Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neleqtrd | Structured version Visualization version GIF version |
Description: If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
neleqtrd.1 | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
neleqtrd.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
neleqtrd | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neleqtrd.1 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) | |
2 | neleqtrd.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | eleq2d 2824 | . 2 ⊢ (𝜑 → (𝐶 ∈ 𝐴 ↔ 𝐶 ∈ 𝐵)) |
4 | 1, 3 | mtbid 323 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-clel 2817 |
This theorem is referenced by: neleqtrrd 2861 smoord 8167 r1tskina 10469 ofccat 14608 mreexexlem2d 17271 opptgdim2 27010 acopyeu 27099 dochnel 39334 stoweidlem26 43457 fourierdlem60 43597 fourierdlem61 43598 sge00 43804 sge0sn 43807 sge0split 43837 |
Copyright terms: Public domain | W3C validator |