MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsf1 Structured version   Visualization version   GIF version

Theorem bitsf1 16081
Description: The bits function is an injection from to 𝒫 ℕ0. It is obviously not a bijection (by Cantor's theorem canth2 8866), and in fact its range is the set of finite and cofinite subsets of 0. (Contributed by Mario Carneiro, 22-Sep-2016.)
Assertion
Ref Expression
bitsf1 bits:ℤ–1-1→𝒫 ℕ0

Proof of Theorem bitsf1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bitsf 16062 . 2 bits:ℤ⟶𝒫 ℕ0
2 simpl 482 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑥 ∈ ℤ)
32zcnd 12356 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑥 ∈ ℂ)
43adantr 480 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → 𝑥 ∈ ℂ)
5 simpr 484 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℤ)
65zcnd 12356 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℂ)
76adantr 480 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → 𝑦 ∈ ℂ)
84negcld 11249 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → -𝑥 ∈ ℂ)
97negcld 11249 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → -𝑦 ∈ ℂ)
10 1cnd 10901 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → 1 ∈ ℂ)
11 simprr 769 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (bits‘𝑥) = (bits‘𝑦))
1211difeq2d 4053 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (ℕ0 ∖ (bits‘𝑥)) = (ℕ0 ∖ (bits‘𝑦)))
13 bitscmp 16073 . . . . . . . . . . 11 (𝑥 ∈ ℤ → (ℕ0 ∖ (bits‘𝑥)) = (bits‘(-𝑥 − 1)))
1413ad2antrr 722 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (ℕ0 ∖ (bits‘𝑥)) = (bits‘(-𝑥 − 1)))
15 bitscmp 16073 . . . . . . . . . . 11 (𝑦 ∈ ℤ → (ℕ0 ∖ (bits‘𝑦)) = (bits‘(-𝑦 − 1)))
1615ad2antlr 723 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (ℕ0 ∖ (bits‘𝑦)) = (bits‘(-𝑦 − 1)))
1712, 14, 163eqtr3d 2786 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (bits‘(-𝑥 − 1)) = (bits‘(-𝑦 − 1)))
18 nnm1nn0 12204 . . . . . . . . . . 11 (-𝑥 ∈ ℕ → (-𝑥 − 1) ∈ ℕ0)
1918ad2antrl 724 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (-𝑥 − 1) ∈ ℕ0)
2019fvresd 6776 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → ((bits ↾ ℕ0)‘(-𝑥 − 1)) = (bits‘(-𝑥 − 1)))
21 ominf 8964 . . . . . . . . . . . . . . . . 17 ¬ ω ∈ Fin
22 nn0ennn 13627 . . . . . . . . . . . . . . . . . . 19 0 ≈ ℕ
23 nnenom 13628 . . . . . . . . . . . . . . . . . . 19 ℕ ≈ ω
2422, 23entr2i 8750 . . . . . . . . . . . . . . . . . 18 ω ≈ ℕ0
25 enfii 8932 . . . . . . . . . . . . . . . . . 18 ((ℕ0 ∈ Fin ∧ ω ≈ ℕ0) → ω ∈ Fin)
2624, 25mpan2 687 . . . . . . . . . . . . . . . . 17 (ℕ0 ∈ Fin → ω ∈ Fin)
2721, 26mto 196 . . . . . . . . . . . . . . . 16 ¬ ℕ0 ∈ Fin
28 difinf 9014 . . . . . . . . . . . . . . . 16 ((¬ ℕ0 ∈ Fin ∧ (bits‘𝑥) ∈ Fin) → ¬ (ℕ0 ∖ (bits‘𝑥)) ∈ Fin)
2927, 28mpan 686 . . . . . . . . . . . . . . 15 ((bits‘𝑥) ∈ Fin → ¬ (ℕ0 ∖ (bits‘𝑥)) ∈ Fin)
30 bitsfi 16072 . . . . . . . . . . . . . . . . 17 ((-𝑥 − 1) ∈ ℕ0 → (bits‘(-𝑥 − 1)) ∈ Fin)
3119, 30syl 17 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (bits‘(-𝑥 − 1)) ∈ Fin)
3214, 31eqeltrd 2839 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (ℕ0 ∖ (bits‘𝑥)) ∈ Fin)
3329, 32nsyl3 138 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → ¬ (bits‘𝑥) ∈ Fin)
3411, 33eqneltrrd 2859 . . . . . . . . . . . . 13 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → ¬ (bits‘𝑦) ∈ Fin)
35 bitsfi 16072 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ0 → (bits‘𝑦) ∈ Fin)
