o 𝑘)) ↔ (𝑅‘𝐼) ⊆ (𝑅‘(𝐼 +o ∅)))) | 
| 5 |  | oveq2 7439 | . . . . . . . . . 10
⊢ (𝑘 = 𝑗 → (𝐼 +o 𝑘) = (𝐼 +o 𝑗)) | 
| 6 | 5 | fveq2d 6910 | . . . . . . . . 9
⊢ (𝑘 = 𝑗 → (𝑅‘(𝐼 +o 𝑘)) = (𝑅‘(𝐼 +o 𝑗))) | 
| 7 | 6 | sseq2d 4016 | . . . . . . . 8
⊢ (𝑘 = 𝑗 → ((𝑅‘𝐼) ⊆ (𝑅‘(𝐼 +o 𝑘)) ↔ (𝑅‘𝐼) ⊆ (𝑅‘(𝐼 +o 𝑗)))) | 
| 8 |  | oveq2 7439 | . . . . . . . . . 10
⊢ (𝑘 = suc 𝑗 → (𝐼 +o 𝑘) = (𝐼 +o suc 𝑗)) | 
| 9 | 8 | fveq2d 6910 | . . . . . . . . 9
⊢ (𝑘 = suc 𝑗 → (𝑅‘(𝐼 +o 𝑘)) = (𝑅‘(𝐼 +o suc 𝑗))) | 
| 10 | 9 | sseq2d 4016 | . . . . . . . 8
⊢ (𝑘 = suc 𝑗 → ((𝑅‘𝐼) ⊆ (𝑅‘(𝐼 +o 𝑘)) ↔ (𝑅‘𝐼) ⊆ (𝑅‘(𝐼 +o suc 𝑗)))) | 
| 11 |  | nna0 8642 | . . . . . . . . . 10
⊢ (𝐼 ∈ ω → (𝐼 +o ∅) = 𝐼) | 
| 12 | 11 | fveq2d 6910 | . . . . . . . . 9
⊢ (𝐼 ∈ ω → (𝑅‘(𝐼 +o ∅)) = (𝑅‘𝐼)) | 
| 13 | 12 | eqimsscd 4041 | . . . . . . . 8
⊢ (𝐼 ∈ ω → (𝑅‘𝐼) ⊆ (𝑅‘(𝐼 +o ∅))) | 
| 14 |  | nnacl 8649 | . . . . . . . . . . . 12
⊢ ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝐼 +o 𝑗) ∈
ω) | 
| 15 |  | ssun1 4178 | . . . . . . . . . . . . 13
⊢ (𝑅‘(𝐼 +o 𝑗)) ⊆ ((𝑅‘(𝐼 +o 𝑗)) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘(𝐼 +o 𝑗))𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘(𝐼 +o 𝑗))𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)})) | 
| 16 |  | precsexlem.1 | . . . . . . . . . . . . . 14
⊢ 𝐹 = rec((𝑝 ∈ V ↦
⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd
‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})),
(𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))〉), 〈{
0s }, ∅〉) | 
| 17 |  | precsexlem.2 | . . . . . . . . . . . . . 14
⊢ 𝐿 = (1st ∘ 𝐹) | 
| 18 |  | precsexlem.3 | . . . . . . . . . . . . . 14
⊢ 𝑅 = (2nd ∘ 𝐹) | 
| 19 | 16, 17, 18 | precsexlem5 28235 | . . . . . . . . . . . . 13
⊢ ((𝐼 +o 𝑗) ∈ ω → (𝑅‘suc (𝐼 +o 𝑗)) = ((𝑅‘(𝐼 +o 𝑗)) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘(𝐼 +o 𝑗))𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘(𝐼 +o 𝑗))𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))) | 
| 20 | 15, 19 | sseqtrrid 4027 | . . . . . . . . . . . 12
