MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sraassab Structured version   Visualization version   GIF version

Theorem sraassab 21784
Description: A subring algebra is an associative algebra if and only if the subring is included in the ring's center. (Contributed by SN, 21-Mar-2025.)
Hypotheses
Ref Expression
sraassab.a 𝐴 = ((subringAlg ‘𝑊)‘𝑆)
sraassab.z 𝑍 = (Cntr‘(mulGrp‘𝑊))
sraassab.w (𝜑𝑊 ∈ Ring)
sraassab.s (𝜑𝑆 ∈ (SubRing‘𝑊))
Assertion
Ref Expression
sraassab (𝜑 → (𝐴 ∈ AssAlg ↔ 𝑆𝑍))

Proof of Theorem sraassab
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sraassab.s . . . . . . . 8 (𝜑𝑆 ∈ (SubRing‘𝑊))
2 eqid 2730 . . . . . . . . 9 (Base‘𝑊) = (Base‘𝑊)
32subrgss 20488 . . . . . . . 8 (𝑆 ∈ (SubRing‘𝑊) → 𝑆 ⊆ (Base‘𝑊))
41, 3syl 17 . . . . . . 7 (𝜑𝑆 ⊆ (Base‘𝑊))
54adantr 480 . . . . . 6 ((𝜑𝐴 ∈ AssAlg) → 𝑆 ⊆ (Base‘𝑊))
65sselda 3949 . . . . 5 (((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) → 𝑦 ∈ (Base‘𝑊))
7 simpllr 775 . . . . . . . 8 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝐴 ∈ AssAlg)
8 eqid 2730 . . . . . . . . . . . . . 14 (𝑊s 𝑆) = (𝑊s 𝑆)
98subrgbas 20497 . . . . . . . . . . . . 13 (𝑆 ∈ (SubRing‘𝑊) → 𝑆 = (Base‘(𝑊s 𝑆)))
101, 9syl 17 . . . . . . . . . . . 12 (𝜑𝑆 = (Base‘(𝑊s 𝑆)))
11 sraassab.a . . . . . . . . . . . . . . 15 𝐴 = ((subringAlg ‘𝑊)‘𝑆)
1211a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
1312, 4srasca 21094 . . . . . . . . . . . . 13 (𝜑 → (𝑊s 𝑆) = (Scalar‘𝐴))
1413fveq2d 6865 . . . . . . . . . . . 12 (𝜑 → (Base‘(𝑊s 𝑆)) = (Base‘(Scalar‘𝐴)))
1510, 14eqtrd 2765 . . . . . . . . . . 11 (𝜑𝑆 = (Base‘(Scalar‘𝐴)))
1615eqimssd 4006 . . . . . . . . . 10 (𝜑𝑆 ⊆ (Base‘(Scalar‘𝐴)))
1716sselda 3949 . . . . . . . . 9 ((𝜑𝑦𝑆) → 𝑦 ∈ (Base‘(Scalar‘𝐴)))
1817ad4ant13 751 . . . . . . . 8 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑦 ∈ (Base‘(Scalar‘𝐴)))
1912, 4srabase 21091 . . . . . . . . . . 11 (𝜑 → (Base‘𝑊) = (Base‘𝐴))
2019eqimssd 4006 . . . . . . . . . 10 (𝜑 → (Base‘𝑊) ⊆ (Base‘𝐴))
2120ad2antrr 726 . . . . . . . . 9 (((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) → (Base‘𝑊) ⊆ (Base‘𝐴))
2221sselda 3949 . . . . . . . 8 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑥 ∈ (Base‘𝐴))
23 sraassab.w . . . . . . . . . . 11 (𝜑𝑊 ∈ Ring)
24 eqid 2730 . . . . . . . . . . . 12 (1r𝑊) = (1r𝑊)
252, 24ringidcl 20181 . . . . . . . . . . 11 (𝑊 ∈ Ring → (1r𝑊) ∈ (Base‘𝑊))
2623, 25syl 17 . . . . . . . . . 10 (𝜑 → (1r𝑊) ∈ (Base‘𝑊))
2726, 19eleqtrd 2831 . . . . . . . . 9 (𝜑 → (1r𝑊) ∈ (Base‘𝐴))
2827ad3antrrr 730 . . . . . . . 8 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (1r𝑊) ∈ (Base‘𝐴))
29 eqid 2730 . . . . . . . . 9 (Base‘𝐴) = (Base‘𝐴)
30 eqid 2730 . . . . . . . . 9 (Scalar‘𝐴) = (Scalar‘𝐴)
31 eqid 2730 . . . . . . . . 9 (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴))
32 eqid 2730 . . . . . . . . 9 ( ·𝑠𝐴) = ( ·𝑠𝐴)
33 eqid 2730 . . . . . . . . 9 (.r𝐴) = (.r𝐴)
