MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sraassab Structured version   Visualization version   GIF version

Theorem sraassab 21911
Description: A subring algebra is an associative algebra if and only if the subring is included in the ring's center. (Contributed by SN, 21-Mar-2025.)
Hypotheses
Ref Expression
sraassab.a 𝐴 = ((subringAlg ‘𝑊)‘𝑆)
sraassab.z 𝑍 = (Cntr‘(mulGrp‘𝑊))
sraassab.w (𝜑𝑊 ∈ Ring)
sraassab.s (𝜑𝑆 ∈ (SubRing‘𝑊))
Assertion
Ref Expression
sraassab (𝜑 → (𝐴 ∈ AssAlg ↔ 𝑆𝑍))

Proof of Theorem sraassab
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sraassab.s . . . . . . . 8 (𝜑𝑆 ∈ (SubRing‘𝑊))
2 eqid 2740 . . . . . . . . 9 (Base‘𝑊) = (Base‘𝑊)
32subrgss 20600 . . . . . . . 8 (𝑆 ∈ (SubRing‘𝑊) → 𝑆 ⊆ (Base‘𝑊))
41, 3syl 17 . . . . . . 7 (𝜑𝑆 ⊆ (Base‘𝑊))
54adantr 480 . . . . . 6 ((𝜑𝐴 ∈ AssAlg) → 𝑆 ⊆ (Base‘𝑊))
65sselda 4008 . . . . 5 (((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) → 𝑦 ∈ (Base‘𝑊))
7 simpllr 775 . . . . . . . 8 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝐴 ∈ AssAlg)
8 eqid 2740 . . . . . . . . . . . . . 14 (𝑊s 𝑆) = (𝑊s 𝑆)
98subrgbas 20609 . . . . . . . . . . . . 13 (𝑆 ∈ (SubRing‘𝑊) → 𝑆 = (Base‘(𝑊s 𝑆)))
101, 9syl 17 . . . . . . . . . . . 12 (𝜑𝑆 = (Base‘(𝑊s 𝑆)))
11 sraassab.a . . . . . . . . . . . . . . 15 𝐴 = ((subringAlg ‘𝑊)‘𝑆)
1211a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
1312, 4srasca 21206 . . . . . . . . . . . . 13 (𝜑 → (𝑊s 𝑆) = (Scalar‘𝐴))
1413fveq2d 6924 . . . . . . . . . . . 12 (𝜑 → (Base‘(𝑊s 𝑆)) = (Base‘(Scalar‘𝐴)))
1510, 14eqtrd 2780 . . . . . . . . . . 11 (𝜑𝑆 = (Base‘(Scalar‘𝐴)))
1615eqimssd 4065 . . . . . . . . . 10 (𝜑𝑆 ⊆ (Base‘(Scalar‘𝐴)))
1716sselda 4008 . . . . . . . . 9 ((𝜑𝑦𝑆) → 𝑦 ∈ (Base‘(Scalar‘𝐴)))
1817ad4ant13 750 . . . . . . . 8 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑦 ∈ (Base‘(Scalar‘𝐴)))
1912, 4srabase 21200 . . . . . . . . . . 11 (𝜑 → (Base‘𝑊) = (Base‘𝐴))
2019eqimssd 4065 . . . . . . . . . 10 (𝜑 → (Base‘𝑊) ⊆ (Base‘𝐴))
2120ad2antrr 725 . . . . . . . . 9 (((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) → (Base‘𝑊) ⊆ (Base‘𝐴))
2221sselda 4008 . . . . . . . 8 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑥 ∈ (Base‘𝐴))
23 sraassab.w . . . . . . . . . . 11 (𝜑𝑊 ∈ Ring)
24 eqid 2740 . . . . . . . . . . . 12 (1r𝑊) = (1r𝑊)
252, 24ringidcl 20289 . . . . . . . . . . 11 (𝑊 ∈ Ring → (1r𝑊) ∈ (Base‘𝑊))
2623, 25syl 17 . . . . . . . . . 10 (𝜑 → (1r𝑊) ∈ (Base‘𝑊))
2726, 19eleqtrd 2846 . . . . . . . . 9 (𝜑 → (1r𝑊) ∈ (Base‘𝐴))
2827ad3antrrr 729 . . . . . . . 8 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (1r𝑊) ∈ (Base‘𝐴))
29 eqid 2740 . . . . . . . . 9 (Base‘𝐴) = (Base‘𝐴)
30 eqid 2740 . . . . . . . . 9 (Scalar‘𝐴) = (Scalar‘𝐴)
31 eqid 2740 . . . . . . . . 9 (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴))
32 eqid 2740 . . . . . . . . 9 ( ·𝑠𝐴) = ( ·𝑠𝐴)
33 eqid 2740 . . . . . . . . 9 (.r𝐴) = (.r𝐴)
