MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sraassab Structured version   Visualization version   GIF version

Theorem sraassab 21421
Description: A subring algebra is an associative algebra if and only if the subring is included in the ring's center. (Contributed by SN, 21-Mar-2025.)
Hypotheses
Ref Expression
sraassab.a 𝐴 = ((subringAlg β€˜π‘Š)β€˜π‘†)
sraassab.z 𝑍 = (Cntrβ€˜(mulGrpβ€˜π‘Š))
sraassab.w (πœ‘ β†’ π‘Š ∈ Ring)
sraassab.s (πœ‘ β†’ 𝑆 ∈ (SubRingβ€˜π‘Š))
Assertion
Ref Expression
sraassab (πœ‘ β†’ (𝐴 ∈ AssAlg ↔ 𝑆 βŠ† 𝑍))

Proof of Theorem sraassab
Dummy variables π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sraassab.s . . . . . . . 8 (πœ‘ β†’ 𝑆 ∈ (SubRingβ€˜π‘Š))
2 eqid 2732 . . . . . . . . 9 (Baseβ€˜π‘Š) = (Baseβ€˜π‘Š)
32subrgss 20319 . . . . . . . 8 (𝑆 ∈ (SubRingβ€˜π‘Š) β†’ 𝑆 βŠ† (Baseβ€˜π‘Š))
41, 3syl 17 . . . . . . 7 (πœ‘ β†’ 𝑆 βŠ† (Baseβ€˜π‘Š))
54adantr 481 . . . . . 6 ((πœ‘ ∧ 𝐴 ∈ AssAlg) β†’ 𝑆 βŠ† (Baseβ€˜π‘Š))
65sselda 3982 . . . . 5 (((πœ‘ ∧ 𝐴 ∈ AssAlg) ∧ 𝑦 ∈ 𝑆) β†’ 𝑦 ∈ (Baseβ€˜π‘Š))
7 simpllr 774 . . . . . . . 8 ((((πœ‘ ∧ 𝐴 ∈ AssAlg) ∧ 𝑦 ∈ 𝑆) ∧ π‘₯ ∈ (Baseβ€˜π‘Š)) β†’ 𝐴 ∈ AssAlg)
8 eqid 2732 . . . . . . . . . . . . . 14 (π‘Š β†Ύs 𝑆) = (π‘Š β†Ύs 𝑆)
98subrgbas 20327 . . . . . . . . . . . . 13 (𝑆 ∈ (SubRingβ€˜π‘Š) β†’ 𝑆 = (Baseβ€˜(π‘Š β†Ύs 𝑆)))
101, 9syl 17 . . . . . . . . . . . 12 (πœ‘ β†’ 𝑆 = (Baseβ€˜(π‘Š β†Ύs 𝑆)))
11 sraassab.a . . . . . . . . . . . . . . 15 𝐴 = ((subringAlg β€˜π‘Š)β€˜π‘†)
1211a1i 11 . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝐴 = ((subringAlg β€˜π‘Š)β€˜π‘†))
1312, 4srasca 20797 . . . . . . . . . . . . 13 (πœ‘ β†’ (π‘Š β†Ύs 𝑆) = (Scalarβ€˜π΄))
1413fveq2d 6895 . . . . . . . . . . . 12 (πœ‘ β†’ (Baseβ€˜(π‘Š β†Ύs 𝑆)) = (Baseβ€˜(Scalarβ€˜π΄)))
