Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2atjlej Structured version   Visualization version   GIF version

Theorem 2atjlej 36720
 Description: Two atoms are different if their join majorizes the join of two different atoms. (Contributed by NM, 4-Jun-2013.)
Hypotheses
Ref Expression
ps1.l = (le‘𝐾)
ps1.j = (join‘𝐾)
ps1.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
2atjlej ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) (𝑅 𝑆))) → 𝑅𝑆)

Proof of Theorem 2atjlej
StepHypRef Expression
1 simp33 1208 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) (𝑅 𝑆))) → (𝑃 𝑄) (𝑅 𝑆))
2 simp1 1133 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) (𝑅 𝑆))) → 𝐾 ∈ HL)
3 simp21 1203 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) (𝑅 𝑆))) → 𝑃𝐴)
4 simp22 1204 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) (𝑅 𝑆))) → 𝑄𝐴)
5 simp23 1205 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) (𝑅 𝑆))) → 𝑃𝑄)
6 simp31 1206 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) (𝑅 𝑆))) → 𝑅𝐴)
7 simp32 1207 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) (𝑅 𝑆))) → 𝑆𝐴)
8 ps1.l . . . . . 6 = (le‘𝐾)
9 ps1.j . . . . . 6 = (join‘𝐾)
10 ps1.a . . . . . 6 𝐴 = (Atoms‘𝐾)
118, 9, 10ps-1 36718 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑅 𝑆) ↔ (𝑃 𝑄) = (𝑅 𝑆)))
122, 3, 4, 5, 6, 7, 11syl132anc 1385 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) (𝑅 𝑆))) → ((𝑃 𝑄) (𝑅 𝑆) ↔ (𝑃 𝑄) = (𝑅 𝑆)))
131, 12mpbid 235 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) (𝑅 𝑆))) → (𝑃 𝑄) = (𝑅 𝑆))
149, 10lnnat 36668 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄 ↔ ¬ (𝑃 𝑄) ∈ 𝐴))
152, 3, 4, 14syl3anc 1368 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) (𝑅 𝑆))) → (𝑃𝑄 ↔ ¬ (𝑃 𝑄) ∈ 𝐴))
165, 15mpbid 235 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) (𝑅 𝑆))) → ¬ (𝑃 𝑄) ∈ 𝐴)
1713, 16eqneltrrd 2936 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) (𝑅 𝑆))) → ¬ (𝑅 𝑆) ∈ 𝐴)
189, 10lnnat 36668 . . 3 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → (𝑅𝑆 ↔ ¬ (𝑅 𝑆) ∈ 𝐴))
192, 6, 7, 18syl3anc 1368 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) (𝑅 𝑆))) → (𝑅𝑆 ↔ ¬ (𝑅 𝑆) ∈ 𝐴))
2017, 19mpbird 260 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) (𝑅 𝑆))) → 𝑅𝑆)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115   ≠ wne 3014   class class class wbr 5052  ‘cfv 6343  (class class class)co 7149  lecple 16572  joincjn 17554  Atomscatm 36504  HLchlt 36591 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-proset 17538  df-poset 17556  df-plt 17568  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-p0 17649  df-lat 17656  df-clat 17718  df-oposet 36417  df-ol 36419  df-oml 36420  df-covers 36507  df-ats 36508  df-atl 36539  df-cvlat 36563  df-hlat 36592 This theorem is referenced by:  cdlemg46  37976
 Copyright terms: Public domain W3C validator