MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sraassab Structured version   Visualization version   GIF version

Theorem sraassab 21833
Description: A subring algebra is an associative algebra if and only if the subring is included in the ring's center. (Contributed by SN, 21-Mar-2025.)
Hypotheses
Ref Expression
sraassab.a 𝐴 = ((subringAlg ‘𝑊)‘𝑆)
sraassab.z 𝑍 = (Cntr‘(mulGrp‘𝑊))
sraassab.w (𝜑𝑊 ∈ Ring)
sraassab.s (𝜑𝑆 ∈ (SubRing‘𝑊))
Assertion
Ref Expression
sraassab (𝜑 → (𝐴 ∈ AssAlg ↔ 𝑆𝑍))

Proof of Theorem sraassab
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sraassab.s . . . . . . . 8 (𝜑𝑆 ∈ (SubRing‘𝑊))
2 eqid 2736 . . . . . . . . 9 (Base‘𝑊) = (Base‘𝑊)
32subrgss 20537 . . . . . . . 8 (𝑆 ∈ (SubRing‘𝑊) → 𝑆 ⊆ (Base‘𝑊))
41, 3syl 17 . . . . . . 7 (𝜑𝑆 ⊆ (Base‘𝑊))
54adantr 480 . . . . . 6 ((𝜑𝐴 ∈ AssAlg) → 𝑆 ⊆ (Base‘𝑊))
65sselda 3963 . . . . 5 (((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) → 𝑦 ∈ (Base‘𝑊))
7 simpllr 775 . . . . . . . 8 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝐴 ∈ AssAlg)
8 eqid 2736 . . . . . . . . . . . . . 14 (𝑊s 𝑆) = (𝑊s 𝑆)
98subrgbas 20546 . . . . . . . . . . . . 13 (𝑆 ∈ (SubRing‘𝑊) → 𝑆 = (Base‘(𝑊s 𝑆)))
101, 9syl 17 . . . . . . . . . . . 12 (𝜑𝑆 = (Base‘(𝑊s 𝑆)))
11 sraassab.a . . . . . . . . . . . . . . 15 𝐴 = ((subringAlg ‘𝑊)‘𝑆)
1211a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
1312, 4srasca 21143 . . . . . . . . . . . . 13 (𝜑 → (𝑊s 𝑆) = (Scalar‘𝐴))
1413fveq2d 6885 . . . . . . . . . . . 12 (𝜑 → (Base‘(𝑊s 𝑆)) = (Base‘(Scalar‘𝐴)))
1510, 14eqtrd 2771 . . . . . . . . . . 11 (𝜑𝑆 = (Base‘(Scalar‘𝐴)))
1615eqimssd 4020 . . . . . . . . . 10 (𝜑𝑆 ⊆ (Base‘(Scalar‘𝐴)))
1716sselda 3963 . . . . . . . . 9 ((𝜑𝑦𝑆) → 𝑦 ∈ (Base‘(Scalar‘𝐴)))
1817ad4ant13 751 . . . . . . . 8 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑦 ∈ (Base‘(Scalar‘𝐴)))
1912, 4srabase 21140 . . . . . . . . . . 11 (𝜑 → (Base‘𝑊) = (Base‘𝐴))
2019eqimssd 4020 . . . . . . . . . 10 (𝜑 → (Base‘𝑊) ⊆ (Base‘𝐴))
2120ad2antrr 726 . . . . . . . . 9 (((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) → (Base‘𝑊) ⊆ (Base‘𝐴))
2221sselda 3963 . . . . . . . 8 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑥 ∈ (Base‘𝐴))
23 sraassab.w . . . . . . . . . . 11 (𝜑𝑊 ∈ Ring)
24 eqid 2736 . . . . . . . . . . . 12 (1r𝑊) = (1r𝑊)
252, 24ringidcl 20230 . . . . . . . . . . 11 (𝑊 ∈ Ring → (1r𝑊) ∈ (Base‘𝑊))
2623, 25syl 17 . . . . . . . . . 10 (𝜑 → (1r𝑊) ∈ (Base‘𝑊))
2726, 19eleqtrd 2837 . . . . . . . . 9 (𝜑 → (1r𝑊) ∈ (Base‘𝐴))
2827ad3antrrr 730 . . . . . . . 8 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (1r𝑊) ∈ (Base‘𝐴))
29 eqid 2736 . . . . . . . . 9 (Base‘𝐴) = (Base‘𝐴)
30 eqid 2736 . . . . . . . . 9 (Scalar‘𝐴) = (Scalar‘𝐴)
31 eqid 2736 . . . . . . . . 9 (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴))
32 eqid 2736 . . . . . . . . 9 ( ·𝑠𝐴) = ( ·𝑠𝐴)
33 eqid 2736 . . . . . . . . 9 (.r𝐴) = (.r𝐴)
