Proof of Theorem 2atjlej
Step | Hyp | Ref
| Expression |
1 | | simp33 1210 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆))) → (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆)) |
2 | | simp1 1135 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆))) → 𝐾 ∈ HL) |
3 | | simp21 1205 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆))) → 𝑃 ∈ 𝐴) |
4 | | simp22 1206 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆))) → 𝑄 ∈ 𝐴) |
5 | | simp23 1207 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆))) → 𝑃 ≠ 𝑄) |
6 | | simp31 1208 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆))) → 𝑅 ∈ 𝐴) |
7 | | simp32 1209 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆))) → 𝑆 ∈ 𝐴) |
8 | | ps1.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
9 | | ps1.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
10 | | ps1.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
11 | 8, 9, 10 | ps-1 37491 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆) ↔ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) |
12 | 2, 3, 4, 5, 6, 7, 11 | syl132anc 1387 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆))) → ((𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆) ↔ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) |
13 | 1, 12 | mpbid 231 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆))) → (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆)) |
14 | 9, 10 | lnnat 37441 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ ¬ (𝑃 ∨ 𝑄) ∈ 𝐴)) |
15 | 2, 3, 4, 14 | syl3anc 1370 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆))) → (𝑃 ≠ 𝑄 ↔ ¬ (𝑃 ∨ 𝑄) ∈ 𝐴)) |
16 | 5, 15 | mpbid 231 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆))) → ¬ (𝑃 ∨ 𝑄) ∈ 𝐴) |
17 | 13, 16 | eqneltrrd 2859 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆))) → ¬ (𝑅 ∨ 𝑆) ∈ 𝐴) |
18 | 9, 10 | lnnat 37441 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑅 ≠ 𝑆 ↔ ¬ (𝑅 ∨ 𝑆) ∈ 𝐴)) |
19 | 2, 6, 7, 18 | syl3anc 1370 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆))) → (𝑅 ≠ 𝑆 ↔ ¬ (𝑅 ∨ 𝑆) ∈ 𝐴)) |
20 | 17, 19 | mpbird 256 |
1
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆))) → 𝑅 ≠ 𝑆) |