Step | Hyp | Ref
| Expression |
1 | | evls1maprhm.s |
. . . 4
⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) |
2 | | eqid 2731 |
. . . . 5
⊢ (𝑅 ↾s 𝑆) = (𝑅 ↾s 𝑆) |
3 | 2 | subrgring 20472 |
. . . 4
⊢ (𝑆 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝑆) ∈ Ring) |
4 | 1, 3 | syl 17 |
. . 3
⊢ (𝜑 → (𝑅 ↾s 𝑆) ∈ Ring) |
5 | | evls1maprhm.p |
. . . 4
⊢ 𝑃 =
(Poly1‘(𝑅
↾s 𝑆)) |
6 | 5 | ply1lmod 22095 |
. . 3
⊢ ((𝑅 ↾s 𝑆) ∈ Ring → 𝑃 ∈ LMod) |
7 | 4, 6 | syl 17 |
. 2
⊢ (𝜑 → 𝑃 ∈ LMod) |
8 | | evls1maplmhm.1 |
. . . 4
⊢ 𝐴 = ((subringAlg ‘𝑅)‘𝑆) |
9 | 8 | sralmod 21039 |
. . 3
⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝐴 ∈ LMod) |
10 | 1, 9 | syl 17 |
. 2
⊢ (𝜑 → 𝐴 ∈ LMod) |
11 | | evls1maprhm.q |
. . . . 5
⊢ 𝑂 = (𝑅 evalSub1 𝑆) |
12 | | evls1maprhm.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑅) |
13 | | evls1maprhm.u |
. . . . 5
⊢ 𝑈 = (Base‘𝑃) |
14 | | evls1maprhm.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ CRing) |
15 | | evls1maprhm.y |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
16 | | evls1maprhm.f |
. . . . 5
⊢ 𝐹 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋)) |
17 | 11, 5, 12, 13, 14, 1, 15, 16 | evls1maprhm 33216 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (𝑃 RingHom 𝑅)) |
18 | | rhmghm 20382 |
. . . 4
⊢ (𝐹 ∈ (𝑃 RingHom 𝑅) → 𝐹 ∈ (𝑃 GrpHom 𝑅)) |
19 | 17, 18 | syl 17 |
. . 3
⊢ (𝜑 → 𝐹 ∈ (𝑃 GrpHom 𝑅)) |
20 | 13 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝑈 = (Base‘𝑃)) |
21 | 12 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
22 | 8 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑅)‘𝑆)) |
23 | 12 | subrgss 20470 |
. . . . . . . 8
⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑆 ⊆ 𝐵) |
24 | 1, 23 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
25 | 24, 12 | sseqtrdi 4032 |
. . . . . 6
⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑅)) |
26 | 22, 25 | srabase 21022 |
. . . . 5
⊢ (𝜑 → (Base‘𝑅) = (Base‘𝐴)) |
27 | 12, 26 | eqtrid 2783 |
. . . 4
⊢ (𝜑 → 𝐵 = (Base‘𝐴)) |
28 | | eqidd 2732 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (𝑥(+g‘𝑃)𝑦) = (𝑥(+g‘𝑃)𝑦)) |
29 | 22, 25 | sraaddg 21024 |
. . . . 5
⊢ (𝜑 → (+g‘𝑅) = (+g‘𝐴)) |
30 | 29 | oveqdr 7440 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝐴)𝑦)) |
