Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neleqtrd | Structured version Visualization version GIF version |
Description: If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
neleqtrd.1 | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
neleqtrd.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
neleqtrd | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neleqtrd.1 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) | |
2 | neleqtrd.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | eleq2d 2824 | . 2 ⊢ (𝜑 → (𝐶 ∈ 𝐴 ↔ 𝐶 ∈ 𝐵)) |
4 | 1, 3 | mtbid 324 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-clel 2816 |
This theorem is referenced by: neleqtrrd 2861 smoord 8196 r1tskina 10538 ofccat 14680 mreexexlem2d 17354 opptgdim2 27106 acopyeu 27195 dochnel 39407 stoweidlem26 43567 fourierdlem60 43707 fourierdlem61 43708 sge00 43914 sge0sn 43917 sge0split 43947 |
Copyright terms: Public domain | W3C validator |