| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lmod1zrnlvec | Structured version Visualization version GIF version | ||
| Description: There is a (left) module (a zero module) which is not a (left) vector space. (Contributed by AV, 29-Apr-2019.) |
| Ref | Expression |
|---|---|
| lmod1zr.r | ⊢ 𝑅 = {〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉, 〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} |
| lmod1zr.m | ⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), {〈〈𝑍, 𝐼〉, 𝐼〉}〉}) |
| Ref | Expression |
|---|---|
| lmod1zrnlvec | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝑀 ∉ LVec) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmod1zr.r | . . . . . 6 ⊢ 𝑅 = {〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉, 〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} | |
| 2 | tpex 7679 | . . . . . 6 ⊢ {〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉, 〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} ∈ V | |
| 3 | 1, 2 | eqeltri 2827 | . . . . 5 ⊢ 𝑅 ∈ V |
| 4 | lmod1zr.m | . . . . . 6 ⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), {〈〈𝑍, 𝐼〉, 𝐼〉}〉}) | |
| 5 | 4 | lmodsca 17229 | . . . . 5 ⊢ (𝑅 ∈ V → 𝑅 = (Scalar‘𝑀)) |
| 6 | 3, 5 | mp1i 13 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝑅 = (Scalar‘𝑀)) |
| 7 | 1 | rng1nnzr 20688 | . . . . . . 7 ⊢ (𝑍 ∈ 𝑊 → 𝑅 ∉ NzRing) |
| 8 | df-nel 3033 | . . . . . . 7 ⊢ (𝑅 ∉ NzRing ↔ ¬ 𝑅 ∈ NzRing) | |
| 9 | 7, 8 | sylib 218 | . . . . . 6 ⊢ (𝑍 ∈ 𝑊 → ¬ 𝑅 ∈ NzRing) |
| 10 | drngnzr 20661 | . . . . . 6 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ NzRing) | |
| 11 | 9, 10 | nsyl 140 | . . . . 5 ⊢ (𝑍 ∈ 𝑊 → ¬ 𝑅 ∈ DivRing) |
| 12 | 11 | adantl 481 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ¬ 𝑅 ∈ DivRing) |
| 13 | 6, 12 | eqneltrrd 2852 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ¬ (Scalar‘𝑀) ∈ DivRing) |
| 14 | 13 | intnand 488 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ¬ (𝑀 ∈ LMod ∧ (Scalar‘𝑀) ∈ DivRing)) |
| 15 | df-nel 3033 | . . 3 ⊢ (𝑀 ∉ LVec ↔ ¬ 𝑀 ∈ LVec) | |
| 16 | eqid 2731 | . . . 4 ⊢ (Scalar‘𝑀) = (Scalar‘𝑀) | |
| 17 | 16 | islvec 21036 | . . 3 ⊢ (𝑀 ∈ LVec ↔ (𝑀 ∈ LMod ∧ (Scalar‘𝑀) ∈ DivRing)) |
| 18 | 15, 17 | xchbinx 334 | . 2 ⊢ (𝑀 ∉ LVec ↔ ¬ (𝑀 ∈ LMod ∧ (Scalar‘𝑀) ∈ DivRing)) |
| 19 | 14, 18 | sylibr 234 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝑀 ∉ LVec) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∉ wnel 3032 Vcvv 3436 ∪ cun 3900 {csn 4576 {ctp 4580 〈cop 4582 ‘cfv 6481 ndxcnx 17101 Basecbs 17117 +gcplusg 17158 .rcmulr 17159 Scalarcsca 17161 ·𝑠 cvsca 17162 NzRingcnzr 20425 DivRingcdr 20642 LModclmod 20791 LVecclvec 21034 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9791 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-n0 12379 df-xnn0 12452 df-z 12466 df-uz 12730 df-fz 13405 df-hash 14235 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-plusg 17171 df-mulr 17172 df-sca 17174 df-vsca 17175 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-minusg 18847 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-nzr 20426 df-drng 20644 df-lvec 21035 |
| This theorem is referenced by: lvecpsslmod 48538 |
| Copyright terms: Public domain | W3C validator |