Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lbsind2 | Structured version Visualization version GIF version |
Description: A basis is linearly independent; that is, every element is not in the span of the remainder of the basis. (Contributed by Mario Carneiro, 25-Jun-2014.) (Revised by Mario Carneiro, 12-Jan-2015.) |
Ref | Expression |
---|---|
lbsind2.j | ⊢ 𝐽 = (LBasis‘𝑊) |
lbsind2.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lbsind2.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lbsind2.o | ⊢ 1 = (1r‘𝐹) |
lbsind2.z | ⊢ 0 = (0g‘𝐹) |
Ref | Expression |
---|---|
lbsind2 | ⊢ (((𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵) → ¬ 𝐸 ∈ (𝑁‘(𝐵 ∖ {𝐸}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1l 1195 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵) → 𝑊 ∈ LMod) | |
2 | simp2 1135 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵) → 𝐵 ∈ 𝐽) | |
3 | simp3 1136 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵) → 𝐸 ∈ 𝐵) | |
4 | eqid 2739 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
5 | lbsind2.j | . . . . 5 ⊢ 𝐽 = (LBasis‘𝑊) | |
6 | 4, 5 | lbsel 20321 | . . . 4 ⊢ ((𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵) → 𝐸 ∈ (Base‘𝑊)) |
7 | 2, 3, 6 | syl2anc 583 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵) → 𝐸 ∈ (Base‘𝑊)) |
8 | lbsind2.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
9 | eqid 2739 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
10 | lbsind2.o | . . . 4 ⊢ 1 = (1r‘𝐹) | |
11 | 4, 8, 9, 10 | lmodvs1 20132 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐸 ∈ (Base‘𝑊)) → ( 1 ( ·𝑠 ‘𝑊)𝐸) = 𝐸) |
12 | 1, 7, 11 | syl2anc 583 | . 2 ⊢ (((𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵) → ( 1 ( ·𝑠 ‘𝑊)𝐸) = 𝐸) |
13 | 8 | lmodring 20112 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
14 | eqid 2739 | . . . . 5 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
15 | 14, 10 | ringidcl 19788 | . . . 4 ⊢ (𝐹 ∈ Ring → 1 ∈ (Base‘𝐹)) |
16 | 1, 13, 15 | 3syl 18 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵) → 1 ∈ (Base‘𝐹)) |
17 | simp1r 1196 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵) → 1 ≠ 0 ) | |
18 | lbsind2.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
19 | lbsind2.z | . . . 4 ⊢ 0 = (0g‘𝐹) | |
20 | 4, 5, 18, 8, 9, 14, 19 | lbsind 20323 | . . 3 ⊢ (((𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵) ∧ ( 1 ∈ (Base‘𝐹) ∧ 1 ≠ 0 )) → ¬ ( 1 ( ·𝑠 ‘𝑊)𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))) |
21 | 2, 3, 16, 17, 20 | syl22anc 835 | . 2 ⊢ (((𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵) → ¬ ( 1 ( ·𝑠 ‘𝑊)𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))) |
22 | 12, 21 | eqneltrrd 2860 | 1 ⊢ (((𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵) → ¬ 𝐸 ∈ (𝑁‘(𝐵 ∖ {𝐸}))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∖ cdif 3888 {csn 4566 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 Scalarcsca 16946 ·𝑠 cvsca 16947 0gc0g 17131 1rcur 19718 Ringcrg 19764 LModclmod 20104 LSpanclspn 20214 LBasisclbs 20317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-plusg 16956 df-0g 17133 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-mgp 19702 df-ur 19719 df-ring 19766 df-lmod 20106 df-lbs 20318 |
This theorem is referenced by: lbspss 20325 islbs2 20397 |
Copyright terms: Public domain | W3C validator |