1510, 14eqtrd 2772 . . . . . . . . . . 11 (πœ‘ β†’ 𝑆 = (Baseβ€˜(Scalarβ€˜π΄)))
1615eqimssd 4038 . . . . . . . . . 10 (πœ‘ β†’ 𝑆 βŠ† (Baseβ€˜(Scalarβ€˜π΄)))
1716sselda 3982 . . . . . . . . 9 ((πœ‘ ∧ 𝑦 ∈ 𝑆) β†’ 𝑦 ∈ (Baseβ€˜(Scalarβ€˜π΄)))
1817ad4ant13 749 . . . . . . . 8 ((((πœ‘ ∧ 𝐴 ∈ AssAlg) ∧ 𝑦 ∈ 𝑆) ∧ π‘₯ ∈ (Baseβ€˜π‘Š)) β†’ 𝑦 ∈ (Baseβ€˜(Scalarβ€˜π΄)))
1912, 4srabase 20791 . . . . . . . . . . 11 (πœ‘ β†’ (Baseβ€˜π‘Š) = (Baseβ€˜π΄))
2019eqimssd 4038 . . . . . . . . . 10 (πœ‘ β†’ (Baseβ€˜π‘Š) βŠ† (Baseβ€˜π΄))
2120ad2antrr 724 . . . . . . . . 9 (((πœ‘ ∧ 𝐴 ∈ AssAlg) ∧ 𝑦 ∈ 𝑆) β†’ (Baseβ€˜π‘Š) βŠ† (Baseβ€˜π΄))
2221sselda 3982 . . . . . . . 8 ((((πœ‘ ∧ 𝐴 ∈ AssAlg) ∧ 𝑦 ∈ 𝑆) ∧ π‘₯ ∈ (Baseβ€˜π‘Š)) β†’ π‘₯ ∈ (Baseβ€˜π΄))
23 sraassab.w . . . . . . . . . . 11 (πœ‘ β†’ π‘Š ∈ Ring)
24 eqid 2732 . . . . . . . . . . . 12 (1rβ€˜π‘Š) = (1rβ€˜π‘Š)
252, 24ringidcl 20082 . . . . . . . . . . 11 (π‘Š ∈ Ring β†’ (1rβ€˜π‘Š) ∈ (Baseβ€˜π‘Š))
2623, 25syl 17 . . . . . . . . . 10 (πœ‘ β†’ (1rβ€˜π‘Š) ∈ (Baseβ€˜π‘Š))
2726, 19eleqtrd 2835 . . . . . . . . 9 (πœ‘ β†’ (1rβ€˜π‘Š) ∈ (Baseβ€˜π΄))
2827ad3antrrr 728 . . . . . . . 8 ((((πœ‘ ∧ 𝐴 ∈ AssAlg) ∧ 𝑦 ∈ 𝑆) ∧ π‘₯ ∈ (Baseβ€˜π‘Š)) β†’ (1rβ€˜π‘Š) ∈ (Baseβ€˜π΄))
29 eqid 2732 . . . . . . . . 9 (Baseβ€˜π΄) = (Baseβ€˜π΄)
30 eqid 2732 . . . . . . . . 9 (Scalarβ€˜π΄) = (Scalarβ€˜π΄)
31 eqid 2732 . . . . . . . . 9 (Baseβ€˜(Scalarβ€˜π΄)) = (Baseβ€˜(Scalarβ€˜π΄))
32 eqid 2732 . . . . . . . . 9 ( ·𝑠 β€˜π΄) = ( ·𝑠 β€˜π΄)
33 eqid 2732 . . . . . . . . 9 (.rβ€˜π΄) = (.rβ€˜π΄)
3429, 30, 31, 32, 33assaassr 21413 . . . . . . . 8 ((𝐴 ∈ AssAlg ∧ (𝑦 ∈ (Baseβ€˜(Scalarβ€˜π΄)) ∧ π‘₯ ∈ (Baseβ€˜π΄) ∧ (1rβ€˜π‘Š) ∈ (Baseβ€˜π΄))) β†’ (π‘₯(.rβ€˜π΄)(𝑦( ·𝑠 β€˜π΄)(1rβ€˜π‘Š))) = (𝑦( ·𝑠 β€˜π΄)(π‘₯(.rβ€˜π΄)(1rβ€˜π‘Š))))
