MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssvancl2 Structured version   Visualization version   GIF version

Theorem lssvancl2 20903
Description: Non-closure: if one vector belongs to a subspace but another does not, their sum does not belong. Useful for obtaining a new vector not in a subspace. (Contributed by NM, 20-May-2015.)
Hypotheses
Ref Expression
lssvancl.v 𝑉 = (Base‘𝑊)
lssvancl.p + = (+g𝑊)
lssvancl.s 𝑆 = (LSubSp‘𝑊)
lssvancl.w (𝜑𝑊 ∈ LMod)
lssvancl.u (𝜑𝑈𝑆)
lssvancl.x (𝜑𝑋𝑈)
lssvancl.y (𝜑𝑌𝑉)
lssvancl.n (𝜑 → ¬ 𝑌𝑈)
Assertion
Ref Expression
lssvancl2 (𝜑 → ¬ (𝑌 + 𝑋) ∈ 𝑈)

Proof of Theorem lssvancl2
StepHypRef Expression
1 lssvancl.w . . 3 (𝜑𝑊 ∈ LMod)
2 lssvancl.u . . . 4 (𝜑𝑈𝑆)
3 lssvancl.x . . . 4 (𝜑𝑋𝑈)
4 lssvancl.v . . . . 5 𝑉 = (Base‘𝑊)
5 lssvancl.s . . . . 5 𝑆 = (LSubSp‘𝑊)
64, 5lssel 20894 . . . 4 ((𝑈𝑆𝑋𝑈) → 𝑋𝑉)
72, 3, 6syl2anc 584 . . 3 (𝜑𝑋𝑉)
8 lssvancl.y . . 3 (𝜑𝑌𝑉)
9 lssvancl.p . . . 4 + = (+g𝑊)
104, 9lmodcom 20865 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
111, 7, 8, 10syl3anc 1373 . 2 (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋))
12 lssvancl.n . . 3 (𝜑 → ¬ 𝑌𝑈)
134, 9, 5, 1, 2, 3, 8, 12lssvancl1 20902 . 2 (𝜑 → ¬ (𝑋 + 𝑌) ∈ 𝑈)
1411, 13eqneltrrd 2855 1 (𝜑 → ¬ (𝑌 + 𝑋) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2108  cfv 6531  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  LModclmod 20817  LSubSpclss 20888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-plusg 17284  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-sbg 18921  df-cmn 19763  df-abl 19764  df-mgp 20101  df-ur 20142  df-ring 20195  df-lmod 20819  df-lss 20889
This theorem is referenced by:  dvh3dim2  41467  dvh3dim3N  41468  hdmap11lem2  41861  hdmaprnlem3N  41869
  Copyright terms: Public domain W3C validator