3429, 30, 31, 32, 33assaassr 21902 . . . . . . . 8 ((𝐴 ∈ AssAlg ∧ (𝑦 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑥 ∈ (Base‘𝐴) ∧ (1r𝑊) ∈ (Base‘𝐴))) → (𝑥(.r𝐴)(𝑦( ·𝑠𝐴)(1r𝑊))) = (𝑦( ·𝑠𝐴)(𝑥(.r𝐴)(1r𝑊))))
357, 18, 22, 28, 34syl13anc 1372 . . . . . . 7 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(.r𝐴)(𝑦( ·𝑠𝐴)(1r𝑊))) = (𝑦( ·𝑠𝐴)(𝑥(.r𝐴)(1r𝑊))))
3612, 4sramulr 21204 . . . . . . . . . 10 (𝜑 → (.r𝑊) = (.r𝐴))
3736ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (.r𝑊) = (.r𝐴))
3837oveqd 7465 . . . . . . . 8 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(.r𝑊)(𝑦( ·𝑠𝐴)(1r𝑊))) = (𝑥(.r𝐴)(𝑦( ·𝑠𝐴)(1r𝑊))))
3912, 4sravsca 21208 . . . . . . . . . . . 12 (𝜑 → (.r𝑊) = ( ·𝑠𝐴))
4039ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (.r𝑊) = ( ·𝑠𝐴))
4140oveqd 7465 . . . . . . . . . 10 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑦(.r𝑊)(1r𝑊)) = (𝑦( ·𝑠𝐴)(1r𝑊)))
42 eqid 2740 . . . . . . . . . . 11 (.r𝑊) = (.r𝑊)
4323ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑊 ∈ Ring)
446adantr 480 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑦 ∈ (Base‘𝑊))
452, 42, 24, 43, 44ringridmd 20296 . . . . . . . . . 10 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑦(.r𝑊)(1r𝑊)) = 𝑦)
4641, 45eqtr3d 2782 . . . . . . . . 9 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑦( ·𝑠𝐴)(1r𝑊)) = 𝑦)
4746oveq2d 7464 . . . . . . . 8 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(.r𝑊)(𝑦( ·𝑠𝐴)(1r𝑊))) = (𝑥(.r𝑊)𝑦))
4838, 47eqtr3d 2782 . . . . . . 7 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(.r𝐴)(𝑦( ·𝑠𝐴)(1r𝑊))) = (𝑥(.r𝑊)𝑦))
4940oveqd 7465 . . . . . . . 8 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑦(.r𝑊)(𝑥(.r𝐴)(1r𝑊))) = (𝑦( ·𝑠𝐴)(𝑥(.r𝐴)(1r𝑊))))
5037oveqd 7465 . . . . . . . . . 10 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(.r𝑊)(1r𝑊)) = (𝑥(.r𝐴)(1r𝑊)))
51 simpr 484 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑥 ∈ (Base‘𝑊))
522, 42, 24, 43, 51ringridmd 20296 . . . . . . . . . 10 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(.r𝑊)(1r𝑊)) = 𝑥)
5350, 52eqtr3d 2782 . . . . . . . . 9 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(.r𝐴)(1r𝑊)) = 𝑥)
5453oveq2d 7464 . . . . . . . 8 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑦(.r𝑊)(𝑥(.r𝐴)(1r𝑊))) = (𝑦(.r𝑊)𝑥))
5549, 54eqtr3d 2782 . . . . . . 7 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑦( ·𝑠𝐴)(𝑥(.r𝐴)(1r𝑊))) = (𝑦(.r𝑊)𝑥))
5635, 48, 553eqtr3rd 2789 . . . . . 6 ((((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑦(.r𝑊)𝑥) = (𝑥(.r𝑊)𝑦))
5756ralrimiva 3152 . . . . 5 (((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) → ∀𝑥 ∈ (Base‘𝑊)(𝑦(.r𝑊)𝑥) = (𝑥(.r𝑊)𝑦))
58 eqid 2740 . . . . . . 7 (mulGrp‘𝑊) = (mulGrp‘𝑊)
5958, 2mgpbas 20167 . . . . . 6 (Base‘𝑊) = (Base‘(mulGrp‘𝑊))
6058, 42mgpplusg 20165 . . . . . 6 (.r𝑊) = (+g‘(mulGrp‘𝑊))
61 sraassab.z . . . . . 6 𝑍 = (Cntr‘(mulGrp‘𝑊))
6259, 60, 61elcntr 19370 . . . . 5 (𝑦𝑍 ↔ (𝑦 ∈ (Base‘𝑊) ∧ ∀𝑥 ∈ (Base‘𝑊)(𝑦(.r𝑊)𝑥) = (𝑥(.r𝑊)𝑦)))