357, 18, 22, 28, 34syl13anc 1372 . . . . . . 7 ((((πœ‘ ∧ 𝐴 ∈ AssAlg) ∧ 𝑦 ∈ 𝑆) ∧ π‘₯ ∈ (Baseβ€˜π‘Š)) β†’ (π‘₯(.rβ€˜π΄)(𝑦( ·𝑠 β€˜π΄)(1rβ€˜π‘Š))) = (𝑦( ·𝑠 β€˜π΄)(π‘₯(.rβ€˜π΄)(1rβ€˜π‘Š))))
3612, 4sramulr 20795 . . . . . . . . . 10 (πœ‘ β†’ (.rβ€˜π‘Š) = (.rβ€˜π΄))
3736ad3antrrr 728 . . . . . . . . 9 ((((πœ‘ ∧ 𝐴 ∈ AssAlg) ∧ 𝑦 ∈ 𝑆) ∧ π‘₯ ∈ (Baseβ€˜π‘Š)) β†’ (.rβ€˜π‘Š) = (.rβ€˜π΄))
3837oveqd 7425 . . . . . . . 8 ((((πœ‘ ∧ 𝐴 ∈ AssAlg) ∧ 𝑦 ∈ 𝑆) ∧ π‘₯ ∈ (Baseβ€˜π‘Š)) β†’ (π‘₯(.rβ€˜π‘Š)(𝑦( ·𝑠 β€˜π΄)(1rβ€˜π‘Š))) = (π‘₯(.rβ€˜π΄)(𝑦( ·𝑠 β€˜π΄)(1rβ€˜π‘Š))))
3912, 4sravsca 20799 . . . . . . . . . . . 12 (πœ‘ β†’ (.rβ€˜π‘Š) = ( ·𝑠 β€˜π΄))
4039ad3antrrr 728 . . . . . . . . . . 11 ((((πœ‘ ∧ 𝐴 ∈ AssAlg) ∧ 𝑦 ∈ 𝑆) ∧ π‘₯ ∈ (Baseβ€˜π‘Š)) β†’ (.rβ€˜π‘Š) = ( ·𝑠 β€˜π΄))
4140oveqd 7425 . . . . . . . . . 10 ((((πœ‘ ∧ 𝐴 ∈ AssAlg) ∧ 𝑦 ∈ 𝑆) ∧ π‘₯ ∈ (Baseβ€˜π‘Š)) β†’ (𝑦(.rβ€˜π‘Š)(1rβ€˜π‘Š)) = (𝑦( ·𝑠 β€˜π΄)(1rβ€˜π‘Š)))
42 eqid 2732 . . . . . . . . . . 11 (.rβ€˜π‘Š) = (.rβ€˜π‘Š)
4323ad3antrrr 728 . . . . . . . . . . 11 ((((πœ‘ ∧ 𝐴 ∈ AssAlg) ∧ 𝑦 ∈ 𝑆) ∧ π‘₯ ∈ (Baseβ€˜π‘Š)) β†’ π‘Š ∈ Ring)
446adantr 481 . . . . . . . . . . 11 ((((πœ‘ ∧ 𝐴 ∈ AssAlg) ∧ 𝑦 ∈ 𝑆) ∧ π‘₯ ∈ (Baseβ€˜π‘Š)) β†’ 𝑦 ∈ (Baseβ€˜π‘Š))
452, 42, 24, 43, 44ringridmd 20089 . . . . . . . . . 10 ((((πœ‘ ∧ 𝐴 ∈ AssAlg) ∧ 𝑦 ∈ 𝑆) ∧ π‘₯ ∈ (Baseβ€˜π‘Š)) β†’ (𝑦(.rβ€˜π‘Š)(1rβ€˜π‘Š)) = 𝑦)
4641, 45eqtr3d 2774 . . . . . . . . 9 ((((πœ‘ ∧ 𝐴 ∈ AssAlg) ∧ 𝑦 ∈ 𝑆) ∧ π‘₯ ∈ (Baseβ€˜π‘Š)) β†’ (𝑦( ·𝑠 β€˜π΄)(1rβ€˜π‘Š)) = 𝑦)
4746oveq2d 7424 . . . . . . . 8 ((((πœ‘ ∧ 𝐴 ∈ AssAlg) ∧ 𝑦 ∈ 𝑆) ∧ π‘₯ ∈ (Baseβ€˜π‘Š)) β†’ (π‘₯(.rβ€˜π‘Š)(𝑦( ·𝑠 β€˜π΄)(1rβ€˜π‘Š))) = (π‘₯(.rβ€˜π‘Š)𝑦))
4838, 47eqtr3d 2774 . . . . . . 7 ((((πœ‘ ∧ 𝐴 ∈ AssAlg) ∧ 𝑦 ∈ 𝑆) ∧ π‘₯ ∈ (Baseβ€˜π‘Š)) β†’ (π‘₯(.rβ€˜π΄)(𝑦( ·𝑠 β€˜π΄)(1rβ€˜π‘Š))) = (π‘₯(.rβ€˜π‘Š)𝑦))
4940oveqd 7425 . . . . . . . 8 ((((πœ‘ ∧ 𝐴 ∈ AssAlg) ∧ 𝑦 ∈ 𝑆) ∧ π‘₯ ∈ (Baseβ€˜π‘Š)) β†’ (𝑦(.rβ€˜π‘Š)(π‘₯(.rβ€˜π΄)(1rβ€˜π‘Š))) = (𝑦( ·𝑠 β€˜π΄)(π‘₯(.rβ€˜π΄)(1rβ€˜π‘Š))))
