| Step | Hyp | Ref
| Expression |
| 1 | | evls1maprhm.s |
. . . 4
⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) |
| 2 | | eqid 2737 |
. . . . 5
⊢ (𝑅 ↾s 𝑆) = (𝑅 ↾s 𝑆) |
| 3 | 2 | subrgring 20574 |
. . . 4
⊢ (𝑆 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝑆) ∈ Ring) |
| 4 | 1, 3 | syl 17 |
. . 3
⊢ (𝜑 → (𝑅 ↾s 𝑆) ∈ Ring) |
| 5 | | evls1maprhm.p |
. . . 4
⊢ 𝑃 =
(Poly1‘(𝑅
↾s 𝑆)) |
| 6 | 5 | ply1lmod 22253 |
. . 3
⊢ ((𝑅 ↾s 𝑆) ∈ Ring → 𝑃 ∈ LMod) |
| 7 | 4, 6 | syl 17 |
. 2
⊢ (𝜑 → 𝑃 ∈ LMod) |
| 8 | | evls1maplmhm.1 |
. . . 4
⊢ 𝐴 = ((subringAlg ‘𝑅)‘𝑆) |
| 9 | 8 | sralmod 21194 |
. . 3
⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝐴 ∈ LMod) |
| 10 | 1, 9 | syl 17 |
. 2
⊢ (𝜑 → 𝐴 ∈ LMod) |
| 11 | | evls1maprhm.q |
. . . . 5
⊢ 𝑂 = (𝑅 evalSub1 𝑆) |
| 12 | | evls1maprhm.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑅) |
| 13 | | evls1maprhm.u |
. . . . 5
⊢ 𝑈 = (Base‘𝑃) |
| 14 | | evls1maprhm.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ CRing) |
| 15 | | evls1maprhm.y |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 16 | | evls1maprhm.f |
. . . . 5
⊢ 𝐹 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋)) |
| 17 | 11, 5, 12, 13, 14, 1, 15, 16 | evls1maprhm 22380 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (𝑃 RingHom 𝑅)) |
| 18 | | rhmghm 20484 |
. . . 4
⊢ (𝐹 ∈ (𝑃 RingHom 𝑅) → 𝐹 ∈ (𝑃 GrpHom 𝑅)) |
| 19 | 17, 18 | syl 17 |
. . 3
⊢ (𝜑 → 𝐹 ∈ (𝑃 GrpHom 𝑅)) |
| 20 | 13 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝑈 = (Base‘𝑃)) |
| 21 | 12 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
| 22 | 8 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑅)‘𝑆)) |
| 23 | 12 | subrgss 20572 |
. . . . . . . 8
⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑆 ⊆ 𝐵) |
| 24 | 1, 23 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| 25 | 24, 12 | sseqtrdi 4024 |
. . . . . 6
⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑅)) |
| 26 | 22, 25 | srabase 21177 |
. . . . 5
⊢ (𝜑 → (Base‘𝑅) = (Base‘𝐴)) |
| 27 | 12, 26 | eqtrid 2789 |
. . . 4
⊢ (𝜑 → 𝐵 = (Base‘𝐴)) |
| 28 | | eqidd 2738 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (𝑥(+g‘𝑃)𝑦) = (𝑥(+g‘𝑃)𝑦)) |
| 29 | 22, 25 | sraaddg 21179 |
. . . . 5
⊢ (𝜑 → (+g‘𝑅) = (+g‘𝐴)) |
| 30 | 29 | oveqdr 7459 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝐴)𝑦)) |
