| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqneltrrd | Structured version Visualization version GIF version | ||
| Description: If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.) (Proof shortened by Wolf Lammen, 13-Nov-2019.) |
| Ref | Expression |
|---|---|
| eqneltrrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqneltrrd.2 | ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| eqneltrrd | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqneltrrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | eqcomd 2741 | . 2 ⊢ (𝜑 → 𝐵 = 𝐴) |
| 3 | eqneltrrd.2 | . 2 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) | |
| 4 | 2, 3 | eqneltrd 2854 | 1 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-clel 2809 |
| This theorem is referenced by: bitsf1 16465 lssvancl2 20903 lbsind2 21039 lindfind2 21778 2atjlej 39498 2atnelvolN 39606 lmod1zrnlvec 48470 |
| Copyright terms: Public domain | W3C validator |