3429, 30, 31, 32, 33assaassr 21824 . . . . . . . 8 ((𝐴 ∈ AssAlg ∧ (𝑦 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑥 ∈ (Base‘𝐴) ∧ (1r𝑊) ∈ (Base‘𝐴))) → (𝑥(.r𝐴)(𝑦( ·𝑠𝐴)(1r𝑊))) = (𝑦( ·𝑠𝐴)(𝑥(.r𝐴)(1r𝑊))))
357, 18, 22, 28, 34syl13anc 1374 . . . . . . 7 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(.r𝐴)(𝑦( ·𝑠𝐴)(1r𝑊))) = (𝑦( ·𝑠𝐴)(𝑥(.r𝐴)(1r𝑊))))
3612, 4sramulr 21142 . . . . . . . . . 10 (𝜑 → (.r𝑊) = (.r𝐴))
3736ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (.r𝑊) = (.r𝐴))
3837oveqd 7427 . . . . . . . 8 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(.r𝑊)(𝑦( ·𝑠𝐴)(1r𝑊))) = (𝑥(.r𝐴)(𝑦( ·𝑠𝐴)(1r𝑊))))
3912, 4sravsca 21144 . . . . . . . . . . . 12 (𝜑 → (.r𝑊) = ( ·𝑠𝐴))
4039ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (.r𝑊) = ( ·𝑠𝐴))
4140oveqd 7427 . . . . . . . . . 10 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑦(.r𝑊)(1r𝑊)) = (𝑦( ·𝑠𝐴)(1r𝑊)))
42 eqid 2736 . . . . . . . . . . 11 (.r𝑊) = (.r𝑊)
4323ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑊 ∈ Ring)
446adantr 480 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑦 ∈ (Base‘𝑊))
452, 42, 24, 43, 44ringridmd 20238 . . . . . . . . . 10 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑦(.r𝑊)(1r𝑊)) = 𝑦)
4641, 45eqtr3d 2773 . . . . . . . . 9 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑦( ·𝑠𝐴)(1r𝑊)) = 𝑦)
4746oveq2d 7426 . . . . . . . 8 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(.r𝑊)(𝑦( ·𝑠𝐴)(1r𝑊))) = (𝑥(.r𝑊)𝑦))
4838, 47eqtr3d 2773 . . . . . . 7 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(.r𝐴)(𝑦( ·𝑠𝐴)(1r𝑊))) = (𝑥(.r𝑊)𝑦))
4940oveqd 7427 . . . . . . . 8 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑦(.r𝑊)(𝑥(.r𝐴)(1r𝑊))) = (𝑦( ·𝑠𝐴)(𝑥(.r𝐴)(1r𝑊))))
5037oveqd 7427 . . . . . . . . . 10 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(.r𝑊)(1r𝑊)) = (𝑥(.r𝐴)(1r𝑊)))
51 simpr 484 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑥 ∈ (Base‘𝑊))
522, 42, 24, 43, 51ringridmd 20238 . . . . . . . . . 10 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(.r𝑊)(1r𝑊)) = 𝑥)
5350, 52eqtr3d 2773 . . . . . . . . 9 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(.r𝐴)(1r𝑊)) = 𝑥)
5453oveq2d 7426 . . . . . . . 8 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑦(.r𝑊)(𝑥(.r𝐴)(1r𝑊))) = (𝑦(.r𝑊)𝑥))
5549, 54eqtr3d 2773 . . . . . . 7 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑦( ·𝑠𝐴)(𝑥(.r𝐴)(1r𝑊))) = (𝑦(.r𝑊)𝑥))
5635, 48, 553eqtr3rd 2780 . . . . . 6 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑦(.r𝑊)𝑥) = (𝑥(.r𝑊)𝑦))
5756ralrimiva 3133 . . . . 5 (((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) → ∀𝑥 ∈ (Base‘𝑊)(𝑦(.r𝑊)𝑥) = (𝑥(.r𝑊)𝑦))
58 eqid 2736 . . . . . . 7 (mulGrp‘𝑊) = (mulGrp‘𝑊)
5958, 2mgpbas 20110 . . . . . 6 (Base‘𝑊) = (Base‘(mulGrp‘𝑊))
6058, 42mgpplusg 20109 . . . . . 6 (.r𝑊) = (+g‘(mulGrp‘𝑊))
61 sraassab.z . . . . . 6 𝑍 = (Cntr‘(mulGrp‘𝑊))
6259, 60, 61elcntr 19318 . . . . 5 (𝑦𝑍 ↔ (𝑦 ∈ (Base‘𝑊) ∧ ∀𝑥 ∈ (Base‘𝑊)(𝑦(.r𝑊)𝑥) = (𝑥(.r𝑊)𝑦)))
