Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqneltrrd | Structured version Visualization version GIF version |
Description: If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.) (Proof shortened by Wolf Lammen, 13-Nov-2019.) |
Ref | Expression |
---|---|
eqneltrrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqneltrrd.2 | ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
Ref | Expression |
---|---|
eqneltrrd | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqneltrrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | eqcomd 2744 | . 2 ⊢ (𝜑 → 𝐵 = 𝐴) |
3 | eqneltrrd.2 | . 2 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) | |
4 | 2, 3 | eqneltrd 2858 | 1 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-clel 2817 |
This theorem is referenced by: bitsf1 16081 lssvancl2 20122 lbsind2 20258 lindfind2 20935 2atjlej 37420 2atnelvolN 37528 lmod1zrnlvec 45723 |
Copyright terms: Public domain | W3C validator |