MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindfind2 Structured version   Visualization version   GIF version

Theorem lindfind2 21760
Description: In a linearly independent family in a module over a nonzero ring, no element is contained in the span of any non-containing set. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
lindfind2.k 𝐾 = (LSpan‘𝑊)
lindfind2.l 𝐿 = (Scalar‘𝑊)
Assertion
Ref Expression
lindfind2 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) → ¬ (𝐹𝐸) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝐸}))))

Proof of Theorem lindfind2
StepHypRef Expression
1 simp1l 1198 . . 3 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) → 𝑊 ∈ LMod)
2 simp2 1137 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) → 𝐹 LIndF 𝑊)
3 eqid 2729 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
43lindff 21757 . . . . 5 ((𝐹 LIndF 𝑊𝑊 ∈ LMod) → 𝐹:dom 𝐹⟶(Base‘𝑊))
52, 1, 4syl2anc 584 . . . 4 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) → 𝐹:dom 𝐹⟶(Base‘𝑊))
6 simp3 1138 . . . 4 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) → 𝐸 ∈ dom 𝐹)
75, 6ffvelcdmd 7039 . . 3 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) → (𝐹𝐸) ∈ (Base‘𝑊))
8 lindfind2.l . . . 4 𝐿 = (Scalar‘𝑊)
9 eqid 2729 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
10 eqid 2729 . . . 4 (1r𝐿) = (1r𝐿)
113, 8, 9, 10lmodvs1 20828 . . 3 ((𝑊 ∈ LMod ∧ (𝐹𝐸) ∈ (Base‘𝑊)) → ((1r𝐿)( ·𝑠𝑊)(𝐹𝐸)) = (𝐹𝐸))
121, 7, 11syl2anc 584 . 2 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) → ((1r𝐿)( ·𝑠𝑊)(𝐹𝐸)) = (𝐹𝐸))
13 nzrring 20436 . . . . . 6 (𝐿 ∈ NzRing → 𝐿 ∈ Ring)
14 eqid 2729 . . . . . . 7 (Base‘𝐿) = (Base‘𝐿)
1514, 10ringidcl 20185 . . . . . 6 (𝐿 ∈ Ring → (1r𝐿) ∈ (Base‘𝐿))
1613, 15syl 17 . . . . 5 (𝐿 ∈ NzRing → (1r𝐿) ∈ (Base‘𝐿))
1716adantl 481 . . . 4 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) → (1r𝐿) ∈ (Base‘𝐿))
18173ad2ant1 1133 . . 3 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) → (1r𝐿) ∈ (Base‘𝐿))
19 eqid 2729 . . . . . 6 (0g𝐿) = (0g𝐿)
2010, 19nzrnz 20435 . . . . 5 (𝐿 ∈ NzRing → (1r𝐿) ≠ (0g𝐿))
2120adantl 481 . . . 4 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) → (1r𝐿) ≠ (0g𝐿))
22213ad2ant1 1133 . . 3 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) → (1r𝐿) ≠ (0g𝐿))
23 lindfind2.k . . . 4 𝐾 = (LSpan‘𝑊)
249, 23, 8, 19, 14lindfind 21758 . . 3 (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ ((1r𝐿) ∈ (Base‘𝐿) ∧ (1r𝐿) ≠ (0g𝐿))) → ¬ ((1r𝐿)( ·𝑠𝑊)(𝐹𝐸)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝐸}))))
252, 6, 18, 22, 24syl22anc 838 . 2 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) → ¬ ((1r𝐿)( ·𝑠𝑊)(𝐹𝐸)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝐸}))))
2612, 25eqneltrrd 2849 1 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) → ¬ (𝐹𝐸) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝐸}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cdif 3908  {csn 4585   class class class wbr 5102  dom cdm 5631  cima 5634  wf 6495  cfv 6499  (class class class)co 7369  Basecbs 17155  Scalarcsca 17199   ·𝑠 cvsca 17200  0gc0g 17378  1rcur 20101  Ringcrg 20153  NzRingcnzr 20432  LModclmod 20798  LSpanclspn 20909   LIndF clindf 21746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-0g 17380  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mgp 20061  df-ur 20102  df-ring 20155  df-nzr 20433  df-lmod 20800  df-lindf 21748
This theorem is referenced by:  lindsind2  21761  lindff1  21762
  Copyright terms: Public domain W3C validator