636, 57, 62sylanbrc 582 . . . 4 (((𝜑𝐴 ∈ AssAlg) ∧ 𝑦𝑆) → 𝑦𝑍)
6463ex 412 . . 3 ((𝜑𝐴 ∈ AssAlg) → (𝑦𝑆𝑦𝑍))
6564ssrdv 4014 . 2 ((𝜑𝐴 ∈ AssAlg) → 𝑆𝑍)
6619adantr 480 . . 3 ((𝜑𝑆𝑍) → (Base‘𝑊) = (Base‘𝐴))
6713adantr 480 . . 3 ((𝜑𝑆𝑍) → (𝑊s 𝑆) = (Scalar‘𝐴))
6810adantr 480 . . 3 ((𝜑𝑆𝑍) → 𝑆 = (Base‘(𝑊s 𝑆)))
6939adantr 480 . . 3 ((𝜑𝑆𝑍) → (.r𝑊) = ( ·𝑠𝐴))
7036adantr 480 . . 3 ((𝜑𝑆𝑍) → (.r𝑊) = (.r𝐴))
7111sralmod 21217 . . . . 5 (𝑆 ∈ (SubRing‘𝑊) → 𝐴 ∈ LMod)
721, 71syl 17 . . . 4 (𝜑𝐴 ∈ LMod)
7372adantr 480 . . 3 ((𝜑𝑆𝑍) → 𝐴 ∈ LMod)
7411, 2sraring 21216 . . . . 5 ((𝑊 ∈ Ring ∧ 𝑆 ⊆ (Base‘𝑊)) → 𝐴 ∈ Ring)
7523, 4, 74syl2anc 583 . . . 4 (𝜑𝐴 ∈ Ring)
7675adantr 480 . . 3 ((𝜑𝑆𝑍) → 𝐴 ∈ Ring)
7723ad2antrr 725 . . . 4 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑊 ∈ Ring)
784adantr 480 . . . . . 6 ((𝜑𝑆𝑍) → 𝑆 ⊆ (Base‘𝑊))
7978sselda 4008 . . . . 5 (((𝜑𝑆𝑍) ∧ 𝑥𝑆) → 𝑥 ∈ (Base‘𝑊))
80793ad2antr1 1188 . . . 4 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝑊))
81 simpr2 1195 . . . 4 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
82 simpr3 1196 . . . 4 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑧 ∈ (Base‘𝑊))
832, 42, 77, 80, 81, 82ringassd 20284 . . 3 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(.r𝑊)𝑦)(.r𝑊)𝑧) = (𝑥(.r𝑊)(𝑦(.r𝑊)𝑧)))
84 ssel2 4003 . . . . . . . 8 ((𝑆𝑍𝑥𝑆) → 𝑥𝑍)
8584ad2ant2lr 747 . . . . . . 7 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊))) → 𝑥𝑍)
86 simprr 772 . . . . . . 7 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
8759, 60, 61cntri 19372 . . . . . . 7 ((𝑥𝑍𝑦 ∈ (Base‘𝑊)) → (𝑥(.r𝑊)𝑦) = (𝑦(.r𝑊)𝑥))
8885, 86, 87syl2anc 583 . . . . . 6 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊))) → (𝑥(.r𝑊)𝑦) = (𝑦(.r𝑊)𝑥))
89883adantr3 1171 . . . . 5 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑥(.r𝑊)𝑦) = (𝑦(.r𝑊)𝑥))
9089oveq1d 7463 . . . 4 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(.r𝑊)𝑦)(.r𝑊)𝑧) = ((𝑦(.r𝑊)𝑥)(.r𝑊)𝑧))
912, 42, 77, 81, 80, 82ringassd 20284 . . . 4 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑦(.r𝑊)𝑥)(.r𝑊)𝑧) = (𝑦(.r𝑊)(𝑥(.r𝑊)𝑧)))
9290, 83, 913eqtr3rd 2789 . . 3 (((𝜑𝑆𝑍) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑦(.r𝑊)(𝑥(.r𝑊)𝑧)) = (𝑥(.r𝑊)(𝑦(.r𝑊)𝑧)))
9366, 67, 68, 69, 70, 73, 76, 83, 92isassad 21908 . 2 ((𝜑𝑆𝑍) → 𝐴 ∈ AssAlg)
9465, 93impbida 800 1 (𝜑 → (𝐴 ∈ AssAlg ↔ 𝑆𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wss 3976  cfv 6573  (class class class)co 7448  Basecbs 17258  s cress 17287  .rcmulr 17312  Scalarcsca 17314   ·𝑠 cvsca 17315  Cntrccntr 19356  mulGrpcmgp 20161  1rcur 20208  Ringcrg 20260  SubRingcsubrg 20595  LModclmod 20880  subringAlg csra 21193  AssAlgcasa 21893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-subg 19163  df-cntz 19357  df-cntr 19358  df-mgp 20162  df-ur 20209  df-ring 20262  df-subrg 20597  df-lmod 20882  df-sra 21195  df-assa 21896
This theorem is referenced by:  sraassa  21912
  Copyright terms: Public domain W3C validator