|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > eqneltrrd | Structured version Visualization version GIF version | ||
| Description: If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.) (Proof shortened by Wolf Lammen, 13-Nov-2019.) | 
| Ref | Expression | 
|---|---|
| eqneltrrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) | 
| eqneltrrd.2 | ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) | 
| Ref | Expression | 
|---|---|
| eqneltrrd | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqneltrrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | eqcomd 2743 | . 2 ⊢ (𝜑 → 𝐵 = 𝐴) | 
| 3 | eqneltrrd.2 | . 2 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) | |
| 4 | 2, 3 | eqneltrd 2861 | 1 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2108 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2729 df-clel 2816 | 
| This theorem is referenced by: bitsf1 16483 lssvancl2 20944 lbsind2 21080 lindfind2 21838 2atjlej 39481 2atnelvolN 39589 lmod1zrnlvec 48411 | 
| Copyright terms: Public domain | W3C validator |