Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqneltrrd Structured version   Visualization version   GIF version

Theorem eqneltrrd 2938
 Description: If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.) (Proof shortened by Wolf Lammen, 13-Nov-2019.)
Hypotheses
Ref Expression
eqneltrrd.1 (𝜑𝐴 = 𝐵)
eqneltrrd.2 (𝜑 → ¬ 𝐴𝐶)
Assertion
Ref Expression
eqneltrrd (𝜑 → ¬ 𝐵𝐶)

Proof of Theorem eqneltrrd
StepHypRef Expression
1 eqneltrrd.1 . . 3 (𝜑𝐴 = 𝐵)
21eqcomd 2832 . 2 (𝜑𝐵 = 𝐴)
3 eqneltrrd.2 . 2 (𝜑 → ¬ 𝐴𝐶)
42, 3eqneltrd 2937 1 (𝜑 → ¬ 𝐵𝐶)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   = wceq 1530   ∈ wcel 2107 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-ext 2798 This theorem depends on definitions:  df-bi 208  df-an 397  df-ex 1774  df-cleq 2819  df-clel 2898 This theorem is referenced by:  bitsf1  15790  lssvancl2  19653  lbsind2  19789  lindfind2  20897  2atjlej  36501  2atnelvolN  36609  lmod1zrnlvec  44451
 Copyright terms: Public domain W3C validator