![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmod1zrnlvec | Structured version Visualization version GIF version |
Description: There is a (left) module (a zero module) which is not a (left) vector space. (Contributed by AV, 29-Apr-2019.) |
Ref | Expression |
---|---|
lmod1zr.r | β’ π = {β¨(Baseβndx), {π}β©, β¨(+gβndx), {β¨β¨π, πβ©, πβ©}β©, β¨(.rβndx), {β¨β¨π, πβ©, πβ©}β©} |
lmod1zr.m | β’ π = ({β¨(Baseβndx), {πΌ}β©, β¨(+gβndx), {β¨β¨πΌ, πΌβ©, πΌβ©}β©, β¨(Scalarβndx), π β©} βͺ {β¨( Β·π βndx), {β¨β¨π, πΌβ©, πΌβ©}β©}) |
Ref | Expression |
---|---|
lmod1zrnlvec | β’ ((πΌ β π β§ π β π) β π β LVec) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmod1zr.r | . . . . . 6 β’ π = {β¨(Baseβndx), {π}β©, β¨(+gβndx), {β¨β¨π, πβ©, πβ©}β©, β¨(.rβndx), {β¨β¨π, πβ©, πβ©}β©} | |
2 | tpex 7737 | . . . . . 6 β’ {β¨(Baseβndx), {π}β©, β¨(+gβndx), {β¨β¨π, πβ©, πβ©}β©, β¨(.rβndx), {β¨β¨π, πβ©, πβ©}β©} β V | |
3 | 1, 2 | eqeltri 2828 | . . . . 5 β’ π β V |
4 | lmod1zr.m | . . . . . 6 β’ π = ({β¨(Baseβndx), {πΌ}β©, β¨(+gβndx), {β¨β¨πΌ, πΌβ©, πΌβ©}β©, β¨(Scalarβndx), π β©} βͺ {β¨( Β·π βndx), {β¨β¨π, πΌβ©, πΌβ©}β©}) | |
5 | 4 | lmodsca 17278 | . . . . 5 β’ (π β V β π = (Scalarβπ)) |
6 | 3, 5 | mp1i 13 | . . . 4 β’ ((πΌ β π β§ π β π) β π = (Scalarβπ)) |
7 | 1 | rng1nnzr 20540 | . . . . . . 7 β’ (π β π β π β NzRing) |
8 | df-nel 3046 | . . . . . . 7 β’ (π β NzRing β Β¬ π β NzRing) | |
9 | 7, 8 | sylib 217 | . . . . . 6 β’ (π β π β Β¬ π β NzRing) |
10 | drngnzr 20521 | . . . . . 6 β’ (π β DivRing β π β NzRing) | |
11 | 9, 10 | nsyl 140 | . . . . 5 β’ (π β π β Β¬ π β DivRing) |
12 | 11 | adantl 481 | . . . 4 β’ ((πΌ β π β§ π β π) β Β¬ π β DivRing) |
13 | 6, 12 | eqneltrrd 2853 | . . 3 β’ ((πΌ β π β§ π β π) β Β¬ (Scalarβπ) β DivRing) |
14 | 13 | intnand 488 | . 2 β’ ((πΌ β π β§ π β π) β Β¬ (π β LMod β§ (Scalarβπ) β DivRing)) |
15 | df-nel 3046 | . . 3 β’ (π β LVec β Β¬ π β LVec) | |
16 | eqid 2731 | . . . 4 β’ (Scalarβπ) = (Scalarβπ) | |
17 | 16 | islvec 20860 | . . 3 β’ (π β LVec β (π β LMod β§ (Scalarβπ) β DivRing)) |
18 | 15, 17 | xchbinx 333 | . 2 β’ (π β LVec β Β¬ (π β LMod β§ (Scalarβπ) β DivRing)) |
19 | 14, 18 | sylibr 233 | 1 β’ ((πΌ β π β§ π β π) β π β LVec) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 β wnel 3045 Vcvv 3473 βͺ cun 3947 {csn 4629 {ctp 4633 β¨cop 4635 βcfv 6544 ndxcnx 17131 Basecbs 17149 +gcplusg 17202 .rcmulr 17203 Scalarcsca 17205 Β·π cvsca 17206 NzRingcnzr 20404 DivRingcdr 20501 LModclmod 20615 LVecclvec 20858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-tpos 8214 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-oadd 8473 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-dju 9899 df-card 9937 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-n0 12478 df-xnn0 12550 df-z 12564 df-uz 12828 df-fz 13490 df-hash 14296 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-plusg 17215 df-mulr 17216 df-sca 17218 df-vsca 17219 df-0g 17392 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-grp 18859 df-minusg 18860 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-oppr 20226 df-dvdsr 20249 df-unit 20250 df-nzr 20405 df-drng 20503 df-lvec 20859 |
This theorem is referenced by: lvecpsslmod 47277 |
Copyright terms: Public domain | W3C validator |