⊢ ((𝐼 +o 𝑗) ∈ ω → (𝑅‘(𝐼 +o 𝑗)) ⊆ (𝑅‘suc (𝐼 +o 𝑗))) | 
| 21 | 14, 20 | syl 17 | . . . . . . . . . . 11
⊢ ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝑅‘(𝐼 +o 𝑗)) ⊆ (𝑅‘suc (𝐼 +o 𝑗))) | 
| 22 |  | nnasuc 8644 | . . . . . . . . . . . 12
⊢ ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝐼 +o suc 𝑗) = suc (𝐼 +o 𝑗)) | 
| 23 | 22 | fveq2d 6910 | . . . . . . . . . . 11
⊢ ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝑅‘(𝐼 +o suc 𝑗)) = (𝑅‘suc (𝐼 +o 𝑗))) | 
| 24 | 21, 23 | sseqtrrd 4021 | . . . . . . . . . 10
⊢ ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝑅‘(𝐼 +o 𝑗)) ⊆ (𝑅‘(𝐼 +o suc 𝑗))) | 
| 25 |  | sstr2 3990 | . . . . . . . . . 10
⊢ ((𝑅‘𝐼) ⊆ (𝑅‘(𝐼 +o 𝑗)) → ((𝑅‘(𝐼 +o 𝑗)) ⊆ (𝑅‘(𝐼 +o suc 𝑗)) → (𝑅‘𝐼) ⊆ (𝑅‘(𝐼 +o suc 𝑗)))) | 
| 26 | 24, 25 | syl5com 31 | . . . . . . . . 9
⊢ ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑅‘𝐼) ⊆ (𝑅‘(𝐼 +o 𝑗)) → (𝑅‘𝐼) ⊆ (𝑅‘(𝐼 +o suc 𝑗)))) | 
| 27 | 26 | expcom 413 | . . . . . . . 8
⊢ (𝑗 ∈ ω → (𝐼 ∈ ω → ((𝑅‘𝐼) ⊆ (𝑅‘(𝐼 +o 𝑗)) → (𝑅‘𝐼) ⊆ (𝑅‘(𝐼 +o suc 𝑗))))) | 
| 28 | 4, 7, 10, 13, 27 | finds2 7920 | . . . . . . 7
⊢ (𝑘 ∈ ω → (𝐼 ∈ ω → (𝑅‘𝐼) ⊆ (𝑅‘(𝐼 +o 𝑘)))) | 
| 29 | 28 | impcom 407 | . . . . . 6
⊢ ((𝐼 ∈ ω ∧ 𝑘 ∈ ω) → (𝑅‘𝐼) ⊆ (𝑅‘(𝐼 +o 𝑘))) | 
| 30 |  | fveq2 6906 | . . . . . . 7
⊢ ((𝐼 +o 𝑘) = 𝐽 → (𝑅‘(𝐼 +o 𝑘)) = (𝑅‘𝐽)) | 
| 31 | 30 | sseq2d 4016 | . . . . . 6
⊢ ((𝐼 +o 𝑘) = 𝐽 → ((𝑅‘𝐼) ⊆ (𝑅‘(𝐼 +o 𝑘)) ↔ (𝑅‘𝐼) ⊆ (𝑅‘𝐽))) | 
| 32 | 29, 31 | syl5ibcom 245 | . . . . 5
⊢ ((𝐼 ∈ ω ∧ 𝑘 ∈ ω) → ((𝐼 +o 𝑘) = 𝐽 → (𝑅‘𝐼) ⊆ (𝑅‘𝐽))) | 
| 33 | 32 | rexlimdva 3155 | . . . 4
⊢ (𝐼 ∈ ω →
(∃𝑘 ∈ ω
(𝐼 +o 𝑘) = 𝐽 → (𝑅‘𝐼) ⊆ (𝑅‘𝐽))) | 
| 34 | 33 | adantr 480 | . . 3
⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) →
(∃𝑘 ∈ ω
(𝐼 +o 𝑘) = 𝐽 → (𝑅‘𝐼) ⊆ (𝑅‘𝐽))) | 
| 35 | 1, 34 | sylbid 240 | . 2
⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼 ⊆ 𝐽 → (𝑅‘𝐼) ⊆ (𝑅‘𝐽))) | 
| 36 | 35 | 3impia 1118 | 1
⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝐼 ⊆ 𝐽) → (𝑅‘𝐼) ⊆ (𝑅‘𝐽)) |