3634, 35nsyl 140 . . . . . . . . . . . 12 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → ¬ 𝑦 ∈ ℕ0)
375znegcld 12357 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → -𝑦 ∈ ℤ)
38 elznn 12265 . . . . . . . . . . . . . . . . 17 (-𝑦 ∈ ℤ ↔ (-𝑦 ∈ ℝ ∧ (-𝑦 ∈ ℕ ∨ --𝑦 ∈ ℕ0)))
3938simprbi 496 . . . . . . . . . . . . . . . 16 (-𝑦 ∈ ℤ → (-𝑦 ∈ ℕ ∨ --𝑦 ∈ ℕ0))
4037, 39syl 17 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (-𝑦 ∈ ℕ ∨ --𝑦 ∈ ℕ0))
416negnegd 11253 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → --𝑦 = 𝑦)
4241eleq1d 2823 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (--𝑦 ∈ ℕ0𝑦 ∈ ℕ0))
4342orbi2d 912 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((-𝑦 ∈ ℕ ∨ --𝑦 ∈ ℕ0) ↔ (-𝑦 ∈ ℕ ∨ 𝑦 ∈ ℕ0)))
4440, 43mpbid 231 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (-𝑦 ∈ ℕ ∨ 𝑦 ∈ ℕ0))
4544adantr 480 . . . . . . . . . . . . 13 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (-𝑦 ∈ ℕ ∨ 𝑦 ∈ ℕ0))
4645ord 860 . . . . . . . . . . . 12 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (¬ -𝑦 ∈ ℕ → 𝑦 ∈ ℕ0))
4736, 46mt3d 148 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → -𝑦 ∈ ℕ)
48 nnm1nn0 12204 . . . . . . . . . . 11 (-𝑦 ∈ ℕ → (-𝑦 − 1) ∈ ℕ0)
4947, 48syl 17 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (-𝑦 − 1) ∈ ℕ0)
5049fvresd 6776 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → ((bits ↾ ℕ0)‘(-𝑦 − 1)) = (bits‘(-𝑦 − 1)))
5117, 20, 503eqtr4d 2788 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → ((bits ↾ ℕ0)‘(-𝑥 − 1)) = ((bits ↾ ℕ0)‘(-𝑦 − 1)))
52 bitsf1o 16080 . . . . . . . . . . 11 (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)
53 f1of1 6699 . . . . . . . . . . 11 ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) → (bits ↾ ℕ0):ℕ01-1→(𝒫 ℕ0 ∩ Fin))
5452, 53ax-mp 5 . . . . . . . . . 10 (bits ↾ ℕ0):ℕ01-1→(𝒫 ℕ0 ∩ Fin)
55 f1fveq 7116 . . . . . . . . . 10 (((bits ↾ ℕ0):ℕ01-1→(𝒫 ℕ0 ∩ Fin) ∧ ((-𝑥 − 1) ∈ ℕ0 ∧ (-𝑦 − 1) ∈ ℕ0)) → (((bits ↾ ℕ0)‘(-𝑥 − 1)) = ((bits ↾ ℕ0)‘(-𝑦 − 1)) ↔ (-𝑥 − 1) = (-𝑦 − 1)))
5654, 55mpan 686 . . . . . . . . 9 (((-𝑥 − 1) ∈ ℕ0 ∧ (-𝑦 − 1) ∈ ℕ0) → (((bits ↾ ℕ0)‘(-𝑥 − 1)) = ((bits ↾ ℕ0)‘(-𝑦 − 1)) ↔ (-𝑥 − 1) = (-𝑦 − 1)))
5719, 49, 56syl2anc 583 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (((bits ↾ ℕ0)‘(-𝑥 − 1)) = ((bits ↾ ℕ0)‘(-𝑦 − 1)) ↔ (-𝑥 − 1) = (-𝑦 − 1)))
5851, 57mpbid 231 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (-𝑥 − 1) = (-𝑦 − 1))
598, 9, 10, 58subcan2d 11304 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → -𝑥 = -𝑦)
604, 7, 59neg11d 11274 . . . . 5 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → 𝑥 = 𝑦)
6160expr 456 . . . 4 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ -𝑥 ∈ ℕ) → ((bits‘𝑥) = (bits‘𝑦) → 𝑥 = 𝑦))
623negnegd 11253 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → --𝑥 = 𝑥)
6362eleq1d 2823 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (--𝑥 ∈ ℕ0𝑥 ∈ ℕ0))
6463biimpa 476 . . . . 5 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ --𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
65 simprr 769 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → (bits‘𝑥) = (bits‘𝑦))
66 fvres 6775 . . . . . . . . 9 (𝑥 ∈ ℕ0 → ((bits ↾ ℕ0)‘𝑥) = (bits‘𝑥))
6766ad2antrl 724 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → ((bits ↾ ℕ0)‘𝑥) = (bits‘𝑥))
6815ad2antlr 723 . . . . . . . . . . . . 13 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → (ℕ0 ∖ (bits‘𝑦)) = (bits‘(-𝑦 − 1)))
