Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmod1zrnlvec | Structured version Visualization version GIF version |
Description: There is a (left) module (a zero module) which is not a (left) vector space. (Contributed by AV, 29-Apr-2019.) |
Ref | Expression |
---|---|
lmod1zr.r | ⊢ 𝑅 = {〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉, 〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} |
lmod1zr.m | ⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), {〈〈𝑍, 𝐼〉, 𝐼〉}〉}) |
Ref | Expression |
---|---|
lmod1zrnlvec | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝑀 ∉ LVec) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmod1zr.r | . . . . . 6 ⊢ 𝑅 = {〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉, 〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} | |
2 | tpex 7597 | . . . . . 6 ⊢ {〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉, 〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} ∈ V | |
3 | 1, 2 | eqeltri 2835 | . . . . 5 ⊢ 𝑅 ∈ V |
4 | lmod1zr.m | . . . . . 6 ⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), {〈〈𝑍, 𝐼〉, 𝐼〉}〉}) | |
5 | 4 | lmodsca 17038 | . . . . 5 ⊢ (𝑅 ∈ V → 𝑅 = (Scalar‘𝑀)) |
6 | 3, 5 | mp1i 13 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝑅 = (Scalar‘𝑀)) |
7 | 1 | rng1nnzr 20545 | . . . . . . 7 ⊢ (𝑍 ∈ 𝑊 → 𝑅 ∉ NzRing) |
8 | df-nel 3050 | . . . . . . 7 ⊢ (𝑅 ∉ NzRing ↔ ¬ 𝑅 ∈ NzRing) | |
9 | 7, 8 | sylib 217 | . . . . . 6 ⊢ (𝑍 ∈ 𝑊 → ¬ 𝑅 ∈ NzRing) |
10 | drngnzr 20533 | . . . . . 6 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ NzRing) | |
11 | 9, 10 | nsyl 140 | . . . . 5 ⊢ (𝑍 ∈ 𝑊 → ¬ 𝑅 ∈ DivRing) |
12 | 11 | adantl 482 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ¬ 𝑅 ∈ DivRing) |
13 | 6, 12 | eqneltrrd 2859 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ¬ (Scalar‘𝑀) ∈ DivRing) |
14 | 13 | intnand 489 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ¬ (𝑀 ∈ LMod ∧ (Scalar‘𝑀) ∈ DivRing)) |
15 | df-nel 3050 | . . 3 ⊢ (𝑀 ∉ LVec ↔ ¬ 𝑀 ∈ LVec) | |
16 | eqid 2738 | . . . 4 ⊢ (Scalar‘𝑀) = (Scalar‘𝑀) | |
17 | 16 | islvec 20366 | . . 3 ⊢ (𝑀 ∈ LVec ↔ (𝑀 ∈ LMod ∧ (Scalar‘𝑀) ∈ DivRing)) |
18 | 15, 17 | xchbinx 334 | . 2 ⊢ (𝑀 ∉ LVec ↔ ¬ (𝑀 ∈ LMod ∧ (Scalar‘𝑀) ∈ DivRing)) |
19 | 14, 18 | sylibr 233 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝑀 ∉ LVec) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∉ wnel 3049 Vcvv 3432 ∪ cun 3885 {csn 4561 {ctp 4565 〈cop 4567 ‘cfv 6433 ndxcnx 16894 Basecbs 16912 +gcplusg 16962 .rcmulr 16963 Scalarcsca 16965 ·𝑠 cvsca 16966 DivRingcdr 19991 LModclmod 20123 LVecclvec 20364 NzRingcnzr 20528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oadd 8301 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-n0 12234 df-xnn0 12306 df-z 12320 df-uz 12583 df-fz 13240 df-hash 14045 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-mgp 19721 df-ur 19738 df-ring 19785 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-drng 19993 df-lvec 20365 df-nzr 20529 |
This theorem is referenced by: lvecpsslmod 45848 |
Copyright terms: Public domain | W3C validator |