MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsf1 Structured version   Visualization version   GIF version

Theorem bitsf1 16492
Description: The bits function is an injection from to 𝒫 ℕ0. It is obviously not a bijection (by Cantor's theorem canth2 9196), and in fact its range is the set of finite and cofinite subsets of 0. (Contributed by Mario Carneiro, 22-Sep-2016.)
Assertion
Ref Expression
bitsf1 bits:ℤ–1-1→𝒫 ℕ0

Proof of Theorem bitsf1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bitsf 16473 . 2 bits:ℤ⟶𝒫 ℕ0
2 simpl 482 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑥 ∈ ℤ)
32zcnd 12748 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑥 ∈ ℂ)
43adantr 480 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → 𝑥 ∈ ℂ)
5 simpr 484 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℤ)
65zcnd 12748 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℂ)
76adantr 480 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → 𝑦 ∈ ℂ)
84negcld 11634 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → -𝑥 ∈ ℂ)
97negcld 11634 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → -𝑦 ∈ ℂ)
10 1cnd 11285 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → 1 ∈ ℂ)
11 simprr 772 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (bits‘𝑥) = (bits‘𝑦))
1211difeq2d 4149 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (ℕ0 ∖ (bits‘𝑥)) = (ℕ0 ∖ (bits‘𝑦)))
13 bitscmp 16484 . . . . . . . . . . 11 (𝑥 ∈ ℤ → (ℕ0 ∖ (bits‘𝑥)) = (bits‘(-𝑥 − 1)))
1413ad2antrr 725 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (ℕ0 ∖ (bits‘𝑥)) = (bits‘(-𝑥 − 1)))
15 bitscmp 16484 . . . . . . . . . . 11 (𝑦 ∈ ℤ → (ℕ0 ∖ (bits‘𝑦)) = (bits‘(-𝑦 − 1)))
1615ad2antlr 726 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (ℕ0 ∖ (bits‘𝑦)) = (bits‘(-𝑦 − 1)))
1712, 14, 163eqtr3d 2788 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (bits‘(-𝑥 − 1)) = (bits‘(-𝑦 − 1)))
18 nnm1nn0 12594 . . . . . . . . . . 11 (-𝑥 ∈ ℕ → (-𝑥 − 1) ∈ ℕ0)
1918ad2antrl 727 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (-𝑥 − 1) ∈ ℕ0)
2019fvresd 6940 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → ((bits ↾ ℕ0)‘(-𝑥 − 1)) = (bits‘(-𝑥 − 1)))
21 ominf 9321 . . . . . . . . . . . . . . . . 17 ¬ ω ∈ Fin
22 nn0ennn 14030 . . . . . . . . . . . . . . . . . . 19 0 ≈ ℕ
23 nnenom 14031 . . . . . . . . . . . . . . . . . . 19 ℕ ≈ ω
2422, 23entr2i 9069 . . . . . . . . . . . . . . . . . 18 ω ≈ ℕ0
25 enfii 9252 . . . . . . . . . . . . . . . . . 18 ((ℕ0 ∈ Fin ∧ ω ≈ ℕ0) → ω ∈ Fin)
2624, 25mpan2 690 . . . . . . . . . . . . . . . . 17 (ℕ0 ∈ Fin → ω ∈ Fin)
2721, 26mto 197 . . . . . . . . . . . . . . . 16 ¬ ℕ0 ∈ Fin
28 difinf 9377 . . . . . . . . . . . . . . . 16 ((¬ ℕ0 ∈ Fin ∧ (bits‘𝑥) ∈ Fin) → ¬ (ℕ0 ∖ (bits‘𝑥)) ∈ Fin)
2927, 28mpan 689 . . . . . . . . . . . . . . 15 ((bits‘𝑥) ∈ Fin → ¬ (ℕ0 ∖ (bits‘𝑥)) ∈ Fin)
30 bitsfi 16483 . . . . . . . . . . . . . . . . 17 ((-𝑥 − 1) ∈ ℕ0 → (bits‘(-𝑥 − 1)) ∈ Fin)
3119, 30syl 17 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (bits‘(-𝑥 − 1)) ∈ Fin)
3214, 31eqeltrd 2844 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (ℕ0 ∖ (bits‘𝑥)) ∈ Fin)
3329, 32nsyl3 138 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → ¬ (bits‘𝑥) ∈ Fin)
3411, 33eqneltrrd 2865 . . . . . . . . . . . . 13 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → ¬ (bits‘𝑦) ∈ Fin)
35 bitsfi 16483 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ0 → (bits‘𝑦) ∈ Fin)
3634, 35nsyl 140 . . . . . . . . . . . 12 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → ¬ 𝑦 ∈ ℕ0)
375znegcld 12749 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → -𝑦 ∈ ℤ)
38 elznn 12655 . . . . . . . . . . . . . . . . 17 (-𝑦 ∈ ℤ ↔ (-𝑦 ∈ ℝ ∧ (-𝑦 ∈ ℕ ∨ --𝑦 ∈ ℕ0)))
3938simprbi 496 . . . . . . . . . . . . . . . 16 (-𝑦 ∈ ℤ → (-𝑦 ∈ ℕ ∨ --𝑦 ∈ ℕ0))
4037, 39syl 17 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (-𝑦 ∈ ℕ ∨ --𝑦 ∈ ℕ0))
416negnegd 11638 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → --𝑦 = 𝑦)
4241eleq1d 2829 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (--𝑦 ∈ ℕ0𝑦 ∈ ℕ0))
4342orbi2d 914 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((-𝑦 ∈ ℕ ∨ --𝑦 ∈ ℕ0) ↔ (-𝑦 ∈ ℕ ∨ 𝑦 ∈ ℕ0)))
4440, 43mpbid 232 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (-𝑦 ∈ ℕ ∨ 𝑦 ∈ ℕ0))
4544adantr 480 . . . . . . . . . . . . 13 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (-𝑦 ∈ ℕ ∨ 𝑦 ∈ ℕ0))
4645ord 863 . . . . . . . . . . . 12 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (¬ -𝑦 ∈ ℕ → 𝑦 ∈ ℕ0))
4736, 46mt3d 148 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → -𝑦 ∈ ℕ)
48 nnm1nn0 12594 . . . . . . . . . . 11 (-𝑦 ∈ ℕ → (-𝑦 − 1) ∈ ℕ0)
4947, 48syl 17 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (-𝑦 − 1) ∈ ℕ0)
5049fvresd 6940 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → ((bits ↾ ℕ0)‘(-𝑦 − 1)) = (bits‘(-𝑦 − 1)))
5117, 20, 503eqtr4d 2790 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → ((bits ↾ ℕ0)‘(-𝑥 − 1)) = ((bits ↾ ℕ0)‘(-𝑦 − 1)))
52 bitsf1o 16491 . . . . . . . . . . 11 (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)
53 f1of1 6861 . . . . . . . . . . 11 ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) → (bits ↾ ℕ0):ℕ01-1→(𝒫 ℕ0 ∩ Fin))
5452, 53ax-mp 5 . . . . . . . . . 10 (bits ↾ ℕ0):ℕ01-1→(𝒫 ℕ0 ∩ Fin)
55 f1fveq 7299 . . . . . . . . . 10 (((bits ↾ ℕ0):ℕ01-1→(𝒫 ℕ0 ∩ Fin) ∧ ((-𝑥 − 1) ∈ ℕ0 ∧ (-𝑦 − 1) ∈ ℕ0)) → (((bits ↾ ℕ0)‘(-𝑥 − 1)) = ((bits ↾ ℕ0)‘(-𝑦 − 1)) ↔ (-𝑥 − 1) = (-𝑦 − 1)))
5654, 55mpan 689 . . . . . . . . 9 (((-𝑥 − 1) ∈ ℕ0 ∧ (-𝑦 − 1) ∈ ℕ0) → (((bits ↾ ℕ0)‘(-𝑥 − 1)) = ((bits ↾ ℕ0)‘(-𝑦 − 1)) ↔ (-𝑥 − 1) = (-𝑦 − 1)))
5719, 49, 56syl2anc 583 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (((bits ↾ ℕ0)‘(-𝑥 − 1)) = ((bits ↾ ℕ0)‘(-𝑦 − 1)) ↔ (-𝑥 − 1) = (-𝑦 − 1)))
5851, 57mpbid 232 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (-𝑥 − 1) = (-𝑦 − 1))
598, 9, 10, 58subcan2d 11689 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → -𝑥 = -𝑦)
604, 7, 59neg11d 11659 . . . . 5 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → 𝑥 = 𝑦)
6160expr 456 . . . 4 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ -𝑥 ∈ ℕ) → ((bits‘𝑥) = (bits‘𝑦) → 𝑥 = 𝑦))
623negnegd 11638 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → --𝑥 = 𝑥)
6362eleq1d 2829 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (--𝑥 ∈ ℕ0𝑥 ∈ ℕ0))
6463biimpa 476 . . . . 5 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ --𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
65 simprr 772 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → (bits‘𝑥) = (bits‘𝑦))
66 fvres 6939 . . . . . . . . 9 (𝑥 ∈ ℕ0 → ((bits ↾ ℕ0)‘𝑥) = (bits‘𝑥))
6766ad2antrl 727 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → ((bits ↾ ℕ0)‘𝑥) = (bits‘𝑥))
6815ad2antlr 726 . . . . . . . . . . . . 13 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → (ℕ0 ∖ (bits‘𝑦)) = (bits‘(-𝑦 − 1)))
69 bitsfi 16483 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ0 → (bits‘𝑥) ∈ Fin)
7069ad2antrl 727 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → (bits‘𝑥) ∈ Fin)
7165, 70eqeltrrd 2845 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → (bits‘𝑦) ∈ Fin)
72 difinf 9377 . . . . . . . . . . . . . 14 ((¬ ℕ0 ∈ Fin ∧ (bits‘𝑦) ∈ Fin) → ¬ (ℕ0 ∖ (bits‘𝑦)) ∈ Fin)
7327, 71, 72sylancr 586 . . . . . . . . . . . . 13 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → ¬ (ℕ0 ∖ (bits‘𝑦)) ∈ Fin)
7468, 73eqneltrrd 2865 . . . . . . . . . . . 12 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → ¬ (bits‘(-𝑦 − 1)) ∈ Fin)
75 bitsfi 16483 . . . . . . . . . . . 12 ((-𝑦 − 1) ∈ ℕ0 → (bits‘(-𝑦 − 1)) ∈ Fin)
7674, 75nsyl 140 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → ¬ (-𝑦 − 1) ∈ ℕ0)
7776, 48nsyl 140 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → ¬ -𝑦 ∈ ℕ)
7844adantr 480 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → (-𝑦 ∈ ℕ ∨ 𝑦 ∈ ℕ0))
7978ord 863 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → (¬ -𝑦 ∈ ℕ → 𝑦 ∈ ℕ0))
8077, 79mpd 15 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → 𝑦 ∈ ℕ0)
8180fvresd 6940 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → ((bits ↾ ℕ0)‘𝑦) = (bits‘𝑦))
8265, 67, 813eqtr4d 2790 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → ((bits ↾ ℕ0)‘𝑥) = ((bits ↾ ℕ0)‘𝑦))
83 simprl 770 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → 𝑥 ∈ ℕ0)
84 f1fveq 7299 . . . . . . . . 9 (((bits ↾ ℕ0):ℕ01-1→(𝒫 ℕ0 ∩ Fin) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → (((bits ↾ ℕ0)‘𝑥) = ((bits ↾ ℕ0)‘𝑦) ↔ 𝑥 = 𝑦))
8554, 84mpan 689 . . . . . . . 8 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (((bits ↾ ℕ0)‘𝑥) = ((bits ↾ ℕ0)‘𝑦) ↔ 𝑥 = 𝑦))
8683, 80, 85syl2anc 583 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → (((bits ↾ ℕ0)‘𝑥) = ((bits ↾ ℕ0)‘𝑦) ↔ 𝑥 = 𝑦))
8782, 86mpbid 232 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → 𝑥 = 𝑦)
8887expr 456 . . . . 5 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ 𝑥 ∈ ℕ0) → ((bits‘𝑥) = (bits‘𝑦) → 𝑥 = 𝑦))
8964, 88syldan 590 . . . 4 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ --𝑥 ∈ ℕ0) → ((bits‘𝑥) = (bits‘𝑦) → 𝑥 = 𝑦))
902znegcld 12749 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → -𝑥 ∈ ℤ)
91 elznn 12655 . . . . . 6 (-𝑥 ∈ ℤ ↔ (-𝑥 ∈ ℝ ∧ (-𝑥 ∈ ℕ ∨ --𝑥 ∈ ℕ0)))
9291simprbi 496 . . . . 5 (-𝑥 ∈ ℤ → (-𝑥 ∈ ℕ ∨ --𝑥 ∈ ℕ0))
9390, 92syl 17 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (-𝑥 ∈ ℕ ∨ --𝑥 ∈ ℕ0))
9461, 89, 93mpjaodan 959 . . 3 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((bits‘𝑥) = (bits‘𝑦) → 𝑥 = 𝑦))
9594rgen2 3205 . 2 𝑥 ∈ ℤ ∀𝑦 ∈ ℤ ((bits‘𝑥) = (bits‘𝑦) → 𝑥 = 𝑦)
96 dff13 7292 . 2 (bits:ℤ–1-1→𝒫 ℕ0 ↔ (bits:ℤ⟶𝒫 ℕ0 ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ ((bits‘𝑥) = (bits‘𝑦) → 𝑥 = 𝑦)))
971, 95, 96mpbir2an 710 1 bits:ℤ–1-1→𝒫 ℕ0
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wral 3067  cdif 3973  cin 3975  𝒫 cpw 4622   class class class wbr 5166  cres 5702  wf 6569  1-1wf1 6570  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  ωcom 7903  cen 9000  Fincfn 9003  cc 11182  cr 11183  1c1 11185  cmin 11520  -cneg 11521  cn 12293  0cn0 12553  cz 12639  bitscbits 16465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-dvds 16303  df-bits 16468
This theorem is referenced by:  bitsuz  16520  eulerpartlemmf  34340
  Copyright terms: Public domain W3C validator