MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sraassab Structured version   Visualization version   GIF version

Theorem sraassab 21807
Description: A subring algebra is an associative algebra if and only if the subring is included in the ring's center. (Contributed by SN, 21-Mar-2025.)
Hypotheses
Ref Expression
sraassab.a 𝐴 = ((subringAlg ‘𝑊)‘𝑆)
sraassab.z 𝑍 = (Cntr‘(mulGrp‘𝑊))
sraassab.w (𝜑𝑊 ∈ Ring)
sraassab.s (𝜑𝑆 ∈ (SubRing‘𝑊))
Assertion
Ref Expression
sraassab (𝜑 → (𝐴 ∈ AssAlg ↔ 𝑆𝑍))

Proof of Theorem sraassab
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sraassab.s . . . . . . . 8 (𝜑𝑆 ∈ (SubRing‘𝑊))
2 eqid 2733 . . . . . . . . 9 (Base‘𝑊) = (Base‘𝑊)
32subrgss 20489 . . . . . . . 8 (𝑆 ∈ (SubRing‘𝑊) → 𝑆 ⊆ (Base‘𝑊))
41, 3syl 17 . . . . . . 7 (𝜑𝑆 ⊆ (Base‘𝑊))
54adantr 480 . . . . . 6 ((𝜑𝐴 ∈ AssAlg) → 𝑆 ⊆ (Base‘𝑊))
65sselda 3930 . . . . 5 (((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) → 𝑦 ∈ (Base‘𝑊))
7 simpllr 775 . . . . . . . 8 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝐴 ∈ AssAlg)
8 eqid 2733 . . . . . . . . . . . . . 14 (𝑊s 𝑆) = (𝑊s 𝑆)
98subrgbas 20498 . . . . . . . . . . . . 13 (𝑆 ∈ (SubRing‘𝑊) → 𝑆 = (Base‘(𝑊s 𝑆)))
101, 9syl 17 . . . . . . . . . . . 12 (𝜑𝑆 = (Base‘(𝑊s 𝑆)))
11 sraassab.a . . . . . . . . . . . . . . 15 𝐴 = ((subringAlg ‘𝑊)‘𝑆)
1211a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
1312, 4srasca 21116 . . . . . . . . . . . . 13 (𝜑 → (𝑊s 𝑆) = (Scalar‘𝐴))
1413fveq2d 6832 . . . . . . . . . . . 12 (𝜑 → (Base‘(𝑊s 𝑆)) = (Base‘(Scalar‘𝐴)))
1510, 14eqtrd 2768 . . . . . . . . . . 11 (𝜑𝑆 = (Base‘(Scalar‘𝐴)))
1615eqimssd 3987 . . . . . . . . . 10 (𝜑𝑆 ⊆ (Base‘(Scalar‘𝐴)))
1716sselda 3930 . . . . . . . . 9 ((𝜑𝑦𝑆) → 𝑦 ∈ (Base‘(Scalar‘𝐴)))
1817ad4ant13 751 . . . . . . . 8 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑦 ∈ (Base‘(Scalar‘𝐴)))
1912, 4srabase 21113 . . . . . . . . . . 11 (𝜑 → (Base‘𝑊) = (Base‘𝐴))
2019eqimssd 3987 . . . . . . . . . 10 (𝜑 → (Base‘𝑊) ⊆ (Base‘𝐴))
2120ad2antrr 726 . . . . . . . . 9 (((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) → (Base‘𝑊) ⊆ (Base‘𝐴))
2221sselda 3930 . . . . . . . 8 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑥 ∈ (Base‘𝐴))
23 sraassab.w . . . . . . . . . . 11 (𝜑𝑊 ∈ Ring)
24 eqid 2733 . . . . . . . . . . . 12 (1r𝑊) = (1r𝑊)
252, 24ringidcl 20185 . . . . . . . . . . 11 (𝑊 ∈ Ring → (1r𝑊) ∈ (Base‘𝑊))
2623, 25syl 17 . . . . . . . . . 10 (𝜑 → (1r𝑊) ∈ (Base‘𝑊))
2726, 19eleqtrd 2835 . . . . . . . . 9 (𝜑 → (1r𝑊) ∈ (Base‘𝐴))
2827ad3antrrr 730 . . . . . . . 8 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (1r𝑊) ∈ (Base‘𝐴))
29 eqid 2733 . . . . . . . . 9 (Base‘𝐴) = (Base‘𝐴)
30 eqid 2733 . . . . . . . . 9 (Scalar‘𝐴) = (Scalar‘𝐴)
31 eqid 2733 . . . . . . . . 9 (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴))
32 eqid 2733 . . . . . . . . 9 ( ·𝑠𝐴) = ( ·𝑠𝐴)
33 eqid 2733 . . . . . . . . 9 (.r𝐴) = (.r𝐴)
