Step | Hyp | Ref
| Expression |
1 | | sraassab.s |
. . . . . . . 8
β’ (π β π β (SubRingβπ)) |
2 | | eqid 2732 |
. . . . . . . . 9
β’
(Baseβπ) =
(Baseβπ) |
3 | 2 | subrgss 20319 |
. . . . . . . 8
β’ (π β (SubRingβπ) β π β (Baseβπ)) |
4 | 1, 3 | syl 17 |
. . . . . . 7
β’ (π β π β (Baseβπ)) |
5 | 4 | adantr 481 |
. . . . . 6
β’ ((π β§ π΄ β AssAlg) β π β (Baseβπ)) |
6 | 5 | sselda 3982 |
. . . . 5
β’ (((π β§ π΄ β AssAlg) β§ π¦ β π) β π¦ β (Baseβπ)) |
7 | | simpllr 774 |
. . . . . . . 8
β’ ((((π β§ π΄ β AssAlg) β§ π¦ β π) β§ π₯ β (Baseβπ)) β π΄ β AssAlg) |
8 | | eqid 2732 |
. . . . . . . . . . . . . 14
β’ (π βΎs π) = (π βΎs π) |
9 | 8 | subrgbas 20327 |
. . . . . . . . . . . . 13
β’ (π β (SubRingβπ) β π = (Baseβ(π βΎs π))) |
10 | 1, 9 | syl 17 |
. . . . . . . . . . . 12
β’ (π β π = (Baseβ(π βΎs π))) |
11 | | sraassab.a |
. . . . . . . . . . . . . . 15
β’ π΄ = ((subringAlg βπ)βπ) |
12 | 11 | a1i 11 |
. . . . . . . . . . . . . 14
β’ (π β π΄ = ((subringAlg βπ)βπ)) |
13 | 12, 4 | srasca 20797 |
. . . . . . . . . . . . 13
β’ (π β (π βΎs π) = (Scalarβπ΄)) |
14 | 13 | fveq2d 6895 |
. . . . . . . . . . . 12
β’ (π β (Baseβ(π βΎs π)) =
(Baseβ(Scalarβπ΄))) |
15 | 10, 14 | eqtrd 2772 |
. . . . . . . . . . 11
β’ (π β π = (Baseβ(Scalarβπ΄))) |
16 | 15 | eqimssd 4038 |
. . . . . . . . . 10
β’ (π β π β (Baseβ(Scalarβπ΄))) |
17 | 16 | sselda 3982 |
. . . . . . . . 9
β’ ((π β§ π¦ β π) β π¦ β (Baseβ(Scalarβπ΄))) |
18 | 17 | ad4ant13 749 |
. . . . . . . 8
β’ ((((π β§ π΄ β AssAlg) β§ π¦ β π) β§ π₯ β (Baseβπ)) β π¦ β (Baseβ(Scalarβπ΄))) |
19 | 12, 4 | srabase 20791 |
. . . . . . . . . . 11
β’ (π β (Baseβπ) = (Baseβπ΄)) |
20 | 19 | eqimssd 4038 |
. . . . . . . . . 10
β’ (π β (Baseβπ) β (Baseβπ΄)) |
21 | 20 | ad2antrr 724 |
. . . . . . . . 9
β’ (((π β§ π΄ β AssAlg) β§ π¦ β π) β (Baseβπ) β (Baseβπ΄)) |
22 | 21 | sselda 3982 |
. . . . . . . 8
β’ ((((π β§ π΄ β AssAlg) β§ π¦ β π) β§ π₯ β (Baseβπ)) β π₯ β (Baseβπ΄)) |
23 | | sraassab.w |
. . . . . . . . . . 11
β’ (π β π β Ring) |
24 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(1rβπ) = (1rβπ) |
25 | 2, 24 | ringidcl 20082 |
. . . . . . . . . . 11
β’ (π β Ring β
(1rβπ)
β (Baseβπ)) |
26 | 23, 25 | syl 17 |
. . . . . . . . . 10
β’ (π β (1rβπ) β (Baseβπ)) |
27 | 26, 19 | eleqtrd 2835 |
. . . . . . . . 9
β’ (π β (1rβπ) β (Baseβπ΄)) |
28 | 27 | ad3antrrr 728 |
. . . . . . . 8
β’ ((((π β§ π΄ β AssAlg) β§ π¦ β π) β§ π₯ β (Baseβπ)) β (1rβπ) β (Baseβπ΄)) |
