MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sraassab Structured version   Visualization version   GIF version

Theorem sraassab 21801
Description: A subring algebra is an associative algebra if and only if the subring is included in the ring's center. (Contributed by SN, 21-Mar-2025.)
Hypotheses
Ref Expression
sraassab.a 𝐴 = ((subringAlg ‘𝑊)‘𝑆)
sraassab.z 𝑍 = (Cntr‘(mulGrp‘𝑊))
sraassab.w (𝜑𝑊 ∈ Ring)
sraassab.s (𝜑𝑆 ∈ (SubRing‘𝑊))
Assertion
Ref Expression
sraassab (𝜑 → (𝐴 ∈ AssAlg ↔ 𝑆𝑍))

Proof of Theorem sraassab
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sraassab.s . . . . . . . 8 (𝜑𝑆 ∈ (SubRing‘𝑊))
2 eqid 2728 . . . . . . . . 9 (Base‘𝑊) = (Base‘𝑊)
32subrgss 20511 . . . . . . . 8 (𝑆 ∈ (SubRing‘𝑊) → 𝑆 ⊆ (Base‘𝑊))
41, 3syl 17 . . . . . . 7 (𝜑𝑆 ⊆ (Base‘𝑊))
54adantr 480 . . . . . 6 ((𝜑𝐴 ∈ AssAlg) → 𝑆 ⊆ (Base‘𝑊))
65sselda 3980 . . . . 5 (((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) → 𝑦 ∈ (Base‘𝑊))
7 simpllr 775 . . . . . . . 8 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝐴 ∈ AssAlg)
8 eqid 2728 . . . . . . . . . . . . . 14 (𝑊s 𝑆) = (𝑊s 𝑆)
98subrgbas 20520 . . . . . . . . . . . . 13 (𝑆 ∈ (SubRing‘𝑊) → 𝑆 = (Base‘(𝑊s 𝑆)))
101, 9syl 17 . . . . . . . . . . . 12 (𝜑𝑆 = (Base‘(𝑊s 𝑆)))
11 sraassab.a . . . . . . . . . . . . . . 15 𝐴 = ((subringAlg ‘𝑊)‘𝑆)
1211a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
1312, 4srasca 21069 . . . . . . . . . . . . 13 (𝜑 → (𝑊s 𝑆) = (Scalar‘𝐴))
1413fveq2d 6901 . . . . . . . . . . . 12 (𝜑 → (Base‘(𝑊s 𝑆)) = (Base‘(Scalar‘𝐴)))
1510, 14eqtrd 2768 . . . . . . . . . . 11 (𝜑𝑆 = (Base‘(Scalar‘𝐴)))
1615eqimssd 4036 . . . . . . . . . 10 (𝜑𝑆 ⊆ (Base‘(Scalar‘𝐴)))
1716sselda 3980 . . . . . . . . 9 ((𝜑𝑦𝑆) → 𝑦 ∈ (Base‘(Scalar‘𝐴)))
1817ad4ant13 750 . . . . . . . 8 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑦 ∈ (Base‘(Scalar‘𝐴)))
1912, 4srabase 21063 . . . . . . . . . . 11 (𝜑 → (Base‘𝑊) = (Base‘𝐴))
2019eqimssd 4036 . . . . . . . . . 10 (𝜑 → (Base‘𝑊) ⊆ (Base‘𝐴))
2120ad2antrr 725 . . . . . . . . 9 (((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) → (Base‘𝑊) ⊆ (Base‘𝐴))
2221sselda 3980 . . . . . . . 8 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑥 ∈ (Base‘𝐴))
23 sraassab.w . . . . . . . . . . 11 (𝜑𝑊 ∈ Ring)
24 eqid 2728 . . . . . . . . . . . 12 (1r𝑊) = (1r𝑊)
252, 24ringidcl 20202 . . . . . . . . . . 11 (𝑊 ∈ Ring → (1r𝑊) ∈ (Base‘𝑊))
2623, 25syl 17 . . . . . . . . . 10 (𝜑 → (1r𝑊) ∈ (Base‘𝑊))
2726, 19eleqtrd 2831 . . . . . . . . 9 (𝜑 → (1r𝑊) ∈ (Base‘𝐴))
2827ad3antrrr 729 . . . . . . . 8 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (1r𝑊) ∈ (Base‘𝐴))
29 eqid 2728 . . . . . . . . 9 (Base‘𝐴) = (Base‘𝐴)
30 eqid 2728 . . . . . . . . 9 (Scalar‘𝐴) = (Scalar‘𝐴)
31 eqid 2728 . . . . . . . . 9 (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴))
32 eqid 2728 . . . . . . . . 9 ( ·𝑠𝐴) = ( ·𝑠𝐴)
33 eqid 2728 . . . . . . . . 9 (.r𝐴) = (.r𝐴)
3429, 30, 31, 32, 33assaassr 21793 . . . . . . . 8 ((𝐴 ∈ AssAlg ∧ (𝑦 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑥 ∈ (Base‘𝐴) ∧ (1r𝑊) ∈ (Base‘𝐴))) → (𝑥(.r𝐴)(𝑦( ·𝑠𝐴)(1r𝑊))) = (𝑦( ·𝑠𝐴)(𝑥(.r𝐴)(1r𝑊))))
