| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lbsind2 | Structured version Visualization version GIF version | ||
| Description: A basis is linearly independent; that is, every element is not in the span of the remainder of the basis. (Contributed by Mario Carneiro, 25-Jun-2014.) (Revised by Mario Carneiro, 12-Jan-2015.) |
| Ref | Expression |
|---|---|
| lbsind2.j | ⊢ 𝐽 = (LBasis‘𝑊) |
| lbsind2.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lbsind2.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lbsind2.o | ⊢ 1 = (1r‘𝐹) |
| lbsind2.z | ⊢ 0 = (0g‘𝐹) |
| Ref | Expression |
|---|---|
| lbsind2 | ⊢ (((𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵) → ¬ 𝐸 ∈ (𝑁‘(𝐵 ∖ {𝐸}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l 1198 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵) → 𝑊 ∈ LMod) | |
| 2 | simp2 1137 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵) → 