Step | Hyp | Ref
| Expression |
1 | | bitsf 16134 |
. 2
⊢
bits:ℤ⟶𝒫 ℕ0 |
2 | | simpl 483 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑥 ∈
ℤ) |
3 | 2 | zcnd 12427 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑥 ∈
ℂ) |
4 | 3 | adantr 481 |
. . . . . 6
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧
(bits‘𝑥) =
(bits‘𝑦))) →
𝑥 ∈
ℂ) |
5 | | simpr 485 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑦 ∈
ℤ) |
6 | 5 | zcnd 12427 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑦 ∈
ℂ) |
7 | 6 | adantr 481 |
. . . . . 6
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧
(bits‘𝑥) =
(bits‘𝑦))) →
𝑦 ∈
ℂ) |
8 | 4 | negcld 11319 |
. . . . . . 7
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧
(bits‘𝑥) =
(bits‘𝑦))) →
-𝑥 ∈
ℂ) |
9 | 7 | negcld 11319 |
. . . . . . 7
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧
(bits‘𝑥) =
(bits‘𝑦))) →
-𝑦 ∈
ℂ) |
10 | | 1cnd 10970 |
. . . . . . 7
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧
(bits‘𝑥) =
(bits‘𝑦))) → 1
∈ ℂ) |
11 | | simprr 770 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧
(bits‘𝑥) =
(bits‘𝑦))) →
(bits‘𝑥) =
(bits‘𝑦)) |
12 | 11 | difeq2d 4057 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧
(bits‘𝑥) =
(bits‘𝑦))) →
(ℕ0 ∖ (bits‘𝑥)) = (ℕ0 ∖
(bits‘𝑦))) |
13 | | bitscmp 16145 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℤ →
(ℕ0 ∖ (bits‘𝑥)) = (bits‘(-𝑥 − 1))) |
14 | 13 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧
(bits‘𝑥) =
(bits‘𝑦))) →
(ℕ0 ∖ (bits‘𝑥)) = (bits‘(-𝑥 − 1))) |
15 | | bitscmp 16145 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℤ →
(ℕ0 ∖ (bits‘𝑦)) = (bits‘(-𝑦 − 1))) |
16 | 15 | ad2antlr 724 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧
(bits‘𝑥) =
(bits‘𝑦))) →
(ℕ0 ∖ (bits‘𝑦)) = (bits‘(-𝑦 − 1))) |
17 | 12, 14, 16 | 3eqtr3d 2786 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧
(bits‘𝑥) =
(bits‘𝑦))) →
(bits‘(-𝑥 − 1))
= (bits‘(-𝑦 −
1))) |
18 | | nnm1nn0 12274 |
. . . . . . . . . . 11
⊢ (-𝑥 ∈ ℕ → (-𝑥 − 1) ∈
ℕ0) |
19 | 18 | ad2antrl 725 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧
(bits‘𝑥) =
(bits‘𝑦))) →
(-𝑥 − 1) ∈
ℕ0) |
20 | 19 | fvresd 6794 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧
(bits‘𝑥) =
(bits‘𝑦))) →
((bits ↾ ℕ0)‘(-𝑥 − 1)) = (bits‘(-𝑥 − 1))) |
21 | | ominf 9035 |
. . . . . . . . . . . . . . . . 17
⊢ ¬
ω ∈ Fin |
22 | | nn0ennn 13699 |
. . . . . . . . . . . . . . . . . . 19
⊢
ℕ0 ≈ ℕ |
23 | | nnenom 13700 |
. . . . . . . . . . . . . . . . . . 19
⊢ ℕ
≈ ω |
24 | 22, 23 | entr2i 8795 |
. . . . . . . . . . . . . . . . . 18
⊢ ω
≈ ℕ0 |
25 | | enfii 8972 |
. . . . . . . . . . . . . . . . . 18
⊢
((ℕ0 ∈ Fin ∧ ω ≈
ℕ0) → ω ∈ Fin) |
26 | 24, 25 | mpan2 688 |
. . . . . . . . . . . . . . . . 17
⊢
(ℕ0 ∈ Fin → ω ∈
Fin) |
27 | 21, 26 | mto 196 |
. . . . . . . . . . . . . . . 16
⊢ ¬
ℕ0 ∈ Fin |
28 | | difinf 9084 |
. . . . . . . . . . . . . . . 16
⊢ ((¬
ℕ0 ∈ Fin ∧ (bits‘𝑥) ∈ Fin) → ¬
(ℕ0 ∖ (bits‘𝑥)) ∈ Fin) |
29 | 27, 28 | mpan 687 |
. . . . . . . . . . . . . . 15
⊢
((bits‘𝑥)
∈ Fin → ¬ (ℕ0 ∖ (bits‘𝑥)) ∈ Fin) |
30 | | bitsfi 16144 |
. . . . . . . . . . . . . . . . 17
⊢ ((-𝑥 − 1) ∈
ℕ0 → (bits‘(-𝑥 − 1)) ∈ Fin) |
31 | 19, 30 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧
(bits‘𝑥) =
(bits‘𝑦))) →
(bits‘(-𝑥 − 1))
∈ Fin) |
32 | 14, 31 | eqeltrd 2839 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧
(bits‘𝑥) =
(bits‘𝑦))) →
(ℕ0 ∖ (bits‘𝑥)) ∈ Fin) |
33 | 29, 32 | nsyl3 138 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧
(bits‘𝑥) =
(bits‘𝑦))) →
¬ (bits‘𝑥) ∈
Fin) |
34 | 11, 33 | eqneltrrd 2859 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧
(bits‘𝑥) =
(bits‘𝑦))) →
¬ (bits‘𝑦) ∈
Fin) |
35 | | bitsfi 16144 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℕ0
→ (bits‘𝑦)
∈ Fin) |
36 | 34, 35 | nsyl 140 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧
(bits‘𝑥) =
(bits‘𝑦))) →
¬ 𝑦 ∈
ℕ0) |
37 | 5 | znegcld 12428 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → -𝑦 ∈
ℤ) |
38 | | elznn 12335 |
. . . . . . . . . . . . . . . . 17
⊢ (-𝑦 ∈ ℤ ↔ (-𝑦 ∈ ℝ ∧ (-𝑦 ∈ ℕ ∨ --𝑦 ∈
ℕ0))) |
39 | 38 | simprbi 497 |
. . . . . . . . . . . . . . . 16
⊢ (-𝑦 ∈ ℤ → (-𝑦 ∈ ℕ ∨ --𝑦 ∈
ℕ0)) |
40 | 37, 39 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (-𝑦 ∈ ℕ ∨ --𝑦 ∈
ℕ0)) |
41 | 6 | negnegd 11323 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → --𝑦 = 𝑦) |
42 | 41 | eleq1d 2823 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (--𝑦 ∈ ℕ0
↔ 𝑦 ∈
ℕ0)) |
43 | 42 | orbi2d 913 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((-𝑦 ∈ ℕ ∨ --𝑦 ∈ ℕ0)
↔ (-𝑦 ∈ ℕ
∨ 𝑦 ∈
ℕ0))) |
44 | 40, 43 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (-𝑦 ∈ ℕ ∨ 𝑦 ∈
ℕ0)) |
45 | 44 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧
(bits‘𝑥) =
(bits‘𝑦))) →
(-𝑦 ∈ ℕ ∨
𝑦 ∈
ℕ0)) |
46 | 45 | ord 861 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧
(bits‘𝑥) =
(bits‘𝑦))) →
(¬ -𝑦 ∈ ℕ
→ 𝑦 ∈
ℕ0)) |
47 | 36, 46 | mt3d 148 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧
(bits‘𝑥) =
(bits‘𝑦))) →
-𝑦 ∈
ℕ) |
48 | | nnm1nn0 12274 |
. . . . . . . . . . 11
⊢ (-𝑦 ∈ ℕ → (-𝑦 − 1) ∈
ℕ0) |
49 | 47, 48 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧
(bits‘𝑥) =
(bits‘𝑦))) →
(-𝑦 − 1) ∈
ℕ0) |
50 | 49 | fvresd 6794 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧
(bits‘𝑥) =
(bits‘𝑦))) →
((bits ↾ ℕ0)‘(-𝑦 − 1)) = (bits‘(-𝑦 − 1))) |
51 | 17, 20, 50 | 3eqtr4d 2788 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧
(bits‘𝑥) =
(bits‘𝑦))) →
((bits ↾ ℕ0)‘(-𝑥 − 1)) = ((bits ↾
ℕ0)‘(-𝑦 − 1))) |
52 | | bitsf1o 16152 |
. . . . . . . . . . 11
⊢ (bits
↾ ℕ0):ℕ0–1-1-onto→(𝒫 ℕ0 ∩
Fin) |
53 | | f1of1 6715 |
. . . . . . . . . . 11
⊢ ((bits
↾ ℕ0):ℕ0–1-1-onto→(𝒫 ℕ0 ∩ Fin)
→ (bits ↾ ℕ0):ℕ0–1-1→(𝒫 ℕ0 ∩
Fin)) |
54 | 52, 53 | ax-mp 5 |
. . . . . . . . . 10
⊢ (bits
↾ ℕ0):ℕ0–1-1→(𝒫 ℕ0 ∩
Fin) |
55 | | f1fveq 7135 |
. . . . . . . . . 10
⊢ (((bits
↾ ℕ0):ℕ0–1-1→(𝒫 ℕ0 ∩ Fin) ∧
((-𝑥 − 1) ∈
ℕ0 ∧ (-𝑦 − 1) ∈ ℕ0))
→ (((bits ↾ ℕ0)‘(-𝑥 − 1)) = ((bits ↾
ℕ0)‘(-𝑦 − 1)) ↔ (-𝑥 − 1) = (-𝑦 − 1))) |
56 | 54, 55 | mpan 687 |
. . . . . . . . 9
⊢ (((-𝑥 − 1) ∈
ℕ0 ∧ (-𝑦 − 1) ∈ ℕ0)
→ (((bits ↾ ℕ0)‘(-𝑥 − 1)) = ((bits ↾
ℕ0)‘(-𝑦 − 1)) ↔ (-𝑥 − 1) = (-𝑦 − 1))) |
57 | 19, 49, 56 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧
(bits‘𝑥) =
(bits‘𝑦))) →
(((bits ↾ ℕ0)‘(-𝑥 − 1)) = ((bits ↾
ℕ0)‘(-𝑦 − 1)) ↔ (-𝑥 − 1) = (-𝑦 − 1))) |
58 | 51, 57 | mpbid 231 |
. . . . . . 7
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧
(bits‘𝑥) =
(bits‘𝑦))) →
(-𝑥 − 1) = (-𝑦 − 1)) |
59 | 8, 9, 10, 58 | subcan2d 11374 |
. . . . . 6
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧
(bits‘𝑥) =
(bits‘𝑦))) →
-𝑥 = -𝑦) |
60 | 4, 7, 59 | neg11d 11344 |
. . . . 5
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧
(bits‘𝑥) =
(bits‘𝑦))) →
𝑥 = 𝑦) |
61 | 60 | expr 457 |
. . . 4
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ -𝑥 ∈ ℕ) →
((bits‘𝑥) =
(bits‘𝑦) → 𝑥 = 𝑦)) |
62 | 3 | negnegd 11323 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → --𝑥 = 𝑥) |
63 | 62 | eleq1d 2823 |
. . . . . 6
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (--𝑥 ∈ ℕ0
↔ 𝑥 ∈
ℕ0)) |
64 | 63 | biimpa 477 |
. . . . 5
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ --𝑥 ∈ ℕ0)
→ 𝑥 ∈
ℕ0) |
65 | | simprr 770 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0
∧ (bits‘𝑥) =
(bits‘𝑦))) →
(bits‘𝑥) =
(bits‘𝑦)) |
66 | | fvres 6793 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℕ0
→ ((bits ↾ ℕ0)‘𝑥) = (bits‘𝑥)) |
67 | 66 | ad2antrl 725 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0
∧ (bits‘𝑥) =
(bits‘𝑦))) →
((bits ↾ ℕ0)‘𝑥) = (bits‘𝑥)) |
68 | 15 | ad2antlr 724 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0
∧ (bits‘𝑥) =
(bits‘𝑦))) →
(ℕ0 ∖ (bits‘𝑦)) = (bits‘(-𝑦 − 1))) |
69 | | bitsfi 16144 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℕ0
→ (bits‘𝑥)
∈ Fin) |
70 | 69 | ad2antrl 725 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0
∧ (bits‘𝑥) =
(bits‘𝑦))) →
(bits‘𝑥) ∈
Fin) |
71 | 65, 70 | eqeltrrd 2840 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0
∧ (bits‘𝑥) =
(bits‘𝑦))) →
(bits‘𝑦) ∈
Fin) |
72 | | difinf 9084 |
. . . . . . . . . . . . . 14
⊢ ((¬
ℕ0 ∈ Fin ∧ (bits‘𝑦) ∈ Fin) → ¬
(ℕ0 ∖ (bits‘𝑦)) ∈ Fin) |
73 | 27, 71, 72 | sylancr 587 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0
∧ (bits‘𝑥) =
(bits‘𝑦))) →
¬ (ℕ0 ∖ (bits‘𝑦)) ∈ Fin) |
74 | 68, 73 | eqneltrrd 2859 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0