31 | 20, 21, 20, 27, 28, 30 | ghmpropd 19177 |
. . 3
⊢ (𝜑 → (𝑃 GrpHom 𝑅) = (𝑃 GrpHom 𝐴)) |
32 | 19, 31 | eleqtrd 2834 |
. 2
⊢ (𝜑 → 𝐹 ∈ (𝑃 GrpHom 𝐴)) |
33 | 22, 25 | srasca 21028 |
. . 3
⊢ (𝜑 → (𝑅 ↾s 𝑆) = (Scalar‘𝐴)) |
34 | | ovex 7445 |
. . . 4
⊢ (𝑅 ↾s 𝑆) ∈ V |
35 | 5 | ply1sca 22096 |
. . . 4
⊢ ((𝑅 ↾s 𝑆) ∈ V → (𝑅 ↾s 𝑆) = (Scalar‘𝑃)) |
36 | 34, 35 | mp1i 13 |
. . 3
⊢ (𝜑 → (𝑅 ↾s 𝑆) = (Scalar‘𝑃)) |
37 | 33, 36 | eqtr3d 2773 |
. 2
⊢ (𝜑 → (Scalar‘𝐴) = (Scalar‘𝑃)) |
38 | | fveq2 6891 |
. . . . . . 7
⊢ (𝑝 = (𝑘( ·𝑠
‘𝑃)𝑥) → (𝑂‘𝑝) = (𝑂‘(𝑘( ·𝑠
‘𝑃)𝑥))) |
39 | 38 | fveq1d 6893 |
. . . . . 6
⊢ (𝑝 = (𝑘( ·𝑠
‘𝑃)𝑥) → ((𝑂‘𝑝)‘𝑋) = ((𝑂‘(𝑘( ·𝑠
‘𝑃)𝑥))‘𝑋)) |
40 | 7 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ 𝑈) → 𝑃 ∈ LMod) |
41 | | simplr 766 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ 𝑈) → 𝑘 ∈ (Base‘(Scalar‘𝑃))) |
42 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝑈) |
43 | | eqid 2731 |
. . . . . . . 8
⊢
(Scalar‘𝑃) =
(Scalar‘𝑃) |
44 | | eqid 2731 |
. . . . . . . 8
⊢ (
·𝑠 ‘𝑃) = ( ·𝑠
‘𝑃) |
45 | | eqid 2731 |
. . . . . . . 8
⊢
(Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) |
46 | 13, 43, 44, 45 | lmodvscl 20720 |
. . . . . . 7
⊢ ((𝑃 ∈ LMod ∧ 𝑘 ∈
(Base‘(Scalar‘𝑃)) ∧ 𝑥 ∈ 𝑈) → (𝑘( ·𝑠
‘𝑃)𝑥) ∈ 𝑈) |
47 | 40, 41, 42, 46 | syl3anc 1370 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ 𝑈) → (𝑘( ·𝑠
‘𝑃)𝑥) ∈ 𝑈) |
48 | | fvexd 6906 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ 𝑈) → ((𝑂‘(𝑘( ·𝑠
‘𝑃)𝑥))‘𝑋) ∈ V) |
49 | 16, 39, 47, 48 | fvmptd3 7021 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ 𝑈) → (𝐹‘(𝑘( ·𝑠
‘𝑃)𝑥)) = ((𝑂‘(𝑘( ·𝑠
‘𝑃)𝑥))‘𝑋)) |
50 | | eqid 2731 |
. . . . . 6
⊢
(.r‘𝑅) = (.r‘𝑅) |
51 | 14 | ad2antrr 723 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ 𝑈) → 𝑅 ∈ CRing) |
52 | 1 | ad2antrr 723 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ 𝑈) → 𝑆 ∈ (SubRing‘𝑅)) |
53 | 2, 12 | ressbas2 17189 |
. . . . . . . . . . 11
⊢ (𝑆 ⊆ 𝐵 → 𝑆 = (Base‘(𝑅 ↾s 𝑆))) |
54 | 24, 53 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 = (Base‘(𝑅 ↾s 𝑆))) |
55 | 36 | fveq2d 6895 |
. . . . . . . . . 10
⊢ (𝜑 → (Base‘(𝑅 ↾s 𝑆)) =
(Base‘(Scalar‘𝑃))) |
56 | 54, 55 | eqtr2d 2772 |
. . . . . . . . 9
⊢ (𝜑 →
(Base‘(Scalar‘𝑃)) = 𝑆) |
57 | 56 | eqimssd 4038 |
. . . . . . . 8
⊢ (𝜑 →