636, 57, 62sylanbrc 583 . . . 4 (((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) → 𝑦𝑍)
6463ex 412 . . 3 ((𝜑𝐴 ∈ AssAlg) → (𝑦𝑆𝑦𝑍))
6564ssrdv 3969 . 2 ((𝜑𝐴 ∈ AssAlg) → 𝑆𝑍)
6619adantr 480 . . 3 ((𝜑𝑆𝑍) → (Base‘𝑊) = (Base‘𝐴))
6713adantr 480 . . 3 ((𝜑𝑆𝑍) → (𝑊s 𝑆) = (Scalar‘𝐴))
6810adantr 480 . . 3 ((𝜑𝑆𝑍) → 𝑆 = (Base‘(𝑊s 𝑆)))
6939adantr 480 . . 3 ((𝜑𝑆𝑍) → (.r𝑊) = ( ·𝑠𝐴))
7036adantr 480 . . 3 ((𝜑𝑆𝑍) → (.r𝑊) = (.r𝐴))
7111sralmod 21150 . . . . 5 (𝑆 ∈ (SubRing‘𝑊) → 𝐴 ∈ LMod)
721, 71syl 17 . . . 4 (𝜑𝐴 ∈ LMod)
7372adantr 480 . . 3 ((𝜑𝑆𝑍) → 𝐴 ∈ LMod)
7411, 2sraring 21149 . . . . 5 ((𝑊 ∈ Ring ∧ 𝑆 ⊆ (Base‘𝑊)) → 𝐴 ∈ Ring)
7523, 4, 74syl2anc 584 . . . 4 (𝜑𝐴 ∈ Ring)
7675adantr 480 . . 3 ((𝜑𝑆𝑍) → 𝐴 ∈ Ring)
7723ad2antrr 726 . . . 4 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑊 ∈ Ring)
784adantr 480 . . . . . 6 ((𝜑𝑆𝑍) → 𝑆 ⊆ (Base‘𝑊))
7978sselda 3963 . . . . 5 (((𝜑𝑆𝑍) ∧ 𝑥𝑆) → 𝑥 ∈ (Base‘𝑊))
80793ad2antr1 1189 . . . 4 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝑊))
81 simpr2 1196 . . . 4 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
82 simpr3 1197 . . . 4 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑧 ∈ (Base‘𝑊))
832, 42, 77, 80, 81, 82ringassd 20222 . . 3 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(.r𝑊)𝑦)(.r𝑊)𝑧) = (𝑥(.r𝑊)(𝑦(.r𝑊)𝑧)))
84 ssel2 3958 . . . . . . . 8 ((𝑆𝑍𝑥𝑆) → 𝑥𝑍)
8584ad2ant2lr 748 . . . . . . 7 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊))) → 𝑥𝑍)
86 simprr 772 . . . . . . 7 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
8759, 60, 61cntri 19320 . . . . . . 7 ((𝑥𝑍𝑦 ∈ (Base‘𝑊)) → (𝑥(.r𝑊)𝑦) = (𝑦(.r𝑊)𝑥))
8885, 86, 87syl2anc 584 . . . . . 6 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊))) → (𝑥(.r𝑊)𝑦) = (𝑦(.r𝑊)𝑥))
89883adantr3 1172 . . . . 5 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑥(.r𝑊)𝑦) = (𝑦(.r𝑊)𝑥))
9089oveq1d 7425 . . . 4 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(.r𝑊)𝑦)(.r𝑊)𝑧) = ((𝑦(.r𝑊)𝑥)(.r𝑊)𝑧))
912, 42, 77, 81, 80, 82ringassd 20222 . . . 4 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑦(.r𝑊)𝑥)(.r𝑊)𝑧) = (𝑦(.r𝑊)(𝑥(.r𝑊)𝑧)))
9290, 83, 913eqtr3rd 2780 . . 3 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑦(.r𝑊)(𝑥(.r𝑊)𝑧)) = (𝑥(.r𝑊)(𝑦(.r𝑊)𝑧)))
9366, 67, 68, 69, 70, 73, 76, 83, 92isassad 21830 . 2 ((𝜑𝑆𝑍) → 𝐴 ∈ AssAlg)
9465, 93impbida 800 1 (𝜑 → (𝐴 ∈ AssAlg ↔ 𝑆𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  wss 3931  cfv 6536  (class class class)co 7410  Basecbs 17233  s cress 17256  .rcmulr 17277  Scalarcsca 17279   ·𝑠 cvsca 17280  Cntrccntr 19304  mulGrpcmgp 20105  1rcur 20146  Ringcrg 20198  SubRingcsubrg 20534  LModclmod 20822  subringAlg csra 21134  AssAlgcasa 21815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-subg 19111  df-cntz 19305  df-cntr 19306  df-mgp 20106  df-ur 20147  df-ring 20200  df-subrg 20535  df-lmod 20824  df-sra 21136  df-assa 21818
This theorem is referenced by:  sraassa  21834
  Copyright terms: Public domain W3C validator