357, 18, 22, 28, 34syl13anc 1370 . . . . . . 7 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(.r𝐴)(𝑦( ·𝑠𝐴)(1r𝑊))) = (𝑦( ·𝑠𝐴)(𝑥(.r𝐴)(1r𝑊))))
3612, 4sramulr 21067 . . . . . . . . . 10 (𝜑 → (.r𝑊) = (.r𝐴))
3736ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (.r𝑊) = (.r𝐴))
3837oveqd 7437 . . . . . . . 8 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(.r𝑊)(𝑦( ·𝑠𝐴)(1r𝑊))) = (𝑥(.r𝐴)(𝑦( ·𝑠𝐴)(1r𝑊))))
3912, 4sravsca 21071 . . . . . . . . . . . 12 (𝜑 → (.r𝑊) = ( ·𝑠𝐴))
4039ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (.r𝑊) = ( ·𝑠𝐴))
4140oveqd 7437 . . . . . . . . . 10 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑦(.r𝑊)(1r𝑊)) = (𝑦( ·𝑠𝐴)(1r𝑊)))
42 eqid 2728 . . . . . . . . . . 11 (.r𝑊) = (.r𝑊)
4323ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑊 ∈ Ring)
446adantr 480 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑦 ∈ (Base‘𝑊))
452, 42, 24, 43, 44ringridmd 20209 . . . . . . . . . 10 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑦(.r𝑊)(1r𝑊)) = 𝑦)
4641, 45eqtr3d 2770 . . . . . . . . 9 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑦( ·𝑠𝐴)(1r𝑊)) = 𝑦)
4746oveq2d 7436 . . . . . . . 8 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(.r𝑊)(𝑦( ·𝑠𝐴)(1r𝑊))) = (𝑥(.r𝑊)𝑦))
4838, 47eqtr3d 2770 . . . . . . 7 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(.r𝐴)(𝑦( ·𝑠𝐴)(1r𝑊))) = (𝑥(.r𝑊)𝑦))
4940oveqd 7437 . . . . . . . 8 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑦(.r𝑊)(𝑥(.r𝐴)(1r𝑊))) = (𝑦( ·𝑠𝐴)(𝑥(.r𝐴)(1r𝑊))))
5037oveqd 7437 . . . . . . . . . 10 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(.r𝑊)(1r𝑊)) = (𝑥(.r𝐴)(1r𝑊)))
51 simpr 484 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑥 ∈ (Base‘𝑊))
522, 42, 24, 43, 51ringridmd 20209 . . . . . . . . . 10 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(.r𝑊)(1r𝑊)) = 𝑥)
5350, 52eqtr3d 2770 . . . . . . . . 9 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(.r𝐴)(1r𝑊)) = 𝑥)
5453oveq2d 7436 . . . . . . . 8 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑦(.r𝑊)(𝑥(.r𝐴)(1r𝑊))) = (𝑦(.r𝑊)𝑥))
5549, 54eqtr3d 2770 . . . . . . 7 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑦( ·𝑠𝐴)(𝑥(.r𝐴)(1r𝑊))) = (𝑦(.r𝑊)𝑥))
5635, 48, 553eqtr3rd 2777 . . . . . 6 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑦(.r𝑊)𝑥) = (𝑥(.r𝑊)𝑦))
5756ralrimiva 3143 . . . . 5 (((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) → ∀𝑥 ∈ (Base‘𝑊)(𝑦(.r𝑊)𝑥) = (𝑥(.r𝑊)𝑦))
58 eqid 2728 . . . . . . 7 (mulGrp‘𝑊) = (mulGrp‘𝑊)
5958, 2mgpbas 20080 . . . . . 6 (Base‘𝑊) = (Base‘(mulGrp‘𝑊))
6058, 42mgpplusg 20078 . . . . . 6 (.r𝑊) = (+g‘(mulGrp‘𝑊))
61 sraassab.z . . . . . 6 𝑍 = (Cntr‘(mulGrp‘𝑊))
6259, 60, 61elcntr 19281 . . . . 5 (𝑦𝑍 ↔ (𝑦 ∈ (Base‘𝑊) ∧ ∀𝑥 ∈ (Base‘𝑊)(𝑦(.r𝑊)𝑥) = (𝑥(.r𝑊)𝑦)))
636, 57, 62sylanbrc 582 . . . 4 (((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) → 𝑦𝑍)
6463ex 412 . . 3 ((𝜑𝐴 ∈ AssAlg) → (𝑦𝑆𝑦𝑍))
6564ssrdv 3986 . 2 ((𝜑𝐴 ∈ AssAlg) → 𝑆𝑍)
6619adantr 480 . . 3 ((𝜑𝑆𝑍) → (Base‘𝑊) = (Base‘𝐴))