5037oveqd 7425 . . . . . . . . . 10 ((((πœ‘ ∧ 𝐴 ∈ AssAlg) ∧ 𝑦 ∈ 𝑆) ∧ π‘₯ ∈ (Baseβ€˜π‘Š)) β†’ (π‘₯(.rβ€˜π‘Š)(1rβ€˜π‘Š)) = (π‘₯(.rβ€˜π΄)(1rβ€˜π‘Š)))
51 simpr 485 . . . . . . . . . . 11 ((((πœ‘ ∧ 𝐴 ∈ AssAlg) ∧ 𝑦 ∈ 𝑆) ∧ π‘₯ ∈ (Baseβ€˜π‘Š)) β†’ π‘₯ ∈ (Baseβ€˜π‘Š))
522, 42, 24, 43, 51ringridmd 20089 . . . . . . . . . 10 ((((πœ‘ ∧ 𝐴 ∈ AssAlg) ∧ 𝑦 ∈ 𝑆) ∧ π‘₯ ∈ (Baseβ€˜π‘Š)) β†’ (π‘₯(.rβ€˜π‘Š)(1rβ€˜π‘Š)) = π‘₯)
5350, 52eqtr3d 2774 . . . . . . . . 9 ((((πœ‘ ∧ 𝐴 ∈ AssAlg) ∧ 𝑦 ∈ 𝑆) ∧ π‘₯ ∈ (Baseβ€˜π‘Š)) β†’ (π‘₯(.rβ€˜π΄)(1rβ€˜π‘Š)) = π‘₯)
5453oveq2d 7424 . . . . . . . 8 ((((πœ‘ ∧ 𝐴 ∈ AssAlg) ∧ 𝑦 ∈ 𝑆) ∧ π‘₯ ∈ (Baseβ€˜π‘Š)) β†’ (𝑦(.rβ€˜π‘Š)(π‘₯(.rβ€˜π΄)(1rβ€˜π‘Š))) = (𝑦(.rβ€˜π‘Š)π‘₯))
5549, 54eqtr3d 2774 . . . . . . 7 ((((πœ‘ ∧ 𝐴 ∈ AssAlg) ∧ 𝑦 ∈ 𝑆) ∧ π‘₯ ∈ (Baseβ€˜π‘Š)) β†’ (𝑦( ·𝑠 β€˜π΄)(π‘₯(.rβ€˜π΄)(1rβ€˜π‘Š))) = (𝑦(.rβ€˜π‘Š)π‘₯))
5635, 48, 553eqtr3rd 2781 . . . . . 6 ((((πœ‘ ∧ 𝐴 ∈ AssAlg) ∧ 𝑦 ∈ 𝑆) ∧ π‘₯ ∈ (Baseβ€˜π‘Š)) β†’ (𝑦(.rβ€˜π‘Š)π‘₯) = (π‘₯(.rβ€˜π‘Š)𝑦))
5756ralrimiva 3146 . . . . 5 (((πœ‘ ∧ 𝐴 ∈ AssAlg) ∧ 𝑦 ∈ 𝑆) β†’ βˆ€π‘₯ ∈ (Baseβ€˜π‘Š)(𝑦(.rβ€˜π‘Š)π‘₯) = (π‘₯(.rβ€˜π‘Š)𝑦))
58 eqid 2732 . . . . . . 7 (mulGrpβ€˜π‘Š) = (mulGrpβ€˜π‘Š)
5958, 2mgpbas 19992 . . . . . 6 (Baseβ€˜π‘Š) = (Baseβ€˜(mulGrpβ€˜π‘Š))
6058, 42mgpplusg 19990 . . . . . 6 (.rβ€˜π‘Š) = (+gβ€˜(mulGrpβ€˜π‘Š))
61 sraassab.z . . . . . 6 𝑍 = (Cntrβ€˜(mulGrpβ€˜π‘Š))
6259, 60, 61elcntr 19193 . . . . 5 (𝑦 ∈ 𝑍 ↔ (𝑦 ∈ (Baseβ€˜π‘Š) ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘Š)(𝑦(.rβ€˜π‘Š)π‘₯) = (π‘₯(.rβ€˜π‘Š)𝑦)))
636, 57, 62sylanbrc 583 . . . 4 (((πœ‘ ∧ 𝐴 ∈ AssAlg) ∧ 𝑦 ∈ 𝑆) β†’ 𝑦 ∈ 𝑍)
6463ex 413 . . 3 ((πœ‘ ∧ 𝐴 ∈ AssAlg) β†’ (𝑦 ∈ 𝑆 β†’ 𝑦 ∈ 𝑍))
6564ssrdv 3988 . 2 ((πœ‘ ∧ 𝐴 ∈ AssAlg) β†’ 𝑆 βŠ† 𝑍)