69 bitsfi 16072 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ0 → (bits‘𝑥) ∈ Fin)
7069ad2antrl 724 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → (bits‘𝑥) ∈ Fin)
7165, 70eqeltrrd 2840 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → (bits‘𝑦) ∈ Fin)
72 difinf 9014 . . . . . . . . . . . . . 14 ((¬ ℕ0 ∈ Fin ∧ (bits‘𝑦) ∈ Fin) → ¬ (ℕ0 ∖ (bits‘𝑦)) ∈ Fin)
7327, 71, 72sylancr 586 . . . . . . . . . . . . 13 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → ¬ (ℕ0 ∖ (bits‘𝑦)) ∈ Fin)
7468, 73eqneltrrd 2859 . . . . . . . . . . . 12 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → ¬ (bits‘(-𝑦 − 1)) ∈ Fin)
75 bitsfi 16072 . . . . . . . . . . . 12 ((-𝑦 − 1) ∈ ℕ0 → (bits‘(-𝑦 − 1)) ∈ Fin)
7674, 75nsyl 140 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → ¬ (-𝑦 − 1) ∈ ℕ0)
7776, 48nsyl 140 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → ¬ -𝑦 ∈ ℕ)
7844adantr 480 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → (-𝑦 ∈ ℕ ∨ 𝑦 ∈ ℕ0))
7978ord 860 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → (¬ -𝑦 ∈ ℕ → 𝑦 ∈ ℕ0))
8077, 79mpd 15 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → 𝑦 ∈ ℕ0)
8180fvresd 6776 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → ((bits ↾ ℕ0)‘𝑦) = (bits‘𝑦))
8265, 67, 813eqtr4d 2788 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → ((bits ↾ ℕ0)‘𝑥) = ((bits ↾ ℕ0)‘𝑦))
83 simprl 767 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → 𝑥 ∈ ℕ0)
84 f1fveq 7116 . . . . . . . . 9 (((bits ↾ ℕ0):ℕ01-1→(𝒫 ℕ0 ∩ Fin) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → (((bits ↾ ℕ0)‘𝑥) = ((bits ↾ ℕ0)‘𝑦) ↔ 𝑥 = 𝑦))
8554, 84mpan 686 . . . . . . . 8 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (((bits ↾ ℕ0)‘𝑥) = ((bits ↾ ℕ0)‘𝑦) ↔ 𝑥 = 𝑦))
8683, 80, 85syl2anc 583 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → (((bits ↾ ℕ0)‘𝑥) = ((bits ↾ ℕ0)‘𝑦) ↔ 𝑥 = 𝑦))
8782, 86mpbid 231 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → 𝑥 = 𝑦)
8887expr 456 . . . . 5 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ 𝑥 ∈ ℕ0) → ((bits‘𝑥) = (bits‘𝑦) → 𝑥 = 𝑦))
8964, 88syldan 590 . . . 4 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ --𝑥 ∈ ℕ0) → ((bits‘𝑥) = (bits‘𝑦) → 𝑥 = 𝑦))
902znegcld 12357 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → -𝑥 ∈ ℤ)
91 elznn 12265 . . . . . 6 (-𝑥 ∈ ℤ ↔ (-𝑥 ∈ ℝ ∧ (-𝑥 ∈ ℕ ∨ --𝑥 ∈ ℕ0)))
9291simprbi 496 . . . . 5 (-𝑥 ∈ ℤ → (-𝑥 ∈ ℕ ∨ --𝑥 ∈ ℕ0))
9390, 92syl 17 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (-𝑥 ∈ ℕ ∨ --𝑥 ∈ ℕ0))
9461, 89, 93mpjaodan 955 . . 3 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((bits‘𝑥) = (bits‘𝑦) → 𝑥 = 𝑦))
9594rgen2 3126 . 2 𝑥 ∈ ℤ ∀𝑦 ∈ ℤ ((bits‘𝑥) = (bits‘𝑦) → 𝑥 = 𝑦)
96 dff13 7109 . 2 (bits:ℤ–1-1→𝒫 ℕ0 ↔ (bits:ℤ⟶𝒫 ℕ0 ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ ((bits‘𝑥) = (bits‘𝑦) → 𝑥 = 𝑦)))
971, 95, 96mpbir2an 707 1 bits:ℤ–1-1→𝒫 ℕ0
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wral 3063  cdif 3880  cin 3882  𝒫 cpw 4530   class class class wbr 5070  cres 5582  wf 6414  1-1wf1 6415  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  ωcom 7687  cen 8688  Fincfn 8691  cc 10800  cr 10801  1c1 10803  cmin 11135  -cneg 11136  cn 11903  0cn0 12163  cz 12249  bitscbits 16054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-dvds 15892  df-bits 16057
This theorem is referenced by:  bitsuz  16109  eulerpartlemmf  32242
  Copyright terms: Public domain W3C validator