29 | | eqid 2732 |
. . . . . . . . 9
β’
(Baseβπ΄) =
(Baseβπ΄) |
30 | | eqid 2732 |
. . . . . . . . 9
β’
(Scalarβπ΄) =
(Scalarβπ΄) |
31 | | eqid 2732 |
. . . . . . . . 9
β’
(Baseβ(Scalarβπ΄)) = (Baseβ(Scalarβπ΄)) |
32 | | eqid 2732 |
. . . . . . . . 9
β’ (
Β·π βπ΄) = ( Β·π
βπ΄) |
33 | | eqid 2732 |
. . . . . . . . 9
β’
(.rβπ΄) = (.rβπ΄) |
34 | 29, 30, 31, 32, 33 | assaassr 21413 |
. . . . . . . 8
β’ ((π΄ β AssAlg β§ (π¦ β
(Baseβ(Scalarβπ΄)) β§ π₯ β (Baseβπ΄) β§ (1rβπ) β (Baseβπ΄))) β (π₯(.rβπ΄)(π¦( Β·π
βπ΄)(1rβπ))) = (π¦( Β·π
βπ΄)(π₯(.rβπ΄)(1rβπ)))) |
35 | 7, 18, 22, 28, 34 | syl13anc 1372 |
. . . . . . 7
β’ ((((π β§ π΄ β AssAlg) β§ π¦ β π) β§ π₯ β (Baseβπ)) β (π₯(.rβπ΄)(π¦( Β·π
βπ΄)(1rβπ))) = (π¦( Β·π
βπ΄)(π₯(.rβπ΄)(1rβπ)))) |
36 | 12, 4 | sramulr 20795 |
. . . . . . . . . 10
β’ (π β (.rβπ) = (.rβπ΄)) |
37 | 36 | ad3antrrr 728 |
. . . . . . . . 9
β’ ((((π β§ π΄ β AssAlg) β§ π¦ β π) β§ π₯ β (Baseβπ)) β (.rβπ) = (.rβπ΄)) |
38 | 37 | oveqd 7425 |
. . . . . . . 8
β’ ((((π β§ π΄ β AssAlg) β§ π¦ β π) β§ π₯ β (Baseβπ)) β (π₯(.rβπ)(π¦( Β·π
βπ΄)(1rβπ))) = (π₯(.rβπ΄)(π¦( Β·π
βπ΄)(1rβπ)))) |
39 | 12, 4 | sravsca 20799 |
. . . . . . . . . . . 12
β’ (π β (.rβπ) = (
Β·π βπ΄)) |
40 | 39 | ad3antrrr 728 |
. . . . . . . . . . 11
β’ ((((π β§ π΄ β AssAlg) β§ π¦ β π) β§ π₯ β (Baseβπ)) β (.rβπ) = (
Β·π βπ΄)) |
41 | 40 | oveqd 7425 |
. . . . . . . . . 10
β’ ((((π β§ π΄ β AssAlg) β§ π¦ β π) β§ π₯ β (Baseβπ)) β (π¦(.rβπ)(1rβπ)) = (π¦( Β·π
βπ΄)(1rβπ))) |
42 | | eqid 2732 |
. . . . . . . . . . 11
β’
(.rβπ) = (.rβπ) |
43 | 23 | ad3antrrr 728 |
. . . . . . . . . . 11
β’ ((((π β§ π΄ β AssAlg) β§ π¦ β π) β§ π₯ β (Baseβπ)) β π β Ring) |
44 | 6 | adantr 481 |
. . . . . . . . . . 11
β’ ((((π β§ π΄ β AssAlg) β§ π¦ β π) β§ π₯ β (Baseβπ)) β π¦ β (Baseβπ)) |
45 | 2, 42, 24, 43, 44 | ringridmd 20089 |
. . . . . . . . . 10
β’ ((((π β§ π΄ β AssAlg) β§ π¦ β π) β§ π₯ β (Baseβπ)) β (π¦(.rβπ)(1rβπ)) = π¦) |
46 | 41, 45 | eqtr3d 2774 |
. . . . . . . . 9
β’ ((((π β§ π΄ β AssAlg) β§ π¦ β π) β§ π₯ β (Baseβπ)) β (π¦( Β·π
βπ΄)(1rβπ)) = π¦) |
47 | 46 | oveq2d 7424 |
. . . . . . . 8
β’ ((((π β§ π΄ β AssAlg) β§ π¦ β π) β§ π₯ β (Baseβπ)) β (π₯(.rβπ)(π¦( Β·π
βπ΄)(1rβπ))) = (π₯(.rβπ)π¦)) |
48 | 38, 47 | eqtr3d 2774 |
. . . . . . 7
β’ ((((π β§ π΄ β AssAlg) β§ π¦ β π) β§ π₯ β (Baseβπ)) β (π₯(.rβπ΄)(π¦( Β·π
βπ΄)(1rβπ))) = (π₯(.rβπ)π¦)) |
49 | 40 | oveqd 7425 |
