Step | Hyp | Ref
| Expression |
1 | | evls1maprhm.s |
. . . 4
β’ (π β π β (SubRingβπ
)) |
2 | | eqid 2731 |
. . . . 5
β’ (π
βΎs π) = (π
βΎs π) |
3 | 2 | subrgring 20465 |
. . . 4
β’ (π β (SubRingβπ
) β (π
βΎs π) β Ring) |
4 | 1, 3 | syl 17 |
. . 3
β’ (π β (π
βΎs π) β Ring) |
5 | | evls1maprhm.p |
. . . 4
β’ π =
(Poly1β(π
βΎs π)) |
6 | 5 | ply1lmod 21995 |
. . 3
β’ ((π
βΎs π) β Ring β π β LMod) |
7 | 4, 6 | syl 17 |
. 2
β’ (π β π β LMod) |
8 | | evls1maplmhm.1 |
. . . 4
β’ π΄ = ((subringAlg βπ
)βπ) |
9 | 8 | sralmod 20955 |
. . 3
β’ (π β (SubRingβπ
) β π΄ β LMod) |
10 | 1, 9 | syl 17 |
. 2
β’ (π β π΄ β LMod) |
11 | | evls1maprhm.q |
. . . . 5
β’ π = (π
evalSub1 π) |
12 | | evls1maprhm.b |
. . . . 5
β’ π΅ = (Baseβπ
) |
13 | | evls1maprhm.u |
. . . . 5
β’ π = (Baseβπ) |
14 | | evls1maprhm.r |
. . . . 5
β’ (π β π
β CRing) |
15 | | evls1maprhm.y |
. . . . 5
β’ (π β π β π΅) |
16 | | evls1maprhm.f |
. . . . 5
β’ πΉ = (π β π β¦ ((πβπ)βπ)) |
17 | 11, 5, 12, 13, 14, 1, 15, 16 | evls1maprhm 33049 |
. . . 4
β’ (π β πΉ β (π RingHom π
)) |
18 | | rhmghm 20376 |
. . . 4
β’ (πΉ β (π RingHom π
) β πΉ β (π GrpHom π
)) |
19 | 17, 18 | syl 17 |
. . 3
β’ (π β πΉ β (π GrpHom π
)) |
20 | 13 | a1i 11 |
. . . 4
β’ (π β π = (Baseβπ)) |
21 | 12 | a1i 11 |
. . . 4
β’ (π β π΅ = (Baseβπ
)) |
22 | 8 | a1i 11 |
. . . . . 6
β’ (π β π΄ = ((subringAlg βπ
)βπ)) |
23 | 12 | subrgss 20463 |
. . . . . . . 8
β’ (π β (SubRingβπ
) β π β π΅) |
24 | 1, 23 | syl 17 |
. . . . . . 7
β’ (π β π β π΅) |
25 | 24, 12 | sseqtrdi 4032 |
. . . . . 6
β’ (π β π β (Baseβπ
)) |
26 | 22, 25 | srabase 20938 |
. . . . 5
β’ (π β (Baseβπ
) = (Baseβπ΄)) |
27 | 12, 26 | eqtrid 2783 |
. . . 4
β’ (π β π΅ = (Baseβπ΄)) |
28 | | eqidd 2732 |
. . . 4
β’ ((π β§ (π₯ β π β§ π¦ β π)) β (π₯(+gβπ)π¦) = (π₯(+gβπ)π¦)) |
29 | 22, 25 | sraaddg 20940 |
. . . . 5
β’ (π β (+gβπ
) = (+gβπ΄)) |
30 | 29 | oveqdr 7440 |
. . . 4
β’ ((π β§ (π₯ β π΅ β§ π¦ β π΅)) β (π₯(+gβπ
)π¦) = (π₯(+gβπ΄)π¦)) |
31 | 20, 21, 20, 27, 28, 30 | ghmpropd 19171 |
. . 3
β’ (π β (π GrpHom π
) = (π GrpHom π΄)) |
32 | 19, 31 | eleqtrd 2834 |
. 2
β’ (π β πΉ β (π GrpHom π΄)) |
33 | 22, 25 | srasca 20944 |
. . 3
β’ (π β (π
βΎs π) = (Scalarβπ΄)) |
34 | | ovex 7445 |
. . . 4
β’ (π
βΎs π) β V |
