![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lindfind2 | Structured version Visualization version GIF version |
Description: In a linearly independent family in a module over a nonzero ring, no element is contained in the span of any non-containing set. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
lindfind2.k | ⊢ 𝐾 = (LSpan‘𝑊) |
lindfind2.l | ⊢ 𝐿 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
lindfind2 | ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) → ¬ (𝐹‘𝐸) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝐸})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1l 1255 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) → 𝑊 ∈ LMod) | |
2 | simp2 1168 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) → 𝐹 LIndF 𝑊) | |
3 | eqid 2797 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
4 | 3 | lindff 20476 | . . . . 5 ⊢ ((𝐹 LIndF 𝑊 ∧ 𝑊 ∈ LMod) → 𝐹:dom 𝐹⟶(Base‘𝑊)) |
5 | 2, 1, 4 | syl2anc 580 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) → 𝐹:dom 𝐹⟶(Base‘𝑊)) |
6 | simp3 1169 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) → 𝐸 ∈ dom 𝐹) | |
7 | 5, 6 | ffvelrnd 6584 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) → (𝐹‘𝐸) ∈ (Base‘𝑊)) |
8 | lindfind2.l | . . . 4 ⊢ 𝐿 = (Scalar‘𝑊) | |
9 | eqid 2797 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
10 | eqid 2797 | . . . 4 ⊢ (1r‘𝐿) = (1r‘𝐿) | |
11 | 3, 8, 9, 10 | lmodvs1 19206 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝐹‘𝐸) ∈ (Base‘𝑊)) → ((1r‘𝐿)( ·𝑠 ‘𝑊)(𝐹‘𝐸)) = (𝐹‘𝐸)) |
12 | 1, 7, 11 | syl2anc 580 | . 2 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) → ((1r‘𝐿)( ·𝑠 ‘𝑊)(𝐹‘𝐸)) = (𝐹‘𝐸)) |
13 | nzrring 19581 | . . . . . 6 ⊢ (𝐿 ∈ NzRing → 𝐿 ∈ Ring) | |
14 | eqid 2797 | . . . . . . 7 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
15 | 14, 10 | ringidcl 18881 | . . . . . 6 ⊢ (𝐿 ∈ Ring → (1r‘𝐿) ∈ (Base‘𝐿)) |
16 | 13, 15 | syl 17 | . . . . 5 ⊢ (𝐿 ∈ NzRing → (1r‘𝐿) ∈ (Base‘𝐿)) |
17 | 16 | adantl 474 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) → (1r‘𝐿) ∈ (Base‘𝐿)) |
18 | 17 | 3ad2ant1 1164 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) → (1r‘𝐿) ∈ (Base‘𝐿)) |
19 | eqid 2797 | . . . . . 6 ⊢ (0g‘𝐿) = (0g‘𝐿) | |
20 | 10, 19 | nzrnz 19580 | . . . . 5 ⊢ (𝐿 ∈ NzRing → (1r‘𝐿) ≠ (0g‘𝐿)) |
21 | 20 | adantl 474 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) → (1r‘𝐿) ≠ (0g‘𝐿)) |
22 | 21 | 3ad2ant1 1164 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) → (1r‘𝐿) ≠ (0g‘𝐿)) |
23 | lindfind2.k | . . . 4 ⊢ 𝐾 = (LSpan‘𝑊) | |
24 | 9, 23, 8, 19, 14 | lindfind 20477 | . . 3 ⊢ (((𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) ∧ ((1r‘𝐿) ∈ (Base‘𝐿) ∧ (1r‘𝐿) ≠ (0g‘𝐿))) → ¬ ((1r‘𝐿)( ·𝑠 ‘𝑊)(𝐹‘𝐸)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝐸})))) |
25 | 2, 6, 18, 22, 24 | syl22anc 868 | . 2 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) → ¬ ((1r‘𝐿)( ·𝑠 ‘𝑊)(𝐹‘𝐸)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝐸})))) |
26 | 12, 25 | eqneltrrd 2896 | 1 ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) → ¬ (𝐹‘𝐸) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝐸})))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ≠ wne 2969 ∖ cdif 3764 {csn 4366 class class class wbr 4841 dom cdm 5310 “ cima 5313 ⟶wf 6095 ‘cfv 6099 (class class class)co 6876 Basecbs 16181 Scalarcsca 16267 ·𝑠 cvsca 16268 0gc0g 16412 1rcur 18814 Ringcrg 18860 LModclmod 19178 LSpanclspn 19289 NzRingcnzr 19577 LIndF clindf 20465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-om 7298 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-er 7980 df-en 8194 df-dom 8195 df-sdom 8196 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-nn 11311 df-2 11372 df-ndx 16184 df-slot 16185 df-base 16187 df-sets 16188 df-plusg 16277 df-0g 16414 df-mgm 17554 df-sgrp 17596 df-mnd 17607 df-mgp 18803 df-ur 18815 df-ring 18862 df-lmod 19180 df-nzr 19578 df-lindf 20467 |
This theorem is referenced by: lindsind2 20480 lindff1 20481 |
Copyright terms: Public domain | W3C validator |