MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindfind2 Structured version   Visualization version   GIF version

Theorem lindfind2 21222
Description: In a linearly independent family in a module over a nonzero ring, no element is contained in the span of any non-containing set. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
lindfind2.k 𝐾 = (LSpan‘𝑊)
lindfind2.l 𝐿 = (Scalar‘𝑊)
Assertion
Ref Expression
lindfind2 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) → ¬ (𝐹𝐸) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝐸}))))

Proof of Theorem lindfind2
StepHypRef Expression
1 simp1l 1197 . . 3 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) → 𝑊 ∈ LMod)
2 simp2 1137 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) → 𝐹 LIndF 𝑊)
3 eqid 2736 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
43lindff 21219 . . . . 5 ((𝐹 LIndF 𝑊𝑊 ∈ LMod) → 𝐹:dom 𝐹⟶(Base‘𝑊))
52, 1, 4syl2anc 584 . . . 4 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) → 𝐹:dom 𝐹⟶(Base‘𝑊))
6 simp3 1138 . . . 4 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) → 𝐸 ∈ dom 𝐹)
75, 6ffvelcdmd 7035 . . 3 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) → (𝐹𝐸) ∈ (Base‘𝑊))
8 lindfind2.l . . . 4 𝐿 = (Scalar‘𝑊)
9 eqid 2736 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
10 eqid 2736 . . . 4 (1r𝐿) = (1r𝐿)
113, 8, 9, 10lmodvs1 20348 . . 3 ((𝑊 ∈ LMod ∧ (𝐹𝐸) ∈ (Base‘𝑊)) → ((1r𝐿)( ·𝑠𝑊)(𝐹𝐸)) = (𝐹𝐸))
121, 7, 11syl2anc 584 . 2 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) → ((1r𝐿)( ·𝑠𝑊)(𝐹𝐸)) = (𝐹𝐸))
13 nzrring 20729 . . . . . 6 (𝐿 ∈ NzRing → 𝐿 ∈ Ring)
14 eqid 2736 . . . . . . 7 (Base‘𝐿) = (Base‘𝐿)
1514, 10ringidcl 19987 . . . . . 6 (𝐿 ∈ Ring → (1r𝐿) ∈ (Base‘𝐿))
1613, 15syl 17 . . . . 5 (𝐿 ∈ NzRing → (1r𝐿) ∈ (Base‘𝐿))
1716adantl 482 . . . 4 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) → (1r𝐿) ∈ (Base‘𝐿))
18173ad2ant1 1133 . . 3 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) → (1r𝐿) ∈ (Base‘𝐿))
19 eqid 2736 . . . . . 6 (0g𝐿) = (0g𝐿)
2010, 19nzrnz 20728 . . . . 5 (𝐿 ∈ NzRing → (1r𝐿) ≠ (0g𝐿))
2120adantl 482 . . . 4 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) → (1r𝐿) ≠ (0g𝐿))
22213ad2ant1 1133 . . 3 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) → (1r𝐿) ≠ (0g𝐿))
23 lindfind2.k . . . 4 𝐾 = (LSpan‘𝑊)
249, 23, 8, 19, 14lindfind 21220 . . 3 (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ ((1r𝐿) ∈ (Base‘𝐿) ∧ (1r𝐿) ≠ (0g𝐿))) → ¬ ((1r𝐿)( ·𝑠𝑊)(𝐹𝐸)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝐸}))))
252, 6, 18, 22, 24syl22anc 837 . 2 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) → ¬ ((1r𝐿)( ·𝑠𝑊)(𝐹𝐸)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝐸}))))
2612, 25eqneltrrd 2858 1 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) → ¬ (𝐹𝐸) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝐸}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  cdif 3907  {csn 4586   class class class wbr 5105  dom cdm 5633  cima 5636  wf 6492  cfv 6496  (class class class)co 7356  Basecbs 17082  Scalarcsca 17135   ·𝑠 cvsca 17136  0gc0g 17320  1rcur 19911  Ringcrg 19962  LModclmod 20320  LSpanclspn 20430  NzRingcnzr 20725   LIndF clindf 21208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7671  ax-cnex 11106  ax-resscn 11107  ax-1cn 11108  ax-icn 11109  ax-addcl 11110  ax-addrcl 11111  ax-mulcl 11112  ax-mulrcl 11113  ax-mulcom 11114  ax-addass 11115  ax-mulass 11116  ax-distr 11117  ax-i2m1 11118  ax-1ne0 11119  ax-1rid 11120  ax-rnegex 11121  ax-rrecex 11122  ax-cnre 11123  ax-pre-lttri 11124  ax-pre-lttrn 11125  ax-pre-ltadd 11126  ax-pre-mulgt0 11127
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7312  df-ov 7359  df-oprab 7360  df-mpo 7361  df-om 7802  df-2nd 7921  df-frecs 8211  df-wrecs 8242  df-recs 8316  df-rdg 8355  df-er 8647  df-en 8883  df-dom 8884  df-sdom 8885  df-pnf 11190  df-mnf 11191  df-xr 11192  df-ltxr 11193  df-le 11194  df-sub 11386  df-neg 11387  df-nn 12153  df-2 12215  df-sets 17035  df-slot 17053  df-ndx 17065  df-base 17083  df-plusg 17145  df-0g 17322  df-mgm 18496  df-sgrp 18545  df-mnd 18556  df-mgp 19895  df-ur 19912  df-ring 19964  df-lmod 20322  df-nzr 20726  df-lindf 21210
This theorem is referenced by:  lindsind2  21223  lindff1  21224
  Copyright terms: Public domain W3C validator