3429, 30, 31, 32, 33assaassr 21798 . . . . . . . 8 ((𝐴 ∈ AssAlg ∧ (𝑦 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑥 ∈ (Base‘𝐴) ∧ (1r𝑊) ∈ (Base‘𝐴))) → (𝑥(.r𝐴)(𝑦( ·𝑠𝐴)(1r𝑊))) = (𝑦( ·𝑠𝐴)(𝑥(.r𝐴)(1r𝑊))))
357, 18, 22, 28, 34syl13anc 1374 . . . . . . 7 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(.r𝐴)(𝑦( ·𝑠𝐴)(1r𝑊))) = (𝑦( ·𝑠𝐴)(𝑥(.r𝐴)(1r𝑊))))
3612, 4sramulr 21115 . . . . . . . . . 10 (𝜑 → (.r𝑊) = (.r𝐴))
3736ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (.r𝑊) = (.r𝐴))
3837oveqd 7369 . . . . . . . 8 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(.r𝑊)(𝑦( ·𝑠𝐴)(1r𝑊))) = (𝑥(.r𝐴)(𝑦( ·𝑠𝐴)(1r𝑊))))
3912, 4sravsca 21117 . . . . . . . . . . . 12 (𝜑 → (.r𝑊) = ( ·𝑠𝐴))
4039ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (.r𝑊) = ( ·𝑠𝐴))
4140oveqd 7369 . . . . . . . . . 10 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑦(.r𝑊)(1r𝑊)) = (𝑦( ·𝑠𝐴)(1r𝑊)))
42 eqid 2733 . . . . . . . . . . 11 (.r𝑊) = (.r𝑊)
4323ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑊 ∈ Ring)
446adantr 480 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑦 ∈ (Base‘𝑊))
452, 42, 24, 43, 44ringridmd 20193 . . . . . . . . . 10 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑦(.r𝑊)(1r𝑊)) = 𝑦)
4641, 45eqtr3d 2770 . . . . . . . . 9 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑦( ·𝑠𝐴)(1r𝑊)) = 𝑦)
4746oveq2d 7368 . . . . . . . 8 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(.r𝑊)(𝑦( ·𝑠𝐴)(1r𝑊))) = (𝑥(.r𝑊)𝑦))
4838, 47eqtr3d 2770 . . . . . . 7 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(.r𝐴)(𝑦( ·𝑠𝐴)(1r𝑊))) = (𝑥(.r𝑊)𝑦))
4940oveqd 7369 . . . . . . . 8 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑦(.r𝑊)(𝑥(.r𝐴)(1r𝑊))) = (𝑦( ·𝑠𝐴)(𝑥(.r𝐴)(1r𝑊))))
5037oveqd 7369 . . . . . . . . . 10 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(.r𝑊)(1r𝑊)) = (𝑥(.r𝐴)(1r𝑊)))
51 simpr 484 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑥 ∈ (Base‘𝑊))
522, 42, 24, 43, 51ringridmd 20193 . . . . . . . . . 10 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(.r𝑊)(1r𝑊)) = 𝑥)
5350, 52eqtr3d 2770 . . . . . . . . 9 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(.r𝐴)(1r𝑊)) = 𝑥)
5453oveq2d 7368 . . . . . . . 8 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑦(.r𝑊)(𝑥(.r𝐴)(1r𝑊))) = (𝑦(.r𝑊)𝑥))
5549, 54eqtr3d 2770 . . . . . . 7 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑦( ·𝑠𝐴)(𝑥(.r𝐴)(1r𝑊))) = (𝑦(.r𝑊)𝑥))
5635, 48, 553eqtr3rd 2777 . . . . . 6 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑦(.r𝑊)𝑥) = (𝑥(.r𝑊)𝑦))
5756ralrimiva 3125 . . . . 5 (((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) → ∀𝑥 ∈ (Base‘𝑊)(𝑦(.r𝑊)𝑥) = (𝑥(.r𝑊)𝑦))
58 eqid 2733 . . . . . . 7 (mulGrp‘𝑊) = (mulGrp‘𝑊)
5958, 2mgpbas 20065 . . . . . 6 (Base‘𝑊) = (Base‘(mulGrp‘𝑊))
6058, 42mgpplusg 20064 . . . . . 6 (.r𝑊) = (+g‘(mulGrp‘𝑊))
61 sraassab.z . . . . . 6 𝑍 = (Cntr‘(mulGrp‘𝑊))
6259, 60, 61elcntr 19244 . . . . 5 (𝑦𝑍 ↔ (𝑦 ∈ (Base‘𝑊) ∧ ∀𝑥 ∈ (Base‘𝑊)(𝑦(.r𝑊)𝑥) = (𝑥(.r𝑊)𝑦)))
636, 57, 62sylanbrc 583 . . . 4 (((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) → 𝑦𝑍)