. . . . . . . 8
β’ ((((π β§ π΄ β AssAlg) β§ π¦ β π) β§ π₯ β (Baseβπ)) β (π¦(.rβπ)(π₯(.rβπ΄)(1rβπ))) = (π¦( Β·π
βπ΄)(π₯(.rβπ΄)(1rβπ)))) |
50 | 37 | oveqd 7425 |
. . . . . . . . . 10
β’ ((((π β§ π΄ β AssAlg) β§ π¦ β π) β§ π₯ β (Baseβπ)) β (π₯(.rβπ)(1rβπ)) = (π₯(.rβπ΄)(1rβπ))) |
51 | | simpr 485 |
. . . . . . . . . . 11
β’ ((((π β§ π΄ β AssAlg) β§ π¦ β π) β§ π₯ β (Baseβπ)) β π₯ β (Baseβπ)) |
52 | 2, 42, 24, 43, 51 | ringridmd 20089 |
. . . . . . . . . 10
β’ ((((π β§ π΄ β AssAlg) β§ π¦ β π) β§ π₯ β (Baseβπ)) β (π₯(.rβπ)(1rβπ)) = π₯) |
53 | 50, 52 | eqtr3d 2774 |
. . . . . . . . 9
β’ ((((π β§ π΄ β AssAlg) β§ π¦ β π) β§ π₯ β (Baseβπ)) β (π₯(.rβπ΄)(1rβπ)) = π₯) |
54 | 53 | oveq2d 7424 |
. . . . . . . 8
β’ ((((π β§ π΄ β AssAlg) β§ π¦ β π) β§ π₯ β (Baseβπ)) β (π¦(.rβπ)(π₯(.rβπ΄)(1rβπ))) = (π¦(.rβπ)π₯)) |
55 | 49, 54 | eqtr3d 2774 |
. . . . . . 7
β’ ((((π β§ π΄ β AssAlg) β§ π¦ β π) β§ π₯ β (Baseβπ)) β (π¦( Β·π
βπ΄)(π₯(.rβπ΄)(1rβπ))) = (π¦(.rβπ)π₯)) |
56 | 35, 48, 55 | 3eqtr3rd 2781 |
. . . . . 6
β’ ((((π β§ π΄ β AssAlg) β§ π¦ β π) β§ π₯ β (Baseβπ)) β (π¦(.rβπ)π₯) = (π₯(.rβπ)π¦)) |
57 | 56 | ralrimiva 3146 |
. . . . 5
β’ (((π β§ π΄ β AssAlg) β§ π¦ β π) β βπ₯ β (Baseβπ)(π¦(.rβπ)π₯) = (π₯(.rβπ)π¦)) |
58 | | eqid 2732 |
. . . . . . 7
β’
(mulGrpβπ) =
(mulGrpβπ) |
59 | 58, 2 | mgpbas 19992 |
. . . . . 6
β’
(Baseβπ) =
(Baseβ(mulGrpβπ)) |
60 | 58, 42 | mgpplusg 19990 |
. . . . . 6
β’
(.rβπ) = (+gβ(mulGrpβπ)) |
61 | | sraassab.z |
. . . . . 6
β’ π =
(Cntrβ(mulGrpβπ)) |
62 | 59, 60, 61 | elcntr 19193 |
. . . . 5
β’ (π¦ β π β (π¦ β (Baseβπ) β§ βπ₯ β (Baseβπ)(π¦(.rβπ)π₯) = (π₯(.rβπ)π¦))) |
63 | 6, 57, 62 | sylanbrc 583 |
. . . 4
β’ (((π β§ π΄ β AssAlg) β§ π¦ β π) β π¦ β π) |
64 | 63 | ex 413 |
. . 3
β’ ((π β§ π΄ β AssAlg) β (π¦ β π β π¦ β π)) |
65 | 64 | ssrdv 3988 |
. 2
β’ ((π β§ π΄ β AssAlg) β π β π) |
66 | 19 | adantr 481 |
. . 3
β’ ((π β§ π β π) β (Baseβπ) = (Baseβπ΄)) |
67 | 13 | adantr 481 |
. . 3
β’ ((π β§ π β π) β (π βΎs π) = (Scalarβπ΄)) |
68 | 10 | adantr 481 |
. . 3
β’ ((π β§ π β π) β π = (Baseβ(π βΎs π))) |
69 | 39 | adantr 481 |
. . 3
β’ ((π β§ π β π) β (.rβπ) = (
Β·π βπ΄)) |
70 | 36 | adantr 481 |
. . 3
β’ ((π β§ π β π) β (.rβπ) = (.rβπ΄)) |
71 | 11 | sralmod 20808 |
. . . . 5
β’ (π β (SubRingβπ) β π΄ β LMod) |
72 | 1, 71 | syl 17 |
. . . 4
β’ (π β π΄ β LMod) |
73 | 72 | adantr 481 |
. . 3
β’ ((π β§ π β π) β π΄ β LMod) |
74 | 11, 2 | sraring 20807 |
. . . . 5