(Base‘(Scalar‘𝑃)) ⊆ 𝑆) |
58 | 57 | sselda 3982 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) → 𝑘 ∈ 𝑆) |
59 | 58 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ 𝑈) → 𝑘 ∈ 𝑆) |
60 | 15 | ad2antrr 723 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ 𝑈) → 𝑋 ∈ 𝐵) |
61 | 11, 12, 5, 2, 13, 44, 50, 51, 52, 59, 42, 60 | evls1vsca 33092 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ 𝑈) → ((𝑂‘(𝑘( ·𝑠
‘𝑃)𝑥))‘𝑋) = (𝑘(.r‘𝑅)((𝑂‘𝑥)‘𝑋))) |
62 | 22, 25 | sravsca 21030 |
. . . . . . 7
⊢ (𝜑 → (.r‘𝑅) = (
·𝑠 ‘𝐴)) |
63 | 62 | ad2antrr 723 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ 𝑈) → (.r‘𝑅) = (
·𝑠 ‘𝐴)) |
64 | | eqidd 2732 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ 𝑈) → 𝑘 = 𝑘) |
65 | | fveq2 6891 |
. . . . . . . . 9
⊢ (𝑝 = 𝑥 → (𝑂‘𝑝) = (𝑂‘𝑥)) |
66 | 65 | fveq1d 6893 |
. . . . . . . 8
⊢ (𝑝 = 𝑥 → ((𝑂‘𝑝)‘𝑋) = ((𝑂‘𝑥)‘𝑋)) |
67 | | fvexd 6906 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ 𝑈) → ((𝑂‘𝑥)‘𝑋) ∈ V) |
68 | 16, 66, 42, 67 | fvmptd3 7021 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ 𝑈) → (𝐹‘𝑥) = ((𝑂‘𝑥)‘𝑋)) |
69 | 68 | eqcomd 2737 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ 𝑈) → ((𝑂‘𝑥)‘𝑋) = (𝐹‘𝑥)) |
70 | 63, 64, 69 | oveq123d 7433 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ 𝑈) → (𝑘(.r‘𝑅)((𝑂‘𝑥)‘𝑋)) = (𝑘( ·𝑠
‘𝐴)(𝐹‘𝑥))) |
71 | 49, 61, 70 | 3eqtrd 2775 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ 𝑈) → (𝐹‘(𝑘( ·𝑠
‘𝑃)𝑥)) = (𝑘( ·𝑠
‘𝐴)(𝐹‘𝑥))) |
72 | 71 | anasss 466 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑥 ∈ 𝑈)) → (𝐹‘(𝑘( ·𝑠
‘𝑃)𝑥)) = (𝑘( ·𝑠
‘𝐴)(𝐹‘𝑥))) |
73 | 72 | ralrimivva 3199 |
. 2
⊢ (𝜑 → ∀𝑘 ∈ (Base‘(Scalar‘𝑃))∀𝑥 ∈ 𝑈 (𝐹‘(𝑘( ·𝑠
‘𝑃)𝑥)) = (𝑘( ·𝑠
‘𝐴)(𝐹‘𝑥))) |
74 | | eqid 2731 |
. . . 4
⊢
(Scalar‘𝐴) =
(Scalar‘𝐴) |
75 | | eqid 2731 |
. . . 4
⊢ (
·𝑠 ‘𝐴) = ( ·𝑠
‘𝐴) |
76 | 43, 74, 45, 13, 44, 75 | islmhm 20871 |
. . 3
⊢ (𝐹 ∈ (𝑃 LMHom 𝐴) ↔ ((𝑃 ∈ LMod ∧ 𝐴 ∈ LMod) ∧ (𝐹 ∈ (𝑃 GrpHom 𝐴) ∧ (Scalar‘𝐴) = (Scalar‘𝑃) ∧ ∀𝑘 ∈ (Base‘(Scalar‘𝑃))∀𝑥 ∈ 𝑈 (𝐹‘(𝑘( ·𝑠
‘𝑃)𝑥)) = (𝑘( ·𝑠
‘𝐴)(𝐹‘𝑥))))) |
77 | 76 | biimpri 227 |
. 2
⊢ (((𝑃 ∈ LMod ∧ 𝐴 ∈ LMod) ∧ (𝐹 ∈ (𝑃 GrpHom 𝐴) ∧ (Scalar‘𝐴) = (Scalar‘𝑃) ∧ ∀𝑘 ∈ (Base‘(Scalar‘𝑃))∀𝑥 ∈ 𝑈 (𝐹‘(𝑘( ·𝑠
‘𝑃)𝑥)) = (𝑘( ·𝑠
‘𝐴)(𝐹‘𝑥)))) → 𝐹 ∈ (𝑃 LMHom 𝐴)) |
78 | 7, 10, 32, 37, 73, 77 | syl23anc 1376 |
1
⊢ (𝜑 → 𝐹 ∈ (𝑃 LMHom 𝐴)) |