| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neleqtrd | Structured version Visualization version GIF version | ||
| Description: If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| neleqtrd.1 | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
| neleqtrd.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| neleqtrd | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neleqtrd.1 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) | |
| 2 | neleqtrd.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | eleq2d 2817 | . 2 ⊢ (𝜑 → (𝐶 ∈ 𝐴 ↔ 𝐶 ∈ 𝐵)) |
| 4 | 1, 3 | mtbid 324 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-clel 2806 |
| This theorem is referenced by: neleqtrrd 2854 smoord 8280 r1tskina 10668 ofccat 14871 mreexexlem2d 17546 chnccat 18527 opptgdim2 28718 acopyeu 28807 dimlssid 33637 dochnel 41432 stoweidlem26 46064 fourierdlem60 46204 fourierdlem61 46205 sge00 46414 sge0sn 46417 sge0split 46447 |
| Copyright terms: Public domain | W3C validator |