6619adantr 481 . . 3 ((πœ‘ ∧ 𝑆 βŠ† 𝑍) β†’ (Baseβ€˜π‘Š) = (Baseβ€˜π΄))
6713adantr 481 . . 3 ((πœ‘ ∧ 𝑆 βŠ† 𝑍) β†’ (π‘Š β†Ύs 𝑆) = (Scalarβ€˜π΄))
6810adantr 481 . . 3 ((πœ‘ ∧ 𝑆 βŠ† 𝑍) β†’ 𝑆 = (Baseβ€˜(π‘Š β†Ύs 𝑆)))
6939adantr 481 . . 3 ((πœ‘ ∧ 𝑆 βŠ† 𝑍) β†’ (.rβ€˜π‘Š) = ( ·𝑠 β€˜π΄))
7036adantr 481 . . 3 ((πœ‘ ∧ 𝑆 βŠ† 𝑍) β†’ (.rβ€˜π‘Š) = (.rβ€˜π΄))
7111sralmod 20808 . . . . 5 (𝑆 ∈ (SubRingβ€˜π‘Š) β†’ 𝐴 ∈ LMod)
721, 71syl 17 . . . 4 (πœ‘ β†’ 𝐴 ∈ LMod)
7372adantr 481 . . 3 ((πœ‘ ∧ 𝑆 βŠ† 𝑍) β†’ 𝐴 ∈ LMod)
7411, 2sraring 20807 . . . . 5 ((π‘Š ∈ Ring ∧ 𝑆 βŠ† (Baseβ€˜π‘Š)) β†’ 𝐴 ∈ Ring)
7523, 4, 74syl2anc 584 . . . 4 (πœ‘ β†’ 𝐴 ∈ Ring)
7675adantr 481 . . 3 ((πœ‘ ∧ 𝑆 βŠ† 𝑍) β†’ 𝐴 ∈ Ring)
7723ad2antrr 724 . . . 4 (((πœ‘ ∧ 𝑆 βŠ† 𝑍) ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ π‘Š ∈ Ring)
784adantr 481 . . . . . 6 ((πœ‘ ∧ 𝑆 βŠ† 𝑍) β†’ 𝑆 βŠ† (Baseβ€˜π‘Š))
7978sselda 3982 . . . . 5 (((πœ‘ ∧ 𝑆 βŠ† 𝑍) ∧ π‘₯ ∈ 𝑆) β†’ π‘₯ ∈ (Baseβ€˜π‘Š))
80793ad2antr1 1188 . . . 4 (((πœ‘ ∧ 𝑆 βŠ† 𝑍) ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ π‘₯ ∈ (Baseβ€˜π‘Š))
81 simpr2 1195 . . . 4 (((πœ‘ ∧ 𝑆 βŠ† 𝑍) ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ 𝑦 ∈ (Baseβ€˜π‘Š))
82 simpr3 1196 . . . 4 (((πœ‘ ∧ 𝑆 βŠ† 𝑍) ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ 𝑧 ∈ (Baseβ€˜π‘Š))
832, 42, 77, 80, 81, 82ringassd 20078 . . 3 (((πœ‘ ∧ 𝑆 βŠ† 𝑍) ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ ((π‘₯(.rβ€˜π‘Š)𝑦)(.rβ€˜π‘Š)𝑧) = (π‘₯(.rβ€˜π‘Š)(𝑦(.rβ€˜π‘Š)𝑧)))
84 ssel2 3977 . . . . . . . 8 ((𝑆 βŠ† 𝑍 ∧ π‘₯ ∈ 𝑆) β†’ π‘₯ ∈ 𝑍)
8584ad2ant2lr 746 . . . . . . 7 (((πœ‘ ∧ 𝑆 βŠ† 𝑍) ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ (Baseβ€˜π‘Š))) β†’ π‘₯ ∈ 𝑍)
86 simprr 771 . . . . . . 7 (((πœ‘ ∧ 𝑆 βŠ† 𝑍) ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ (Baseβ€˜π‘Š))) β†’ 𝑦 ∈ (Baseβ€˜π‘Š))