β’ ((π β Ring β§ π β (Baseβπ)) β π΄ β Ring) |
75 | 23, 4, 74 | syl2anc 584 |
. . . 4
β’ (π β π΄ β Ring) |
76 | 75 | adantr 481 |
. . 3
β’ ((π β§ π β π) β π΄ β Ring) |
77 | 23 | ad2antrr 724 |
. . . 4
β’ (((π β§ π β π) β§ (π₯ β π β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β π β Ring) |
78 | 4 | adantr 481 |
. . . . . 6
β’ ((π β§ π β π) β π β (Baseβπ)) |
79 | 78 | sselda 3982 |
. . . . 5
β’ (((π β§ π β π) β§ π₯ β π) β π₯ β (Baseβπ)) |
80 | 79 | 3ad2antr1 1188 |
. . . 4
β’ (((π β§ π β π) β§ (π₯ β π β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β π₯ β (Baseβπ)) |
81 | | simpr2 1195 |
. . . 4
β’ (((π β§ π β π) β§ (π₯ β π β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β π¦ β (Baseβπ)) |
82 | | simpr3 1196 |
. . . 4
β’ (((π β§ π β π) β§ (π₯ β π β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β π§ β (Baseβπ)) |
83 | 2, 42, 77, 80, 81, 82 | ringassd 20078 |
. . 3
β’ (((π β§ π β π) β§ (π₯ β π β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β ((π₯(.rβπ)π¦)(.rβπ)π§) = (π₯(.rβπ)(π¦(.rβπ)π§))) |
84 | | ssel2 3977 |
. . . . . . . 8
β’ ((π β π β§ π₯ β π) β π₯ β π) |
85 | 84 | ad2ant2lr 746 |
. . . . . . 7
β’ (((π β§ π β π) β§ (π₯ β π β§ π¦ β (Baseβπ))) β π₯ β π) |
86 | | simprr 771 |
. . . . . . 7
β’ (((π β§ π β π) β§ (π₯ β π β§ π¦ β (Baseβπ))) β π¦ β (Baseβπ)) |
87 | 59, 60, 61 | cntri 19195 |
. . . . . . 7
β’ ((π₯ β π β§ π¦ β (Baseβπ)) β (π₯(.rβπ)π¦) = (π¦(.rβπ)π₯)) |
88 | 85, 86, 87 | syl2anc 584 |
. . . . . 6
β’ (((π β§ π β π) β§ (π₯ β π β§ π¦ β (Baseβπ))) β (π₯(.rβπ)π¦) = (π¦(.rβπ)π₯)) |
89 | 88 | 3adantr3 1171 |
. . . . 5
β’ (((π β§ π β π) β§ (π₯ β π β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (π₯(.rβπ)π¦) = (π¦(.rβπ)π₯)) |
90 | 89 | oveq1d 7423 |
. . . 4
β’ (((π β§ π β π) β§ (π₯ β π β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β ((π₯(.rβπ)π¦)(.rβπ)π§) = ((π¦(.rβπ)π₯)(.rβπ)π§)) |
91 | 2, 42, 77, 81, 80, 82 | ringassd 20078 |
. . . 4
β’ (((π β§ π β π) β§ (π₯ β π β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β ((π¦(.rβπ)π₯)(.rβπ)π§) = (π¦(.rβπ)(π₯(.rβπ)π§))) |
92 | 90, 83, 91 | 3eqtr3rd 2781 |
. . 3
β’ (((π β§ π β π) β§ (π₯ β π β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (π¦(.rβπ)(π₯(.rβπ)π§)) = (π₯(.rβπ)(π¦(.rβπ)π§))) |
93 | 66, 67, 68, 69, 70, 73, 76, 83, 92 | isassad 21418 |
. 2
β’ ((π β§ π β π) β π΄ β AssAlg) |
94 | 65, 93 | impbida 799 |
1
β’ (π β (π΄ β AssAlg β π β π)) |