35 | 5 | ply1sca 21996 |
. . . 4
β’ ((π
βΎs π) β V β (π
βΎs π) = (Scalarβπ)) |
36 | 34, 35 | mp1i 13 |
. . 3
β’ (π β (π
βΎs π) = (Scalarβπ)) |
37 | 33, 36 | eqtr3d 2773 |
. 2
β’ (π β (Scalarβπ΄) = (Scalarβπ)) |
38 | | fveq2 6891 |
. . . . . . 7
β’ (π = (π( Β·π
βπ)π₯) β (πβπ) = (πβ(π( Β·π
βπ)π₯))) |
39 | 38 | fveq1d 6893 |
. . . . . 6
β’ (π = (π( Β·π
βπ)π₯) β ((πβπ)βπ) = ((πβ(π( Β·π
βπ)π₯))βπ)) |
40 | 7 | ad2antrr 723 |
. . . . . . 7
β’ (((π β§ π β (Baseβ(Scalarβπ))) β§ π₯ β π) β π β LMod) |
41 | | simplr 766 |
. . . . . . 7
β’ (((π β§ π β (Baseβ(Scalarβπ))) β§ π₯ β π) β π β (Baseβ(Scalarβπ))) |
42 | | simpr 484 |
. . . . . . 7
β’ (((π β§ π β (Baseβ(Scalarβπ))) β§ π₯ β π) β π₯ β π) |
43 | | eqid 2731 |
. . . . . . . 8
β’
(Scalarβπ) =
(Scalarβπ) |
44 | | eqid 2731 |
. . . . . . . 8
β’ (
Β·π βπ) = ( Β·π
βπ) |
45 | | eqid 2731 |
. . . . . . . 8
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
46 | 13, 43, 44, 45 | lmodvscl 20633 |
. . . . . . 7
β’ ((π β LMod β§ π β
(Baseβ(Scalarβπ)) β§ π₯ β π) β (π( Β·π
βπ)π₯) β π) |
47 | 40, 41, 42, 46 | syl3anc 1370 |
. . . . . 6
β’ (((π β§ π β (Baseβ(Scalarβπ))) β§ π₯ β π) β (π( Β·π
βπ)π₯) β π) |
48 | | fvexd 6906 |
. . . . . 6
β’ (((π β§ π β (Baseβ(Scalarβπ))) β§ π₯ β π) β ((πβ(π( Β·π
βπ)π₯))βπ) β V) |
49 | 16, 39, 47, 48 | fvmptd3 7021 |
. . . . 5
β’ (((π β§ π β (Baseβ(Scalarβπ))) β§ π₯ β π) β (πΉβ(π( Β·π
βπ)π₯)) = ((πβ(π( Β·π
βπ)π₯))βπ)) |
50 | | eqid 2731 |
. . . . . 6
β’
(.rβπ
) = (.rβπ
) |
51 | 14 | ad2antrr 723 |
. . . . . 6
β’ (((π β§ π β (Baseβ(Scalarβπ))) β§ π₯ β π) β π
β CRing) |
52 | 1 | ad2antrr 723 |
. . . . . 6
β’ (((π β§ π β (Baseβ(Scalarβπ))) β§ π₯ β π) β π β (SubRingβπ
)) |
53 | 2, 12 | ressbas2 17187 |
. . . . . . . . . . 11
β’ (π β π΅ β π = (Baseβ(π
βΎs π))) |
54 | 24, 53 | syl 17 |
. . . . . . . . . 10
β’ (π β π = (Baseβ(π
βΎs π))) |
55 | 36 | fveq2d 6895 |
. . . . . . . . . 10
β’ (π β (Baseβ(π
βΎs π)) =
(Baseβ(Scalarβπ))) |
56 | 54, 55 | eqtr2d 2772 |
. . . . . . . . 9
β’ (π β
(Baseβ(Scalarβπ)) = π) |
57 | 56 | eqimssd 4038 |
. . . . . . . 8
β’ (π β
(Baseβ(Scalarβπ)) β π) |
58 | 57 | sselda 3982 |
. . . . . . 7
β’ ((π β§ π β (Baseβ(Scalarβπ))) β π β π) |
59 | 58 | adantr 480 |
. . . . . 6
