MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  precsexlem7 Structured version   Visualization version   GIF version

Theorem precsexlem7 28122
Description: Lemma for surreal reciprocal. Show that 𝑅 is non-strictly increasing in its argument. (Contributed by Scott Fenton, 15-Mar-2025.)
Hypotheses
Ref Expression
precsexlem.1 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
precsexlem.2 𝐿 = (1st𝐹)
precsexlem.3 𝑅 = (2nd𝐹)
Assertion
Ref Expression
precsexlem7 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝐼𝐽) → (𝑅𝐼) ⊆ (𝑅𝐽))
Distinct variable groups:   𝐴,𝑎,𝑙,𝑝,𝑟,𝑥,𝑥𝐿,𝑥𝑅,𝑦𝑅   𝐹,𝑙,𝑝   𝐼,𝑎,𝑙,𝑝,𝑟,𝑥,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝐿,𝑎,𝑙,𝑥𝐿,𝑥𝑅,𝑦𝐿   𝑅,𝑎,𝑙,𝑟,𝑥𝐿,𝑥𝑅,𝑦𝑅
Allowed substitution hints:   𝐴(𝑦𝐿)   𝑅(𝑥,𝑝,𝑦𝐿)   𝐹(𝑥,𝑟,𝑎,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐽(𝑥,𝑟,𝑝,𝑎,𝑙,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐿(𝑥,𝑟,𝑝,𝑦𝑅)

Proof of Theorem precsexlem7
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnawordex 8604 . . 3 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼𝐽 ↔ ∃𝑘 ∈ ω (𝐼 +o 𝑘) = 𝐽))
2 oveq2 7398 . . . . . . . . . 10 (𝑘 = ∅ → (𝐼 +o 𝑘) = (𝐼 +o ∅))
32fveq2d 6865 . . . . . . . . 9 (𝑘 = ∅ → (𝑅‘(𝐼 +o 𝑘)) = (𝑅‘(𝐼 +o ∅)))
43sseq2d 3982 . . . . . . . 8 (𝑘 = ∅ → ((𝑅𝐼) ⊆ (𝑅‘(𝐼 +o 𝑘)) ↔ (𝑅𝐼) ⊆ (𝑅‘(𝐼 +o ∅))))
5 oveq2 7398 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐼 +o 𝑘) = (𝐼 +o 𝑗))
65fveq2d 6865 . . . . . . . . 9 (𝑘 = 𝑗 → (𝑅‘(𝐼 +o 𝑘)) = (𝑅‘(𝐼 +o 𝑗)))
76sseq2d 3982 . . . . . . . 8 (𝑘 = 𝑗 → ((𝑅𝐼) ⊆ (𝑅‘(𝐼 +o 𝑘)) ↔ (𝑅𝐼) ⊆ (𝑅‘(𝐼 +o 𝑗))))
8 oveq2 7398 . . . . . . . . . 10 (𝑘 = suc 𝑗 → (𝐼 +o 𝑘) = (𝐼 +o suc 𝑗))
98fveq2d 6865 . . . . . . . . 9 (𝑘 = suc 𝑗 → (𝑅‘(𝐼 +o 𝑘)) = (𝑅‘(𝐼 +o suc 𝑗)))
109sseq2d 3982 . . . . . . . 8 (𝑘 = suc 𝑗 → ((𝑅𝐼) ⊆ (𝑅‘(𝐼 +o 𝑘)) ↔ (𝑅𝐼) ⊆ (𝑅‘(𝐼 +o suc 𝑗))))
11 nna0 8571 . . . . . . . . . 10 (𝐼 ∈ ω → (𝐼 +o ∅) = 𝐼)
1211fveq2d 6865 . . . . . . . . 9 (𝐼 ∈ ω → (𝑅‘(𝐼 +o ∅)) = (𝑅𝐼))
1312eqimsscd 4007 . . . . . . . 8 (𝐼 ∈ ω → (𝑅𝐼) ⊆ (𝑅‘(𝐼 +o ∅)))
14 nnacl 8578 . . . . . . . . . . . 12 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝐼 +o 𝑗) ∈ ω)
15 ssun1 4144 . . . . . . . . . . . . 13 (𝑅‘(𝐼 +o 𝑗)) ⊆ ((𝑅‘(𝐼 +o 𝑗)) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿‘(𝐼 +o 𝑗))𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘(𝐼 +o 𝑗))𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))
16 precsexlem.1 . . . . . . . . . . . . . 14 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
17 precsexlem.2 . . . . . . . . . . . . . 14 𝐿 = (1st𝐹)
18 precsexlem.3 . . . . . . . . . . . . . 14 𝑅 = (2nd𝐹)
