MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsf1 Structured version   Visualization version   GIF version

Theorem bitsf1 15369
Description: The bits function is an injection from to 𝒫 ℕ0. It is obviously not a bijection (by Cantor's theorem canth2 8267), and in fact its range is the set of finite and cofinite subsets of 0. (Contributed by Mario Carneiro, 22-Sep-2016.)
Assertion
Ref Expression
bitsf1 bits:ℤ–1-1→𝒫 ℕ0

Proof of Theorem bitsf1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bitsf 15350 . 2 bits:ℤ⟶𝒫 ℕ0
2 simpl 468 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑥 ∈ ℤ)
32zcnd 11683 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑥 ∈ ℂ)
43adantr 466 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → 𝑥 ∈ ℂ)
5 simpr 471 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℤ)
65zcnd 11683 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℂ)
76adantr 466 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → 𝑦 ∈ ℂ)
84negcld 10579 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → -𝑥 ∈ ℂ)
97negcld 10579 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → -𝑦 ∈ ℂ)
10 1cnd 10256 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → 1 ∈ ℂ)
11 simprr 756 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (bits‘𝑥) = (bits‘𝑦))
1211difeq2d 3879 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (ℕ0 ∖ (bits‘𝑥)) = (ℕ0 ∖ (bits‘𝑦)))
13 bitscmp 15361 . . . . . . . . . . 11 (𝑥 ∈ ℤ → (ℕ0 ∖ (bits‘𝑥)) = (bits‘(-𝑥 − 1)))
1413ad2antrr 705 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (ℕ0 ∖ (bits‘𝑥)) = (bits‘(-𝑥 − 1)))
15 bitscmp 15361 . . . . . . . . . . 11 (𝑦 ∈ ℤ → (ℕ0 ∖ (bits‘𝑦)) = (bits‘(-𝑦 − 1)))
1615ad2antlr 706 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (ℕ0 ∖ (bits‘𝑦)) = (bits‘(-𝑦 − 1)))
1712, 14, 163eqtr3d 2813 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (bits‘(-𝑥 − 1)) = (bits‘(-𝑦 − 1)))
18 nnm1nn0 11534 . . . . . . . . . . 11 (-𝑥 ∈ ℕ → (-𝑥 − 1) ∈ ℕ0)
1918ad2antrl 707 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (-𝑥 − 1) ∈ ℕ0)
20 fvres 6346 . . . . . . . . . 10 ((-𝑥 − 1) ∈ ℕ0 → ((bits ↾ ℕ0)‘(-𝑥 − 1)) = (bits‘(-𝑥 − 1)))
2119, 20syl 17 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → ((bits ↾ ℕ0)‘(-𝑥 − 1)) = (bits‘(-𝑥 − 1)))
22 ominf 8326 . . . . . . . . . . . . . . . . 17 ¬ ω ∈ Fin
23 nn0ennn 12979 . . . . . . . . . . . . . . . . . . 19 0 ≈ ℕ
24 nnenom 12980 . . . . . . . . . . . . . . . . . . 19 ℕ ≈ ω
2523, 24entr2i 8162 . . . . . . . . . . . . . . . . . 18 ω ≈ ℕ0
26 enfii 8331 . . . . . . . . . . . . . . . . . 18 ((ℕ0 ∈ Fin ∧ ω ≈ ℕ0) → ω ∈ Fin)
2725, 26mpan2 671 . . . . . . . . . . . . . . . . 17 (ℕ0 ∈ Fin → ω ∈ Fin)
2822, 27mto 188 . . . . . . . . . . . . . . . 16 ¬ ℕ0 ∈ Fin
29 difinf 8384 . . . . . . . . . . . . . . . 16 ((¬ ℕ0 ∈ Fin ∧ (bits‘𝑥) ∈ Fin) → ¬ (ℕ0 ∖ (bits‘𝑥)) ∈ Fin)