∧ (bits‘𝑥) =
(bits‘𝑦))) →
¬ (bits‘(-𝑦
− 1)) ∈ Fin) |
75 | | bitsfi 16144 |
. . . . . . . . . . . 12
⊢ ((-𝑦 − 1) ∈
ℕ0 → (bits‘(-𝑦 − 1)) ∈ Fin) |
76 | 74, 75 | nsyl 140 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0
∧ (bits‘𝑥) =
(bits‘𝑦))) →
¬ (-𝑦 − 1) ∈
ℕ0) |
77 | 76, 48 | nsyl 140 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0
∧ (bits‘𝑥) =
(bits‘𝑦))) →
¬ -𝑦 ∈
ℕ) |
78 | 44 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0
∧ (bits‘𝑥) =
(bits‘𝑦))) →
(-𝑦 ∈ ℕ ∨
𝑦 ∈
ℕ0)) |
79 | 78 | ord 861 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0
∧ (bits‘𝑥) =
(bits‘𝑦))) →
(¬ -𝑦 ∈ ℕ
→ 𝑦 ∈
ℕ0)) |
80 | 77, 79 | mpd 15 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0
∧ (bits‘𝑥) =
(bits‘𝑦))) →
𝑦 ∈
ℕ0) |
81 | 80 | fvresd 6794 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0
∧ (bits‘𝑥) =
(bits‘𝑦))) →
((bits ↾ ℕ0)‘𝑦) = (bits‘𝑦)) |
82 | 65, 67, 81 | 3eqtr4d 2788 |
. . . . . . 7
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0
∧ (bits‘𝑥) =
(bits‘𝑦))) →
((bits ↾ ℕ0)‘𝑥) = ((bits ↾
ℕ0)‘𝑦)) |
83 | | simprl 768 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0
∧ (bits‘𝑥) =
(bits‘𝑦))) →
𝑥 ∈
ℕ0) |
84 | | f1fveq 7135 |
. . . . . . . . 9
⊢ (((bits
↾ ℕ0):ℕ0–1-1→(𝒫 ℕ0 ∩ Fin) ∧
(𝑥 ∈
ℕ0 ∧ 𝑦
∈ ℕ0)) → (((bits ↾
ℕ0)‘𝑥) = ((bits ↾
ℕ0)‘𝑦) ↔ 𝑥 = 𝑦)) |
85 | 54, 84 | mpan 687 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → (((bits ↾ ℕ0)‘𝑥) = ((bits ↾
ℕ0)‘𝑦) ↔ 𝑥 = 𝑦)) |
86 | 83, 80, 85 | syl2anc 584 |
. . . . . . 7
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0
∧ (bits‘𝑥) =
(bits‘𝑦))) →
(((bits ↾ ℕ0)‘𝑥) = ((bits ↾
ℕ0)‘𝑦) ↔ 𝑥 = 𝑦)) |
87 | 82, 86 | mpbid 231 |
. . . . . 6
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0
∧ (bits‘𝑥) =
(bits‘𝑦))) →
𝑥 = 𝑦) |
88 | 87 | expr 457 |
. . . . 5
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ 𝑥 ∈ ℕ0)
→ ((bits‘𝑥) =
(bits‘𝑦) → 𝑥 = 𝑦)) |
89 | 64, 88 | syldan 591 |
. . . 4
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ --𝑥 ∈ ℕ0)
→ ((bits‘𝑥) =
(bits‘𝑦) → 𝑥 = 𝑦)) |
90 | 2 | znegcld 12428 |
. . . . 5
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → -𝑥 ∈
ℤ) |
91 | | elznn 12335 |
. . . . . 6
⊢ (-𝑥 ∈ ℤ ↔ (-𝑥 ∈ ℝ ∧ (-𝑥 ∈ ℕ ∨ --𝑥 ∈
ℕ0))) |
92 | 91 | simprbi 497 |
. . . . 5
⊢ (-𝑥 ∈ ℤ → (-𝑥 ∈ ℕ ∨ --𝑥 ∈
ℕ0)) |
93 | 90, 92 | syl 17 |
. . . 4
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (-𝑥 ∈ ℕ ∨ --𝑥 ∈
ℕ0)) |
94 | 61, 89, 93 | mpjaodan 956 |
. . 3
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) →
((bits‘𝑥) =
(bits‘𝑦) → 𝑥 = 𝑦)) |
95 | 94 | rgen2 3120 |
. 2
⊢
∀𝑥 ∈
ℤ ∀𝑦 ∈
ℤ ((bits‘𝑥) =
(bits‘𝑦) → 𝑥 = 𝑦) |
96 | | dff13 7128 |
. 2
⊢
(bits:ℤ–1-1→𝒫 ℕ0 ↔
(bits:ℤ⟶𝒫 ℕ0 ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ
((bits‘𝑥) =
(bits‘𝑦) → 𝑥 = 𝑦))) |
97 | 1, 95, 96 | mpbir2an 708 |
1
⊢
bits:ℤ–1-1→𝒫 ℕ0 |