3429, 30, 31, 32, 33assaassr 21775 . . . . . . . 8 ((𝐴 ∈ AssAlg ∧ (𝑦 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑥 ∈ (Base‘𝐴) ∧ (1r𝑊) ∈ (Base‘𝐴))) → (𝑥(.r𝐴)(𝑦( ·𝑠𝐴)(1r𝑊))) = (𝑦( ·𝑠𝐴)(𝑥(.r𝐴)(1r𝑊))))
357, 18, 22, 28, 34syl13anc 1374 . . . . . . 7 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(.r𝐴)(𝑦( ·𝑠𝐴)(1r𝑊))) = (𝑦( ·𝑠𝐴)(𝑥(.r𝐴)(1r𝑊))))
3612, 4sramulr 21093 . . . . . . . . . 10 (𝜑 → (.r𝑊) = (.r𝐴))
3736ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (.r𝑊) = (.r𝐴))
3837oveqd 7407 . . . . . . . 8 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(.r𝑊)(𝑦( ·𝑠𝐴)(1r𝑊))) = (𝑥(.r𝐴)(𝑦( ·𝑠𝐴)(1r𝑊))))
3912, 4sravsca 21095 . . . . . . . . . . . 12 (𝜑 → (.r𝑊) = ( ·𝑠𝐴))
4039ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (.r𝑊) = ( ·𝑠𝐴))
4140oveqd 7407 . . . . . . . . . 10 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑦(.r𝑊)(1r𝑊)) = (𝑦( ·𝑠𝐴)(1r𝑊)))
42 eqid 2730 . . . . . . . . . . 11 (.r𝑊) = (.r𝑊)
4323ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑊 ∈ Ring)
446adantr 480 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑦 ∈ (Base‘𝑊))
452, 42, 24, 43, 44ringridmd 20189 . . . . . . . . . 10 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑦(.r𝑊)(1r𝑊)) = 𝑦)
4641, 45eqtr3d 2767 . . . . . . . . 9 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑦( ·𝑠𝐴)(1r𝑊)) = 𝑦)
4746oveq2d 7406 . . . . . . . 8 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(.r𝑊)(𝑦( ·𝑠𝐴)(1r𝑊))) = (𝑥(.r𝑊)𝑦))
4838, 47eqtr3d 2767 . . . . . . 7 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(.r𝐴)(𝑦( ·𝑠𝐴)(1r𝑊))) = (𝑥(.r𝑊)𝑦))
4940oveqd 7407 . . . . . . . 8 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑦(.r𝑊)(𝑥(.r𝐴)(1r𝑊))) = (𝑦( ·𝑠𝐴)(𝑥(.r𝐴)(1r𝑊))))
5037oveqd 7407 . . . . . . . . . 10 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(.r𝑊)(1r𝑊)) = (𝑥(.r𝐴)(1r𝑊)))
51 simpr 484 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑥 ∈ (Base‘𝑊))
522, 42, 24, 43, 51ringridmd 20189 . . . . . . . . . 10 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(.r𝑊)(1r𝑊)) = 𝑥)
5350, 52eqtr3d 2767 . . . . . . . . 9 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(.r𝐴)(1r𝑊)) = 𝑥)
5453oveq2d 7406 . . . . . . . 8 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑦(.r𝑊)(𝑥(.r𝐴)(1r𝑊))) = (𝑦(.r𝑊)𝑥))
5549, 54eqtr3d 2767 . . . . . . 7 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑦( ·𝑠𝐴)(𝑥(.r𝐴)(1r𝑊))) = (𝑦(.r𝑊)𝑥))
5635, 48, 553eqtr3rd 2774 . . . . . 6 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑦(.r𝑊)𝑥) = (𝑥(.r𝑊)𝑦))
5756ralrimiva 3126 . . . . 5 (((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) → ∀𝑥 ∈ (Base‘𝑊)(𝑦(.r𝑊)𝑥) = (𝑥(.r𝑊)𝑦))
58 eqid 2730 . . . . . . 7 (mulGrp‘𝑊) = (mulGrp‘𝑊)
5958, 2mgpbas 20061 . . . . . 6 (Base‘𝑊) = (Base‘(mulGrp‘𝑊))
6058, 42mgpplusg 20060 . . . . . 6 (.r𝑊) = (+g‘(mulGrp‘𝑊))
61 sraassab.z . . . . . 6 𝑍 = (Cntr‘(mulGrp‘𝑊))
6259, 60, 61elcntr 19269 . . . . 5 (𝑦𝑍 ↔ (𝑦 ∈ (Base‘𝑊) ∧ ∀𝑥 ∈ (Base‘𝑊)(𝑦(.r𝑊)𝑥) = (𝑥(.r𝑊)𝑦)))