3028, 29mpan 670 . . . . . . . . . . . . . . 15 ((bits‘𝑥) ∈ Fin → ¬ (ℕ0 ∖ (bits‘𝑥)) ∈ Fin)
31 bitsfi 15360 . . . . . . . . . . . . . . . . 17 ((-𝑥 − 1) ∈ ℕ0 → (bits‘(-𝑥 − 1)) ∈ Fin)
3219, 31syl 17 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (bits‘(-𝑥 − 1)) ∈ Fin)
3314, 32eqeltrd 2850 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (ℕ0 ∖ (bits‘𝑥)) ∈ Fin)
3430, 33nsyl3 135 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → ¬ (bits‘𝑥) ∈ Fin)
3511, 34eqneltrrd 2870 . . . . . . . . . . . . 13 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → ¬ (bits‘𝑦) ∈ Fin)
36 bitsfi 15360 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ0 → (bits‘𝑦) ∈ Fin)
3735, 36nsyl 137 . . . . . . . . . . . 12 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → ¬ 𝑦 ∈ ℕ0)
385znegcld 11684 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → -𝑦 ∈ ℤ)
39 elznn 11593 . . . . . . . . . . . . . . . . 17 (-𝑦 ∈ ℤ ↔ (-𝑦 ∈ ℝ ∧ (-𝑦 ∈ ℕ ∨ --𝑦 ∈ ℕ0)))
4039simprbi 484 . . . . . . . . . . . . . . . 16 (-𝑦 ∈ ℤ → (-𝑦 ∈ ℕ ∨ --𝑦 ∈ ℕ0))
4138, 40syl 17 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (-𝑦 ∈ ℕ ∨ --𝑦 ∈ ℕ0))
426negnegd 10583 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → --𝑦 = 𝑦)
4342eleq1d 2835 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (--𝑦 ∈ ℕ0𝑦 ∈ ℕ0))
4443orbi2d 901 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((-𝑦 ∈ ℕ ∨ --𝑦 ∈ ℕ0) ↔ (-𝑦 ∈ ℕ ∨ 𝑦 ∈ ℕ0)))
4541, 44mpbid 222 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (-𝑦 ∈ ℕ ∨ 𝑦 ∈ ℕ0))
4645adantr 466 . . . . . . . . . . . . 13 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (-𝑦 ∈ ℕ ∨ 𝑦 ∈ ℕ0))
4746ord 853 . . . . . . . . . . . 12 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (¬ -𝑦 ∈ ℕ → 𝑦 ∈ ℕ0))
4837, 47mt3d 142 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → -𝑦 ∈ ℕ)
49 nnm1nn0 11534 . . . . . . . . . . 11 (-𝑦 ∈ ℕ → (-𝑦 − 1) ∈ ℕ0)
5048, 49syl 17 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (-𝑦 − 1) ∈ ℕ0)
51 fvres 6346 . . . . . . . . . 10 ((-𝑦 − 1) ∈ ℕ0 → ((bits ↾ ℕ0)‘(-𝑦 − 1)) = (bits‘(-𝑦 − 1)))
5250, 51syl 17 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → ((bits ↾ ℕ0)‘(-𝑦 − 1)) = (bits‘(-𝑦 − 1)))
5317, 21, 523eqtr4d 2815 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → ((bits ↾ ℕ0)‘(-𝑥 − 1)) = ((bits ↾ ℕ0)‘(-𝑦 − 1)))
54 bitsf1o 15368 . . . . . . . . . . 11 (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)
55 f1of1 6275 . . . . . . . . . . 11 ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) → (bits ↾ ℕ0):ℕ01-1→(𝒫 ℕ0 ∩ Fin))
5654, 55ax-mp 5 . . . . . . . . . 10 (bits ↾ ℕ0):ℕ01-1→(𝒫 ℕ0 ∩ Fin)
57 f1fveq 6660 . . . . . . . . . 10 (((bits ↾ ℕ0):ℕ01-1→(𝒫 ℕ0 ∩ Fin) ∧ ((-𝑥 − 1) ∈ ℕ0 ∧ (-𝑦 − 1) ∈ ℕ0)) → (((bits ↾ ℕ0)‘(-𝑥 − 1)) = ((bits ↾ ℕ0)‘(-𝑦 − 1)) ↔ (-𝑥 − 1) = (-𝑦 − 1)))
5856, 57mpan 670 . . . . . . . . 9 (((-𝑥 − 1) ∈ ℕ0 ∧ (-𝑦 − 1) ∈ ℕ0) → (((bits ↾ ℕ0)‘(-𝑥 − 1)) = ((bits ↾ ℕ0)‘(-𝑦 − 1)) ↔ (-𝑥 − 1) = (-𝑦 − 1)))
