MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqneltrrd Structured version   Visualization version   GIF version

Theorem eqneltrrd 2859
Description: If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.) (Proof shortened by Wolf Lammen, 13-Nov-2019.)
Hypotheses
Ref Expression
eqneltrrd.1 (𝜑𝐴 = 𝐵)
eqneltrrd.2 (𝜑 → ¬ 𝐴𝐶)
Assertion
Ref Expression
eqneltrrd (𝜑 → ¬ 𝐵𝐶)

Proof of Theorem eqneltrrd
StepHypRef Expression
1 eqneltrrd.1 . . 3 (𝜑𝐴 = 𝐵)
21eqcomd 2744 . 2 (𝜑𝐵 = 𝐴)
3 eqneltrrd.2 . 2 (𝜑 → ¬ 𝐴𝐶)
42, 3eqneltrd 2858 1 (𝜑 → ¬ 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-cleq 2730  df-clel 2816
This theorem is referenced by:  bitsf1  16153  lssvancl2  20207  lbsind2  20343  lindfind2  21025  2atjlej  37493  2atnelvolN  37601  lmod1zrnlvec  45835
  Copyright terms: Public domain W3C validator