1916, 17, 18precsexlem5 28120 . . . . . . . . . . . . 13 ((𝐼 +o 𝑗) ∈ ω → (𝑅‘suc (𝐼 +o 𝑗)) = ((𝑅‘(𝐼 +o 𝑗)) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿‘(𝐼 +o 𝑗))𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘(𝐼 +o 𝑗))𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
2015, 19sseqtrrid 3993 . . . . . . . . . . . 12 ((𝐼 +o 𝑗) ∈ ω → (𝑅‘(𝐼 +o 𝑗)) ⊆ (𝑅‘suc (𝐼 +o 𝑗)))
2114, 20syl 17 . . . . . . . . . . 11 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝑅‘(𝐼 +o 𝑗)) ⊆ (𝑅‘suc (𝐼 +o 𝑗)))
22 nnasuc 8573 . . . . . . . . . . . 12 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝐼 +o suc 𝑗) = suc (𝐼 +o 𝑗))
2322fveq2d 6865 . . . . . . . . . . 11 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝑅‘(𝐼 +o suc 𝑗)) = (𝑅‘suc (𝐼 +o 𝑗)))
2421, 23sseqtrrd 3987 . . . . . . . . . 10 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → (𝑅‘(𝐼 +o 𝑗)) ⊆ (𝑅‘(𝐼 +o suc 𝑗)))
25 sstr2 3956 . . . . . . . . . 10 ((𝑅𝐼) ⊆ (𝑅‘(𝐼 +o 𝑗)) → ((𝑅‘(𝐼 +o 𝑗)) ⊆ (𝑅‘(𝐼 +o suc 𝑗)) → (𝑅𝐼) ⊆ (𝑅‘(𝐼 +o suc 𝑗))))
2624, 25syl5com 31 . . . . . . . . 9 ((𝐼 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑅𝐼) ⊆ (𝑅‘(𝐼 +o 𝑗)) → (𝑅𝐼) ⊆ (𝑅‘(𝐼 +o suc 𝑗))))
2726expcom 413 . . . . . . . 8 (𝑗 ∈ ω → (𝐼 ∈ ω → ((𝑅𝐼) ⊆ (𝑅‘(𝐼 +o 𝑗)) → (𝑅𝐼) ⊆ (𝑅‘(𝐼 +o suc 𝑗)))))
284, 7, 10, 13, 27finds2 7877 . . . . . . 7 (𝑘 ∈ ω → (𝐼 ∈ ω → (𝑅𝐼) ⊆ (𝑅‘(𝐼 +o 𝑘))))
2928impcom 407 . . . . . 6 ((𝐼 ∈ ω ∧ 𝑘 ∈ ω) → (𝑅𝐼) ⊆ (𝑅‘(𝐼 +o 𝑘)))
30 fveq2 6861 . . . . . . 7 ((𝐼 +o 𝑘) = 𝐽 → (𝑅‘(𝐼 +o 𝑘)) = (𝑅𝐽))
3130sseq2d 3982 . . . . . 6 ((𝐼 +o 𝑘) = 𝐽 → ((𝑅𝐼) ⊆ (𝑅‘(𝐼 +o 𝑘)) ↔ (𝑅𝐼) ⊆ (𝑅𝐽)))
3229, 31syl5ibcom 245 . . . . 5 ((𝐼 ∈ ω ∧ 𝑘 ∈ ω) → ((𝐼 +o 𝑘) = 𝐽 → (𝑅𝐼) ⊆ (𝑅𝐽)))
3332rexlimdva 3135 . . . 4 (𝐼 ∈ ω → (∃𝑘 ∈ ω (𝐼 +o 𝑘) = 𝐽 → (𝑅𝐼) ⊆ (𝑅𝐽)))
3433adantr 480 . . 3 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (∃𝑘 ∈ ω (𝐼 +o 𝑘) = 𝐽 → (𝑅𝐼) ⊆ (𝑅𝐽)))
351, 34sylbid 240 . 2 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼𝐽 → (𝑅𝐼) ⊆ (𝑅𝐽)))
36353impia 1117 1 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝐼𝐽) → (𝑅𝐼) ⊆ (𝑅𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2708  wrex 3054  {crab 3408  Vcvv 3450  csb 3865  cun 3915  wss 3917  c0 4299  {csn 4592  cop 4598   class class class wbr 5110  cmpt 5191  ccom 5645  suc csuc 6337  cfv 6514  (class class class)co 7390  ωcom 7845  1st c1st 7969  2nd c2nd 7970  reccrdg 8380   +o coa 8434   <s cslt 27559   0s c0s 27741   1s c1s 27742   L cleft 27760   R cright 27761   +s cadds 27873   -s csubs 27933   ·s cmuls 28016   /su cdivs 28097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-oadd 8441
This theorem is referenced by:  precsexlem10  28125
  Copyright terms: Public domain W3C validator