6713adantr 480 . . 3 ((𝜑𝑆𝑍) → (𝑊s 𝑆) = (Scalar‘𝐴))
6810adantr 480 . . 3 ((𝜑𝑆𝑍) → 𝑆 = (Base‘(𝑊s 𝑆)))
6939adantr 480 . . 3 ((𝜑𝑆𝑍) → (.r𝑊) = ( ·𝑠𝐴))
7036adantr 480 . . 3 ((𝜑𝑆𝑍) → (.r𝑊) = (.r𝐴))
7111sralmod 21080 . . . . 5 (𝑆 ∈ (SubRing‘𝑊) → 𝐴 ∈ LMod)
721, 71syl 17 . . . 4 (𝜑𝐴 ∈ LMod)
7372adantr 480 . . 3 ((𝜑𝑆𝑍) → 𝐴 ∈ LMod)
7411, 2sraring 21079 . . . . 5 ((𝑊 ∈ Ring ∧ 𝑆 ⊆ (Base‘𝑊)) → 𝐴 ∈ Ring)
7523, 4, 74syl2anc 583 . . . 4 (𝜑𝐴 ∈ Ring)
7675adantr 480 . . 3 ((𝜑𝑆𝑍) → 𝐴 ∈ Ring)
7723ad2antrr 725 . . . 4 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑊 ∈ Ring)
784adantr 480 . . . . . 6 ((𝜑𝑆𝑍) → 𝑆 ⊆ (Base‘𝑊))
7978sselda 3980 . . . . 5 (((𝜑𝑆𝑍) ∧ 𝑥𝑆) → 𝑥 ∈ (Base‘𝑊))
80793ad2antr1 1186 . . . 4 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝑊))
81 simpr2 1193 . . . 4 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
82 simpr3 1194 . . . 4 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑧 ∈ (Base‘𝑊))
832, 42, 77, 80, 81, 82ringassd 20197 . . 3 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(.r𝑊)𝑦)(.r𝑊)𝑧) = (𝑥(.r𝑊)(𝑦(.r𝑊)𝑧)))
84 ssel2 3975 . . . . . . . 8 ((𝑆𝑍𝑥𝑆) → 𝑥𝑍)
8584ad2ant2lr 747 . . . . . . 7 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊))) → 𝑥𝑍)
86 simprr 772 . . . . . . 7 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
8759, 60, 61cntri 19283 . . . . . . 7 ((𝑥𝑍𝑦 ∈ (Base‘𝑊)) → (𝑥(.r𝑊)𝑦) = (𝑦(.r𝑊)𝑥))
8885, 86, 87syl2anc 583 . . . . . 6 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊))) → (𝑥(.r𝑊)𝑦) = (𝑦(.r𝑊)𝑥))
89883adantr3 1169 . . . . 5 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑥(.r𝑊)𝑦) = (𝑦(.r𝑊)𝑥))
9089oveq1d 7435 . . . 4 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(.r𝑊)𝑦)(.r𝑊)𝑧) = ((𝑦(.r𝑊)𝑥)(.r𝑊)𝑧))
912, 42, 77, 81, 80, 82ringassd 20197 . . . 4 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑦(.r𝑊)𝑥)(.r𝑊)𝑧) = (𝑦(.r𝑊)(𝑥(.r𝑊)𝑧)))
9290, 83, 913eqtr3rd 2777 . . 3 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑦(.r𝑊)(𝑥(.r𝑊)𝑧)) = (𝑥(.r𝑊)(𝑦(.r𝑊)𝑧)))
9366, 67, 68, 69, 70, 73, 76, 83, 92isassad 21798 . 2 ((𝜑𝑆𝑍) → 𝐴 ∈ AssAlg)
9465, 93impbida 800 1 (𝜑 → (𝐴 ∈ AssAlg ↔ 𝑆𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wral 3058  wss 3947  cfv 6548  (class class class)co 7420  Basecbs 17180  s cress 17209  .rcmulr 17234  Scalarcsca 17236   ·𝑠 cvsca 17237  Cntrccntr 19267  mulGrpcmgp 20074  1rcur 20121  Ringcrg 20173  SubRingcsubrg 20506  LModclmod 20743  subringAlg csra 21056  AssAlgcasa 21784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-2 12306  df-3 12307  df-4 12308  df-5 12309  df-6 12310  df-7 12311  df-8 12312  df-sets 17133  df-slot 17151  df-ndx 17163  df-base 17181  df-ress 17210  df-plusg 17246  df-mulr 17247  df-sca 17249  df-vsca 17250  df-ip 17251  df-0g 17423  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-grp 18893  df-subg 19078  df-cntz 19268  df-cntr 19269  df-mgp 20075  df-ur 20122  df-ring 20175  df-subrg 20508  df-lmod 20745  df-sra 21058  df-assa 21787
This theorem is referenced by:  sraassa  21802
  Copyright terms: Public domain W3C validator