MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  precsexlem7 Structured version   Visualization version   GIF version

Theorem precsexlem7 28172
Description: Lemma for surreal reciprocal. Show that 𝑅 is non-strictly increasing in its argument. (Contributed by Scott Fenton, 15-Mar-2025.)
Hypotheses
Ref Expression
precsexlem.1 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
precsexlem.2 𝐿 = (1st𝐹)
precsexlem.3 𝑅 = (2nd𝐹)
Assertion
Ref Expression
precsexlem7 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝐼𝐽) → (𝑅𝐼) ⊆ (𝑅𝐽))
Distinct variable groups:   𝐴,𝑎,𝑙,𝑝,𝑟,𝑥,𝑥𝐿,𝑥𝑅,𝑦𝑅   𝐹,𝑙,𝑝   𝐼,𝑎,𝑙,𝑝,𝑟,𝑥,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝐿,𝑎,𝑙,𝑥𝐿,𝑥𝑅,𝑦𝐿   𝑅,𝑎,𝑙,𝑟,𝑥𝐿,𝑥𝑅,𝑦𝑅
Allowed substitution hints:   𝐴(𝑦𝐿)   𝑅(𝑥,𝑝,𝑦𝐿)   𝐹(𝑥,𝑟,𝑎,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐽(𝑥,𝑟,𝑝,𝑎,𝑙,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐿(𝑥,𝑟,𝑝,𝑦𝑅)

Proof of Theorem precsexlem7
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnawordex 8654 . . 3 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼𝐽 ↔ ∃𝑘 ∈ ω (𝐼 +o 𝑘) = 𝐽))
2 oveq2 7418 . . . . . . . . . 10 (𝑘 = ∅ → (𝐼 +o 𝑘) = (𝐼 +o ∅))
32fveq2d 6885 . . . . . . . . 9 (𝑘 = ∅ → (𝑅‘(𝐼 +o 𝑘)) = (𝑅‘(𝐼 +o ∅)))
43sseq2d 3996 . . . . . . . 8 (𝑘 = ∅ → ((𝑅𝐼) ⊆ (𝑅‘(𝐼 +o 𝑘)) ↔ (𝑅𝐼) ⊆ (𝑅‘(𝐼 +o ∅))))
5 oveq2 7418 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐼 +o 𝑘) = (𝐼 +o 𝑗))
65fveq2d 6885 . . . . . . . . 9 (𝑘 = 𝑗 → (𝑅‘(𝐼 +o 𝑘)) = (𝑅‘(𝐼 +o 𝑗)))
76sseq2d 3996 . . . . . . . 8 (𝑘 = 𝑗 → ((𝑅𝐼) ⊆ (𝑅‘(𝐼 +o 𝑘)) ↔ (𝑅𝐼) ⊆ (𝑅‘(𝐼 +o 𝑗))))
8 oveq2 7418 . . . . . . . . . 10 (𝑘 = suc 𝑗 → (𝐼 +o 𝑘) = (𝐼 +o suc 𝑗))
98fveq2d 6885 . . . . . . . . 9 (𝑘 = suc 𝑗 → (𝑅‘(𝐼 +o 𝑘)) = (𝑅‘(𝐼 +o suc 𝑗)))
109sseq2d 3996 . . . . . . . 8 (𝑘 = suc 𝑗 → ((𝑅𝐼) ⊆ (𝑅‘(𝐼 +o 𝑘)) ↔ (𝑅𝐼) ⊆ (𝑅‘(𝐼 +o suc 𝑗))))
11 nna0 8621 . . . . . . . . . 10 (𝐼 ∈ ω → (𝐼 +o ∅) = 𝐼)
1211fveq2d 6885 . . . . . . . . 9 (𝐼 ∈ ω → (𝑅‘(𝐼 +o ∅)) = (𝑅𝐼))
1312eqimsscd 4021 . . . . . . . 8 (𝐼 ∈ ω → (𝑅𝐼) ⊆ (𝑅‘(𝐼 +o ∅)))
14 nnacl 8628 . . . . . . . . . . . 12 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝐼 +o 𝑗) ∈ ω)
15 ssun1 4158 . . . . . . . . . . . . 13 (𝑅‘(𝐼 +o 𝑗)) ⊆ ((𝑅‘(𝐼 +o 𝑗)) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿‘(𝐼 +o 𝑗))𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘(𝐼 +o 𝑗))𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))
16 precsexlem.1 . . . . . . . . . . . . . 14 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
17 precsexlem.2 . . . . . . . . . . . . . 14 𝐿 = (1st𝐹)
18 precsexlem.3 . . . . . . . . . . . . . 14 𝑅 = (2nd𝐹)