5919, 50, 58syl2anc 573 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (((bits ↾ ℕ0)‘(-𝑥 − 1)) = ((bits ↾ ℕ0)‘(-𝑦 − 1)) ↔ (-𝑥 − 1) = (-𝑦 − 1)))
6053, 59mpbid 222 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (-𝑥 − 1) = (-𝑦 − 1))
618, 9, 10, 60subcan2d 10634 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → -𝑥 = -𝑦)
624, 7, 61neg11d 10604 . . . . 5 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → 𝑥 = 𝑦)
6362expr 444 . . . 4 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ -𝑥 ∈ ℕ) → ((bits‘𝑥) = (bits‘𝑦) → 𝑥 = 𝑦))
643negnegd 10583 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → --𝑥 = 𝑥)
6564eleq1d 2835 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (--𝑥 ∈ ℕ0𝑥 ∈ ℕ0))
6665biimpa 462 . . . . 5 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ --𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
67 simprr 756 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → (bits‘𝑥) = (bits‘𝑦))
68 fvres 6346 . . . . . . . . 9 (𝑥 ∈ ℕ0 → ((bits ↾ ℕ0)‘𝑥) = (bits‘𝑥))
6968ad2antrl 707 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → ((bits ↾ ℕ0)‘𝑥) = (bits‘𝑥))
7015ad2antlr 706 . . . . . . . . . . . . 13 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → (ℕ0 ∖ (bits‘𝑦)) = (bits‘(-𝑦 − 1)))
71 bitsfi 15360 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ0 → (bits‘𝑥) ∈ Fin)
7271ad2antrl 707 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → (bits‘𝑥) ∈ Fin)
7367, 72eqeltrrd 2851 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → (bits‘𝑦) ∈ Fin)
74 difinf 8384 . . . . . . . . . . . . . 14 ((¬ ℕ0 ∈ Fin ∧ (bits‘𝑦) ∈ Fin) → ¬ (ℕ0 ∖ (bits‘𝑦)) ∈ Fin)
7528, 73, 74sylancr 575 . . . . . . . . . . . . 13 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → ¬ (ℕ0 ∖ (bits‘𝑦)) ∈ Fin)
7670, 75eqneltrrd 2870 . . . . . . . . . . . 12 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → ¬ (bits‘(-𝑦 − 1)) ∈ Fin)
77 bitsfi 15360 . . . . . . . . . . . 12 ((-𝑦 − 1) ∈ ℕ0 → (bits‘(-𝑦 − 1)) ∈ Fin)
7876, 77nsyl 137 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → ¬ (-𝑦 − 1) ∈ ℕ0)
7978, 49nsyl 137 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → ¬ -𝑦 ∈ ℕ)
8045adantr 466 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → (-𝑦 ∈ ℕ ∨ 𝑦 ∈ ℕ0))
8180ord 853 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → (¬ -𝑦 ∈ ℕ → 𝑦 ∈ ℕ0))
8279, 81mpd 15 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → 𝑦 ∈ ℕ0)
83 fvres 6346 . . . . . . . . 9 (𝑦 ∈ ℕ0 → ((bits ↾ ℕ0)‘𝑦) = (bits‘𝑦))
8482, 83syl 17 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → ((bits ↾ ℕ0)‘𝑦) = (bits‘𝑦))
8567, 69, 843eqtr4d 2815 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → ((bits ↾ ℕ0)‘𝑥) = ((bits ↾ ℕ0)‘𝑦))
86 simprl 754 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → 𝑥 ∈ ℕ0)