| 31 | 20, 21, 20, 27, 28, 30 | ghmpropd 19274 |
. . 3
⊢ (𝜑 → (𝑃 GrpHom 𝑅) = (𝑃 GrpHom 𝐴)) |
| 32 | 19, 31 | eleqtrd 2843 |
. 2
⊢ (𝜑 → 𝐹 ∈ (𝑃 GrpHom 𝐴)) |
| 33 | 22, 25 | srasca 21183 |
. . 3
⊢ (𝜑 → (𝑅 ↾s 𝑆) = (Scalar‘𝐴)) |
| 34 | | ovex 7464 |
. . . 4
⊢ (𝑅 ↾s 𝑆) ∈ V |
| 35 | 5 | ply1sca 22254 |
. . . 4
⊢ ((𝑅 ↾s 𝑆) ∈ V → (𝑅 ↾s 𝑆) = (Scalar‘𝑃)) |
| 36 | 34, 35 | mp1i 13 |
. . 3
⊢ (𝜑 → (𝑅 ↾s 𝑆) = (Scalar‘𝑃)) |
| 37 | 33, 36 | eqtr3d 2779 |
. 2
⊢ (𝜑 → (Scalar‘𝐴) = (Scalar‘𝑃)) |
| 38 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑝 = (𝑘( ·𝑠
‘𝑃)𝑥) → (𝑂‘𝑝) = (𝑂‘(𝑘( ·𝑠
‘𝑃)𝑥))) |
| 39 | 38 | fveq1d 6908 |
. . . . . 6
⊢ (𝑝 = (𝑘( ·𝑠
‘𝑃)𝑥) → ((𝑂‘𝑝)‘𝑋) = ((𝑂‘(𝑘( ·𝑠
‘𝑃)𝑥))‘𝑋)) |
| 40 | 7 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ 𝑈) → 𝑃 ∈ LMod) |
| 41 | | simplr 769 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ 𝑈) → 𝑘 ∈ (Base‘(Scalar‘𝑃))) |
| 42 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝑈) |
| 43 | | eqid 2737 |
. . . . . . . 8
⊢
(Scalar‘𝑃) =
(Scalar‘𝑃) |
| 44 | | eqid 2737 |
. . . . . . . 8
⊢ (
·𝑠 ‘𝑃) = ( ·𝑠
‘𝑃) |
| 45 | | eqid 2737 |
. . . . . . . 8
⊢
(Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) |
| 46 | 13, 43, 44, 45 | lmodvscl 20876 |
. . . . . . 7
⊢ ((𝑃 ∈ LMod ∧ 𝑘 ∈
(Base‘(Scalar‘𝑃)) ∧ 𝑥 ∈ 𝑈) → (𝑘( ·𝑠
‘𝑃)𝑥) ∈ 𝑈) |
| 47 | 40, 41, 42, 46 | syl3anc 1373 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ 𝑈) → (𝑘( ·𝑠
‘𝑃)𝑥) ∈ 𝑈) |
| 48 | | fvexd 6921 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ 𝑈) → ((𝑂‘(𝑘( ·𝑠
‘𝑃)𝑥))‘𝑋) ∈ V) |
| 49 | 16, 39, 47, 48 | fvmptd3 7039 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ 𝑈) → (𝐹‘(𝑘( ·𝑠
‘𝑃)𝑥)) = ((𝑂‘(𝑘( ·𝑠
‘𝑃)𝑥))‘𝑋)) |
| 50 | | eqid 2737 |
. . . . . 6
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 51 | 14 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ 𝑈) → 𝑅 ∈ CRing) |
| 52 | 1 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ 𝑈) → 𝑆 ∈ (SubRing‘𝑅)) |
| 53 | 2, 12 | ressbas2 17283 |
. . . . . . . . . . 11
⊢ (𝑆 ⊆ 𝐵 → 𝑆 = (Base‘(𝑅 ↾s 𝑆))) |
| 54 | 24, 53 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 = (Base‘(𝑅 ↾s 𝑆))) |
| 55 | 36 | fveq2d 6910 |
. . . . . . . . . 10
⊢ (𝜑 → (Base‘(𝑅 ↾s 𝑆)) =
(Base‘(Scalar‘𝑃))) |
| 56 | 54, 55 | eqtr2d 2778 |
. . . . . . . . 9
⊢ (𝜑 →
(Base‘(Scalar‘𝑃)) = 𝑆) |
| 57 | 56 | eqimssd 4040 |