1916, 17, 18precsexlem5 28170 . . . . . . . . . . . . 13 ((𝐼 +o 𝑗) ∈ ω → (𝑅‘suc (𝐼 +o 𝑗)) = ((𝑅‘(𝐼 +o 𝑗)) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿‘(𝐼 +o 𝑗))𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘(𝐼 +o 𝑗))𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
2015, 19sseqtrrid 4007 . . . . . . . . . . . 12 ((𝐼 +o 𝑗) ∈ ω → (𝑅‘(𝐼 +o 𝑗)) ⊆ (𝑅‘suc (𝐼 +o 𝑗)))
2114, 20syl 17 . . . . . . . . . . 11 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝑅‘(𝐼 +o 𝑗)) ⊆ (𝑅‘suc (𝐼 +o 𝑗)))
22 nnasuc 8623 . . . . . . . . . . . 12 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝐼 +o suc 𝑗) = suc (𝐼 +o 𝑗))
2322fveq2d 6885 . . . . . . . . . . 11 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝑅‘(𝐼 +o suc 𝑗)) = (𝑅‘suc (𝐼 +o 𝑗)))
2421, 23sseqtrrd 4001 . . . . . . . . . 10 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝑅‘(𝐼 +o 𝑗)) ⊆ (𝑅‘(𝐼 +o suc 𝑗)))
25 sstr2 3970 . . . . . . . . . 10 ((𝑅𝐼) ⊆ (𝑅‘(𝐼 +o 𝑗)) → ((𝑅‘(𝐼 +o 𝑗)) ⊆ (𝑅‘(𝐼 +o suc 𝑗)) → (𝑅𝐼) ⊆ (𝑅‘(𝐼 +o suc 𝑗))))
2624, 25syl5com 31 . . . . . . . . 9 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑅𝐼) ⊆ (𝑅‘(𝐼 +o 𝑗)) → (𝑅𝐼) ⊆ (𝑅‘(𝐼 +o suc 𝑗))))
2726expcom 413 . . . . . . . 8 (𝑗 ∈ ω → (𝐼 ∈ ω → ((𝑅𝐼) ⊆ (𝑅‘(𝐼 +o 𝑗)) → (𝑅𝐼) ⊆ (𝑅‘(𝐼 +o suc 𝑗)))))
284, 7, 10, 13, 27finds2 7899 . . . . . . 7 (𝑘 ∈ ω → (𝐼 ∈ ω → (𝑅𝐼) ⊆ (𝑅‘(𝐼 +o 𝑘))))
2928impcom 407 . . . . . 6 ((𝐼 ∈ ω ∧ 𝑘 ∈ ω) → (𝑅𝐼) ⊆ (𝑅‘(𝐼 +o 𝑘)))
30 fveq2 6881 . . . . . . 7 ((𝐼 +o 𝑘) = 𝐽 → (𝑅‘(𝐼 +o 𝑘)) = (𝑅𝐽))
3130sseq2d 3996 . . . . . 6 ((𝐼 +o 𝑘) = 𝐽 → ((𝑅𝐼) ⊆ (𝑅‘(𝐼 +o 𝑘)) ↔ (𝑅𝐼) ⊆ (𝑅𝐽)))
3229, 31syl5ibcom 245 . . . . 5 ((𝐼 ∈ ω ∧ 𝑘 ∈ ω) → ((𝐼 +o 𝑘) = 𝐽 → (𝑅𝐼) ⊆ (𝑅𝐽)))
3332rexlimdva 3142 . . . 4 (𝐼 ∈ ω → (∃𝑘 ∈ ω (𝐼 +o 𝑘) = 𝐽 → (𝑅𝐼) ⊆ (𝑅𝐽)))
3433adantr 480 . . 3 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (∃𝑘 ∈ ω (𝐼 +o 𝑘) = 𝐽 → (𝑅𝐼) ⊆ (𝑅𝐽)))
351, 34sylbid 240 . 2 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼𝐽 → (𝑅𝐼) ⊆ (𝑅𝐽)))
36353impia 1117 1 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝐼𝐽) → (𝑅𝐼) ⊆ (𝑅𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2714  wrex 3061  {crab 3420  Vcvv 3464  csb 3879  cun 3929  wss 3931  c0 4313  {csn 4606  cop 4612   class class class wbr 5124  cmpt 5206  ccom 5663  suc csuc 6359  cfv 6536  (class class class)co 7410  ωcom 7866  1st c1st 7991  2nd c2nd 7992  reccrdg 8428   +o coa 8482   <s cslt 27609   0s c0s 27791   1s c1s 27792   L cleft 27810   R cright 27811   +s cadds 27923   -s csubs 27983   ·s cmuls 28066   /su cdivs 28147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-oadd 8489
This theorem is referenced by:  precsexlem10  28175
  Copyright terms: Public domain W3C validator