| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lindfind2 | Structured version Visualization version GIF version | ||
| Description: In a linearly independent family in a module over a nonzero ring, no element is contained in the span of any non-containing set. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| lindfind2.k | ⊢ 𝐾 = (LSpan‘𝑊) |
| lindfind2.l | ⊢ 𝐿 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| lindfind2 | ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) → ¬ (𝐹‘𝐸) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝐸})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l 1198 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) → 𝑊 ∈ LMod) | |
| 2 | simp2 1137 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) → 𝐹 LIndF 𝑊) | |
| 3 | eqid 2735 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 4 | 3 | lindff 21775 | . . . . 5 ⊢ ((𝐹 LIndF 𝑊 ∧ 𝑊 ∈ LMod) → 𝐹:dom 𝐹⟶(Base‘𝑊)) |
| 5 | 2, 1, 4 | syl2anc 584 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) → 𝐹:dom 𝐹⟶(Base‘𝑊)) |
| 6 | simp3 1138 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) → 𝐸 ∈ dom 𝐹) | |
| 7 | 5, 6 | ffvelcdmd 7075 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) → (𝐹‘𝐸) ∈ (Base‘𝑊)) |
| 8 | lindfind2.l | . . . 4 ⊢ 𝐿 = (Scalar‘𝑊) | |
| 9 | eqid 2735 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 10 | eqid 2735 | . . . 4 ⊢ (1r‘𝐿) = (1r‘𝐿) | |
| 11 | 3, 8, 9, 10 | lmodvs1 20847 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝐹‘𝐸) ∈ (Base‘𝑊)) → ((1r‘𝐿)( ·𝑠 ‘𝑊)(𝐹‘𝐸)) = (𝐹‘𝐸)) |
| 12 | 1, 7, 11 | syl2anc 584 | . 2 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) → ((1r‘𝐿)( ·𝑠 ‘𝑊)(𝐹‘𝐸)) = (𝐹‘𝐸)) |
| 13 | nzrring 20476 | . . . . . 6 ⊢ (𝐿 ∈ NzRing → 𝐿 ∈ Ring) | |
| 14 | eqid 2735 | . . . . . . 7 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 15 | 14, 10 | ringidcl 20225 | . . . . . 6 ⊢ (𝐿 ∈ Ring → (1r‘𝐿) ∈ (Base‘𝐿)) |
| 16 | 13, 15 | syl 17 | . . . . 5 ⊢ (𝐿 ∈ NzRing → (1r‘𝐿) ∈ (Base‘𝐿)) |
| 17 | 16 | adantl 481 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) → (1r‘𝐿) ∈ (Base‘𝐿)) |
| 18 | 17 | 3ad2ant1 1133 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) → (1r‘𝐿) ∈ (Base‘𝐿)) |
| 19 | eqid 2735 | . . . . . 6 ⊢ (0g‘𝐿) = (0g‘𝐿) | |
| 20 | 10, 19 | nzrnz 20475 | . . . . 5 ⊢ (𝐿 ∈ NzRing → (1r‘𝐿) ≠ (0g‘𝐿)) |
| 21 | 20 | adantl 481 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) → (1r‘𝐿) ≠ (0g‘𝐿)) |
| 22 | 21 | 3ad2ant1 1133 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) → (1r‘𝐿) ≠ (0g‘𝐿)) |
| 23 | lindfind2.k | . . . 4 ⊢ 𝐾 = (LSpan‘𝑊) | |
| 24 | 9, 23, 8, 19, 14 | lindfind 21776 | . . 3 ⊢ (((𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) ∧ ((1r‘𝐿) ∈ (Base‘𝐿) ∧ (1r‘𝐿) ≠ (0g‘𝐿))) → ¬ ((1r‘𝐿)( ·𝑠 ‘𝑊)(𝐹‘𝐸)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝐸})))) |
| 25 | 2, 6, 18, 22, 24 | syl22anc 838 | . 2 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) → ¬ ((1r‘𝐿)( ·𝑠 ‘𝑊)(𝐹‘𝐸)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝐸})))) |
| 26 | 12, 25 | eqneltrrd 2855 | 1 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) → ¬ (𝐹‘𝐸) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝐸})))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∖ cdif 3923 {csn 4601 class class class wbr 5119 dom cdm 5654 “ cima 5657 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 Scalarcsca 17274 ·𝑠 cvsca 17275 0gc0g 17453 1rcur 20141 Ringcrg 20193 NzRingcnzr 20472 LModclmod 20817 LSpanclspn 20928 LIndF clindf 21764 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-plusg 17284 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-mgp 20101 df-ur 20142 df-ring 20195 df-nzr 20473 df-lmod 20819 df-lindf 21766 |
| This theorem is referenced by: lindsind2 21779 lindff1 21780 |
| Copyright terms: Public domain | W3C validator |