. . . . . . . 8
⊢ (𝜑 →
(Base‘(Scalar‘𝑃)) ⊆ 𝑆) |
| 58 | 57 | sselda 3983 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) → 𝑘 ∈ 𝑆) |
| 59 | 58 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ 𝑈) → 𝑘 ∈ 𝑆) |
| 60 | 15 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ 𝑈) → 𝑋 ∈ 𝐵) |
| 61 | 11, 12, 5, 2, 13, 44, 50, 51, 52, 59, 42, 60 | evls1vsca 22377 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ 𝑈) → ((𝑂‘(𝑘( ·𝑠
‘𝑃)𝑥))‘𝑋) = (𝑘(.r‘𝑅)((𝑂‘𝑥)‘𝑋))) |
| 62 | 22, 25 | sravsca 21185 |
. . . . . . 7
⊢ (𝜑 → (.r‘𝑅) = (
·𝑠 ‘𝐴)) |
| 63 | 62 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ 𝑈) → (.r‘𝑅) = (
·𝑠 ‘𝐴)) |
| 64 | | eqidd 2738 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ 𝑈) → 𝑘 = 𝑘) |
| 65 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑝 = 𝑥 → (𝑂‘𝑝) = (𝑂‘𝑥)) |
| 66 | 65 | fveq1d 6908 |
. . . . . . . 8
⊢ (𝑝 = 𝑥 → ((𝑂‘𝑝)‘𝑋) = ((𝑂‘𝑥)‘𝑋)) |
| 67 | | fvexd 6921 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ 𝑈) → ((𝑂‘𝑥)‘𝑋) ∈ V) |
| 68 | 16, 66, 42, 67 | fvmptd3 7039 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ 𝑈) → (𝐹‘𝑥) = ((𝑂‘𝑥)‘𝑋)) |
| 69 | 68 | eqcomd 2743 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ 𝑈) → ((𝑂‘𝑥)‘𝑋) = (𝐹‘𝑥)) |
| 70 | 63, 64, 69 | oveq123d 7452 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ 𝑈) → (𝑘(.r‘𝑅)((𝑂‘𝑥)‘𝑋)) = (𝑘( ·𝑠
‘𝐴)(𝐹‘𝑥))) |
| 71 | 49, 61, 70 | 3eqtrd 2781 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ 𝑈) → (𝐹‘(𝑘( ·𝑠
‘𝑃)𝑥)) = (𝑘( ·𝑠
‘𝐴)(𝐹‘𝑥))) |
| 72 | 71 | anasss 466 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑥 ∈ 𝑈)) → (𝐹‘(𝑘( ·𝑠
‘𝑃)𝑥)) = (𝑘( ·𝑠
‘𝐴)(𝐹‘𝑥))) |
| 73 | 72 | ralrimivva 3202 |
. 2
⊢ (𝜑 → ∀𝑘 ∈ (Base‘(Scalar‘𝑃))∀𝑥 ∈ 𝑈 (𝐹‘(𝑘( ·𝑠
‘𝑃)𝑥)) = (𝑘( ·𝑠
‘𝐴)(𝐹‘𝑥))) |
| 74 | | eqid 2737 |
. . . 4
⊢
(Scalar‘𝐴) =
(Scalar‘𝐴) |
| 75 | | eqid 2737 |
. . . 4
⊢ (
·𝑠 ‘𝐴) = ( ·𝑠
‘𝐴) |
| 76 | 43, 74, 45, 13, 44, 75 | islmhm 21026 |
. . 3
⊢ (𝐹 ∈ (𝑃 LMHom 𝐴) ↔ ((𝑃 ∈ LMod ∧ 𝐴 ∈ LMod) ∧ (𝐹 ∈ (𝑃 GrpHom 𝐴) ∧ (Scalar‘𝐴) = (Scalar‘𝑃) ∧ ∀𝑘 ∈ (Base‘(Scalar‘𝑃))∀𝑥 ∈ 𝑈 (𝐹‘(𝑘( ·𝑠
‘𝑃)𝑥)) = (𝑘( ·𝑠
‘𝐴)(𝐹‘𝑥))))) |
| 77 | 76 | biimpri 228 |
. 2
⊢ (((𝑃 ∈ LMod ∧ 𝐴 ∈ LMod) ∧ (𝐹 ∈ (𝑃 GrpHom 𝐴) ∧ (Scalar‘𝐴) = (Scalar‘𝑃) ∧ ∀𝑘 ∈ (Base‘(Scalar‘𝑃))∀𝑥 ∈ 𝑈 (𝐹‘(𝑘( ·𝑠
‘𝑃)𝑥)) = (𝑘( ·𝑠
‘𝐴)(𝐹‘𝑥)))) → 𝐹 ∈ (𝑃 LMHom 𝐴)) |
| 78 | 7, 10, 32, 37, 73, 77 | syl23anc 1379 |
1
⊢ (𝜑 → 𝐹 ∈ (𝑃 LMHom 𝐴)) |