636, 57, 62sylanbrc 583 . . . 4 (((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) → 𝑦𝑍)
6463ex 412 . . 3 ((𝜑𝐴 ∈ AssAlg) → (𝑦𝑆𝑦𝑍))
6564ssrdv 3955 . 2 ((𝜑𝐴 ∈ AssAlg) → 𝑆𝑍)
6619adantr 480 . . 3 ((𝜑𝑆𝑍) → (Base‘𝑊) = (Base‘𝐴))
6713adantr 480 . . 3 ((𝜑𝑆𝑍) → (𝑊s 𝑆) = (Scalar‘𝐴))
6810adantr 480 . . 3 ((𝜑𝑆𝑍) → 𝑆 = (Base‘(𝑊s 𝑆)))
6939adantr 480 . . 3 ((𝜑𝑆𝑍) → (.r𝑊) = ( ·𝑠𝐴))
7036adantr 480 . . 3 ((𝜑𝑆𝑍) → (.r𝑊) = (.r𝐴))
7111sralmod 21101 . . . . 5 (𝑆 ∈ (SubRing‘𝑊) → 𝐴 ∈ LMod)
721, 71syl 17 . . . 4 (𝜑𝐴 ∈ LMod)
7372adantr 480 . . 3 ((𝜑𝑆𝑍) → 𝐴 ∈ LMod)
7411, 2sraring 21100 . . . . 5 ((𝑊 ∈ Ring ∧ 𝑆 ⊆ (Base‘𝑊)) → 𝐴 ∈ Ring)
7523, 4, 74syl2anc 584 . . . 4 (𝜑𝐴 ∈ Ring)
7675adantr 480 . . 3 ((𝜑𝑆𝑍) → 𝐴 ∈ Ring)
7723ad2antrr 726 . . . 4 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑊 ∈ Ring)
784adantr 480 . . . . . 6 ((𝜑𝑆𝑍) → 𝑆 ⊆ (Base‘𝑊))
7978sselda 3949 . . . . 5 (((𝜑𝑆𝑍) ∧ 𝑥𝑆) → 𝑥 ∈ (Base‘𝑊))
80793ad2antr1 1189 . . . 4 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝑊))
81 simpr2 1196 . . . 4 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
82 simpr3 1197 . . . 4 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑧 ∈ (Base‘𝑊))
832, 42, 77, 80, 81, 82ringassd 20173 . . 3 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(.r𝑊)𝑦)(.r𝑊)𝑧) = (𝑥(.r𝑊)(𝑦(.r𝑊)𝑧)))
84 ssel2 3944 . . . . . . . 8 ((𝑆𝑍𝑥𝑆) → 𝑥𝑍)
8584ad2ant2lr 748 . . . . . . 7 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊))) → 𝑥𝑍)
86 simprr 772 . . . . . . 7 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
8759, 60, 61cntri 19271 . . . . . . 7 ((𝑥𝑍𝑦 ∈ (Base‘𝑊)) → (𝑥(.r𝑊)𝑦) = (𝑦(.r𝑊)𝑥))
8885, 86, 87syl2anc 584 . . . . . 6 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊))) → (𝑥(.r𝑊)𝑦) = (𝑦(.r𝑊)𝑥))
89883adantr3 1172 . . . . 5 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑥(.r𝑊)𝑦) = (𝑦(.r𝑊)𝑥))
9089oveq1d 7405 . . . 4 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(.r𝑊)𝑦)(.r𝑊)𝑧) = ((𝑦(.r𝑊)𝑥)(.r𝑊)𝑧))
912, 42, 77, 81, 80, 82ringassd 20173 . . . 4 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑦(.r𝑊)𝑥)(.r𝑊)𝑧) = (𝑦(.r𝑊)(𝑥(.r𝑊)𝑧)))
9290, 83, 913eqtr3rd 2774 . . 3 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑦(.r𝑊)(𝑥(.r𝑊)𝑧)) = (𝑥(.r𝑊)(𝑦(.r𝑊)𝑧)))
9366, 67, 68, 69, 70, 73, 76, 83, 92isassad 21781 . 2 ((𝜑𝑆𝑍) → 𝐴 ∈ AssAlg)
9465, 93impbida 800 1 (𝜑 → (𝐴 ∈ AssAlg ↔ 𝑆𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wss 3917  cfv 6514  (class class class)co 7390  Basecbs 17186  s cress 17207  .rcmulr 17228  Scalarcsca 17230   ·𝑠 cvsca 17231  Cntrccntr 19255  mulGrpcmgp 20056  1rcur 20097  Ringcrg 20149  SubRingcsubrg 20485  LModclmod 20773  subringAlg csra 21085  AssAlgcasa 21766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-subg 19062  df-cntz 19256  df-cntr 19257  df-mgp 20057  df-ur 20098  df-ring 20151  df-subrg 20486  df-lmod 20775  df-sra 21087  df-assa 21769
This theorem is referenced by:  sraassa  21785
  Copyright terms: Public domain W3C validator