6463ex 412 . . 3 ((𝜑𝐴 ∈ AssAlg) → (𝑦𝑆𝑦𝑍))
6564ssrdv 3936 . 2 ((𝜑𝐴 ∈ AssAlg) → 𝑆𝑍)
6619adantr 480 . . 3 ((𝜑𝑆𝑍) → (Base‘𝑊) = (Base‘𝐴))
6713adantr 480 . . 3 ((𝜑𝑆𝑍) → (𝑊s 𝑆) = (Scalar‘𝐴))
6810adantr 480 . . 3 ((𝜑𝑆𝑍) → 𝑆 = (Base‘(𝑊s 𝑆)))
6939adantr 480 . . 3 ((𝜑𝑆𝑍) → (.r𝑊) = ( ·𝑠𝐴))
7036adantr 480 . . 3 ((𝜑𝑆𝑍) → (.r𝑊) = (.r𝐴))
7111sralmod 21123 . . . . 5 (𝑆 ∈ (SubRing‘𝑊) → 𝐴 ∈ LMod)
721, 71syl 17 . . . 4 (𝜑𝐴 ∈ LMod)
7372adantr 480 . . 3 ((𝜑𝑆𝑍) → 𝐴 ∈ LMod)
7411, 2sraring 21122 . . . . 5 ((𝑊 ∈ Ring ∧ 𝑆 ⊆ (Base‘𝑊)) → 𝐴 ∈ Ring)
7523, 4, 74syl2anc 584 . . . 4 (𝜑𝐴 ∈ Ring)
7675adantr 480 . . 3 ((𝜑𝑆𝑍) → 𝐴 ∈ Ring)
7723ad2antrr 726 . . . 4 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑊 ∈ Ring)
784adantr 480 . . . . . 6 ((𝜑𝑆𝑍) → 𝑆 ⊆ (Base‘𝑊))
7978sselda 3930 . . . . 5 (((𝜑𝑆𝑍) ∧ 𝑥𝑆) → 𝑥 ∈ (Base‘𝑊))
80793ad2antr1 1189 . . . 4 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝑊))
81 simpr2 1196 . . . 4 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
82 simpr3 1197 . . . 4 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑧 ∈ (Base‘𝑊))
832, 42, 77, 80, 81, 82ringassd 20177 . . 3 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(.r𝑊)𝑦)(.r𝑊)𝑧) = (𝑥(.r𝑊)(𝑦(.r𝑊)𝑧)))
84 ssel2 3925 . . . . . . . 8 ((𝑆𝑍𝑥𝑆) → 𝑥𝑍)
8584ad2ant2lr 748 . . . . . . 7 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊))) → 𝑥𝑍)
86 simprr 772 . . . . . . 7 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
8759, 60, 61cntri 19246 . . . . . . 7 ((𝑥𝑍𝑦 ∈ (Base‘𝑊)) → (𝑥(.r𝑊)𝑦) = (𝑦(.r𝑊)𝑥))
8885, 86, 87syl2anc 584 . . . . . 6 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊))) → (𝑥(.r𝑊)𝑦) = (𝑦(.r𝑊)𝑥))
89883adantr3 1172 . . . . 5 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑥(.r𝑊)𝑦) = (𝑦(.r𝑊)𝑥))
9089oveq1d 7367 . . . 4 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(.r𝑊)𝑦)(.r𝑊)𝑧) = ((𝑦(.r𝑊)𝑥)(.r𝑊)𝑧))
912, 42, 77, 81, 80, 82ringassd 20177 . . . 4 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑦(.r𝑊)𝑥)(.r𝑊)𝑧) = (𝑦(.r𝑊)(𝑥(.r𝑊)𝑧)))
9290, 83, 913eqtr3rd 2777 . . 3 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑦(.r𝑊)(𝑥(.r𝑊)𝑧)) = (𝑥(.r𝑊)(𝑦(.r𝑊)𝑧)))
9366, 67, 68, 69, 70, 73, 76, 83, 92isassad 21804 . 2 ((𝜑𝑆𝑍) → 𝐴 ∈ AssAlg)
9465, 93impbida 800 1 (𝜑 → (𝐴 ∈ AssAlg ↔ 𝑆𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  wss 3898  cfv 6486  (class class class)co 7352  Basecbs 17122  s cress 17143  .rcmulr 17164  Scalarcsca 17166   ·𝑠 cvsca 17167  Cntrccntr 19230  mulGrpcmgp 20060  1rcur 20101  Ringcrg 20153  SubRingcsubrg 20486  LModclmod 20795  subringAlg csra 21107  AssAlgcasa 21789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-ip 17181  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-subg 19038  df-cntz 19231  df-cntr 19232  df-mgp 20061  df-ur 20102  df-ring 20155  df-subrg 20487  df-lmod 20797  df-sra 21109  df-assa 21792
This theorem is referenced by:  sraassa  21808
  Copyright terms: Public domain W3C validator