87 f1fveq 6660 . . . . . . . . 9 (((bits ↾ ℕ0):ℕ01-1→(𝒫 ℕ0 ∩ Fin) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → (((bits ↾ ℕ0)‘𝑥) = ((bits ↾ ℕ0)‘𝑦) ↔ 𝑥 = 𝑦))
8856, 87mpan 670 . . . . . . . 8 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (((bits ↾ ℕ0)‘𝑥) = ((bits ↾ ℕ0)‘𝑦) ↔ 𝑥 = 𝑦))
8986, 82, 88syl2anc 573 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → (((bits ↾ ℕ0)‘𝑥) = ((bits ↾ ℕ0)‘𝑦) ↔ 𝑥 = 𝑦))
9085, 89mpbid 222 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → 𝑥 = 𝑦)
9190expr 444 . . . . 5 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ 𝑥 ∈ ℕ0) → ((bits‘𝑥) = (bits‘𝑦) → 𝑥 = 𝑦))
9266, 91syldan 579 . . . 4 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ --𝑥 ∈ ℕ0) → ((bits‘𝑥) = (bits‘𝑦) → 𝑥 = 𝑦))
932znegcld 11684 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → -𝑥 ∈ ℤ)
94 elznn 11593 . . . . . 6 (-𝑥 ∈ ℤ ↔ (-𝑥 ∈ ℝ ∧ (-𝑥 ∈ ℕ ∨ --𝑥 ∈ ℕ0)))
9594simprbi 484 . . . . 5 (-𝑥 ∈ ℤ → (-𝑥 ∈ ℕ ∨ --𝑥 ∈ ℕ0))
9693, 95syl 17 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (-𝑥 ∈ ℕ ∨ --𝑥 ∈ ℕ0))
9763, 92, 96mpjaodan 943 . . 3 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((bits‘𝑥) = (bits‘𝑦) → 𝑥 = 𝑦))
9897rgen2a 3126 . 2 𝑥 ∈ ℤ ∀𝑦 ∈ ℤ ((bits‘𝑥) = (bits‘𝑦) → 𝑥 = 𝑦)
99 dff13 6653 . 2 (bits:ℤ–1-1→𝒫 ℕ0 ↔ (bits:ℤ⟶𝒫 ℕ0 ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ ((bits‘𝑥) = (bits‘𝑦) → 𝑥 = 𝑦)))
1001, 98, 99mpbir2an 690 1 bits:ℤ–1-1→𝒫 ℕ0
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wo 836   = wceq 1631  wcel 2145  wral 3061  cdif 3720  cin 3722  𝒫 cpw 4297   class class class wbr 4786  cres 5251  wf 6025  1-1wf1 6026  1-1-ontowf1o 6028  cfv 6029  (class class class)co 6791  ωcom 7210  cen 8104  Fincfn 8107  cc 10134  cr 10135  1c1 10137  cmin 10466  -cneg 10467  cn 11220  0cn0 11492  cz 11577  bitscbits 15342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-inf2 8700  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213  ax-pre-sup 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-disj 4755  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-isom 6038  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-om 7211  df-1st 7313  df-2nd 7314  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-2o 7712  df-oadd 7715  df-er 7894  df-map 8009  df-pm 8010  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-sup 8502  df-inf 8503  df-oi 8569  df-card 8963  df-cda 9190  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-div 10885  df-nn 11221  df-2 11279  df-3 11280  df-n0 11493  df-xnn0 11564  df-z 11578  df-uz 11887  df-rp 12029  df-fz 12527  df-fzo 12667  df-fl 12794  df-mod 12870  df-seq 13002  df-exp 13061  df-hash 13315  df-cj 14040  df-re 14041  df-im 14042  df-sqrt 14176  df-abs 14177  df-clim 14420  df-sum 14618  df-dvds 15183  df-bits 15345
This theorem is referenced by:  bitsuz  15397  eulerpartlemmf  30770
  Copyright terms: Public domain W3C validator