Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2atjlej Structured version   Visualization version   GIF version

Theorem 2atjlej 38338
Description: Two atoms are different if their join majorizes the join of two different atoms. (Contributed by NM, 4-Jun-2013.)
Hypotheses
Ref Expression
ps1.l ≀ = (leβ€˜πΎ)
ps1.j ∨ = (joinβ€˜πΎ)
ps1.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
2atjlej ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≀ (𝑅 ∨ 𝑆))) β†’ 𝑅 β‰  𝑆)

Proof of Theorem 2atjlej
StepHypRef Expression
1 simp33 1211 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≀ (𝑅 ∨ 𝑆))) β†’ (𝑃 ∨ 𝑄) ≀ (𝑅 ∨ 𝑆))
2 simp1 1136 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≀ (𝑅 ∨ 𝑆))) β†’ 𝐾 ∈ HL)
3 simp21 1206 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≀ (𝑅 ∨ 𝑆))) β†’ 𝑃 ∈ 𝐴)
4 simp22 1207 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≀ (𝑅 ∨ 𝑆))) β†’ 𝑄 ∈ 𝐴)
5 simp23 1208 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≀ (𝑅 ∨ 𝑆))) β†’ 𝑃 β‰  𝑄)
6 simp31 1209 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≀ (𝑅 ∨ 𝑆))) β†’ 𝑅 ∈ 𝐴)
7 simp32 1210 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≀ (𝑅 ∨ 𝑆))) β†’ 𝑆 ∈ 𝐴)
8 ps1.l . . . . . 6 ≀ = (leβ€˜πΎ)
9 ps1.j . . . . . 6 ∨ = (joinβ€˜πΎ)
10 ps1.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
118, 9, 10ps-1 38336 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑄) ≀ (𝑅 ∨ 𝑆) ↔ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆)))
122, 3, 4, 5, 6, 7, 11syl132anc 1388 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≀ (𝑅 ∨ 𝑆))) β†’ ((𝑃 ∨ 𝑄) ≀ (𝑅 ∨ 𝑆) ↔ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆)))
131, 12mpbid 231 . . 3 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≀ (𝑅 ∨ 𝑆))) β†’ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))
149, 10lnnat 38286 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (𝑃 β‰  𝑄 ↔ Β¬ (𝑃 ∨ 𝑄) ∈ 𝐴))
152, 3, 4, 14syl3anc 1371 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≀ (𝑅 ∨ 𝑆))) β†’ (𝑃 β‰  𝑄 ↔ Β¬ (𝑃 ∨ 𝑄) ∈ 𝐴))
165, 15mpbid 231 . . 3 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≀ (𝑅 ∨ 𝑆))) β†’ Β¬ (𝑃 ∨ 𝑄) ∈ 𝐴)
1713, 16eqneltrrd 2854 . 2 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≀ (𝑅 ∨ 𝑆))) β†’ Β¬ (𝑅 ∨ 𝑆) ∈ 𝐴)
189, 10lnnat 38286 . . 3 ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) β†’ (𝑅 β‰  𝑆 ↔ Β¬ (𝑅 ∨ 𝑆) ∈ 𝐴))
192, 6, 7, 18syl3anc 1371 . 2 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≀ (𝑅 ∨ 𝑆))) β†’ (𝑅 β‰  𝑆 ↔ Β¬ (𝑅 ∨ 𝑆) ∈ 𝐴))
2017, 19mpbird 256 1 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≀ (𝑅 ∨ 𝑆))) β†’ 𝑅 β‰  𝑆)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  lecple 17200  joincjn 18260  Atomscatm 38121  HLchlt 38208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-lat 18381  df-clat 18448  df-oposet 38034  df-ol 38036  df-oml 38037  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209
This theorem is referenced by:  cdlemg46  39594
  Copyright terms: Public domain W3C validator