β’ (((π β§ π β (Baseβ(Scalarβπ))) β§ π₯ β π) β π β π) |
60 | 15 | ad2antrr 723 |
. . . . . 6
β’ (((π β§ π β (Baseβ(Scalarβπ))) β§ π₯ β π) β π β π΅) |
61 | 11, 12, 5, 2, 13, 44, 50, 51, 52, 59, 42, 60 | evls1vsca 32925 |
. . . . 5
β’ (((π β§ π β (Baseβ(Scalarβπ))) β§ π₯ β π) β ((πβ(π( Β·π
βπ)π₯))βπ) = (π(.rβπ
)((πβπ₯)βπ))) |
62 | 22, 25 | sravsca 20946 |
. . . . . . 7
β’ (π β (.rβπ
) = (
Β·π βπ΄)) |
63 | 62 | ad2antrr 723 |
. . . . . 6
β’ (((π β§ π β (Baseβ(Scalarβπ))) β§ π₯ β π) β (.rβπ
) = (
Β·π βπ΄)) |
64 | | eqidd 2732 |
. . . . . 6
β’ (((π β§ π β (Baseβ(Scalarβπ))) β§ π₯ β π) β π = π) |
65 | | fveq2 6891 |
. . . . . . . . 9
β’ (π = π₯ β (πβπ) = (πβπ₯)) |
66 | 65 | fveq1d 6893 |
. . . . . . . 8
β’ (π = π₯ β ((πβπ)βπ) = ((πβπ₯)βπ)) |
67 | | fvexd 6906 |
. . . . . . . 8
β’ (((π β§ π β (Baseβ(Scalarβπ))) β§ π₯ β π) β ((πβπ₯)βπ) β V) |
68 | 16, 66, 42, 67 | fvmptd3 7021 |
. . . . . . 7
β’ (((π β§ π β (Baseβ(Scalarβπ))) β§ π₯ β π) β (πΉβπ₯) = ((πβπ₯)βπ)) |
69 | 68 | eqcomd 2737 |
. . . . . 6
β’ (((π β§ π β (Baseβ(Scalarβπ))) β§ π₯ β π) β ((πβπ₯)βπ) = (πΉβπ₯)) |
70 | 63, 64, 69 | oveq123d 7433 |
. . . . 5
β’ (((π β§ π β (Baseβ(Scalarβπ))) β§ π₯ β π) β (π(.rβπ
)((πβπ₯)βπ)) = (π( Β·π
βπ΄)(πΉβπ₯))) |
71 | 49, 61, 70 | 3eqtrd 2775 |
. . . 4
β’ (((π β§ π β (Baseβ(Scalarβπ))) β§ π₯ β π) β (πΉβ(π( Β·π
βπ)π₯)) = (π( Β·π
βπ΄)(πΉβπ₯))) |
72 | 71 | anasss 466 |
. . 3
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π₯ β π)) β (πΉβ(π( Β·π
βπ)π₯)) = (π( Β·π
βπ΄)(πΉβπ₯))) |
73 | 72 | ralrimivva 3199 |
. 2
β’ (π β βπ β (Baseβ(Scalarβπ))βπ₯ β π (πΉβ(π( Β·π
βπ)π₯)) = (π( Β·π
βπ΄)(πΉβπ₯))) |
74 | | eqid 2731 |
. . . 4
β’
(Scalarβπ΄) =
(Scalarβπ΄) |
75 | | eqid 2731 |
. . . 4
β’ (
Β·π βπ΄) = ( Β·π
βπ΄) |
76 | 43, 74, 45, 13, 44, 75 | islmhm 20783 |
. . 3
β’ (πΉ β (π LMHom π΄) β ((π β LMod β§ π΄ β LMod) β§ (πΉ β (π GrpHom π΄) β§ (Scalarβπ΄) = (Scalarβπ) β§ βπ β (Baseβ(Scalarβπ))βπ₯ β π (πΉβ(π( Β·π
βπ)π₯)) = (π( Β·π
βπ΄)(πΉβπ₯))))) |
77 | 76 | biimpri 227 |
. 2
β’ (((π β LMod β§ π΄ β LMod) β§ (πΉ β (π GrpHom π΄) β§ (Scalarβπ΄) = (Scalarβπ) β§ βπ β (Baseβ(Scalarβπ))βπ₯ β π (πΉβ(π( Β·π
βπ)π₯)) = (π( Β·π
βπ΄)(πΉβπ₯)))) β πΉ β (π LMHom π΄)) |
78 | 7, 10, 32, 37, 73, 77 | syl23anc 1376 |
1
β’ (π β πΉ β (π LMHom π΄)) |