8759, 60, 61cntri 19195 . . . . . . 7 ((π‘₯ ∈ 𝑍 ∧ 𝑦 ∈ (Baseβ€˜π‘Š)) β†’ (π‘₯(.rβ€˜π‘Š)𝑦) = (𝑦(.rβ€˜π‘Š)π‘₯))
8885, 86, 87syl2anc 584 . . . . . 6 (((πœ‘ ∧ 𝑆 βŠ† 𝑍) ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ (Baseβ€˜π‘Š))) β†’ (π‘₯(.rβ€˜π‘Š)𝑦) = (𝑦(.rβ€˜π‘Š)π‘₯))
89883adantr3 1171 . . . . 5 (((πœ‘ ∧ 𝑆 βŠ† 𝑍) ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ (π‘₯(.rβ€˜π‘Š)𝑦) = (𝑦(.rβ€˜π‘Š)π‘₯))
9089oveq1d 7423 . . . 4 (((πœ‘ ∧ 𝑆 βŠ† 𝑍) ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ ((π‘₯(.rβ€˜π‘Š)𝑦)(.rβ€˜π‘Š)𝑧) = ((𝑦(.rβ€˜π‘Š)π‘₯)(.rβ€˜π‘Š)𝑧))
912, 42, 77, 81, 80, 82ringassd 20078 . . . 4 (((πœ‘ ∧ 𝑆 βŠ† 𝑍) ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ ((𝑦(.rβ€˜π‘Š)π‘₯)(.rβ€˜π‘Š)𝑧) = (𝑦(.rβ€˜π‘Š)(π‘₯(.rβ€˜π‘Š)𝑧)))
9290, 83, 913eqtr3rd 2781 . . 3 (((πœ‘ ∧ 𝑆 βŠ† 𝑍) ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ (𝑦(.rβ€˜π‘Š)(π‘₯(.rβ€˜π‘Š)𝑧)) = (π‘₯(.rβ€˜π‘Š)(𝑦(.rβ€˜π‘Š)𝑧)))
9366, 67, 68, 69, 70, 73, 76, 83, 92isassad 21418 . 2 ((πœ‘ ∧ 𝑆 βŠ† 𝑍) β†’ 𝐴 ∈ AssAlg)
9465, 93impbida 799 1 (πœ‘ β†’ (𝐴 ∈ AssAlg ↔ 𝑆 βŠ† 𝑍))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061   βŠ† wss 3948  β€˜cfv 6543  (class class class)co 7408  Basecbs 17143   β†Ύs cress 17172  .rcmulr 17197  Scalarcsca 17199   ·𝑠 cvsca 17200  Cntrccntr 19179  mulGrpcmgp 19986  1rcur 20003  Ringcrg 20055  SubRingcsubrg 20314  LModclmod 20470  subringAlg csra 20780  AssAlgcasa 21404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-0g 17386  df-mgm 18560  df-sgrp 18609  df-mnd 18625  df-grp 18821  df-subg 19002  df-cntz 19180  df-cntr 19181  df-mgp 19987  df-ur 20004  df-ring 20057  df-subrg 20316  df-lmod 20472  df-sra 20784  df-assa 21407
This theorem is referenced by:  sraassa  21422
  Copyright terms: Public domain W3C validator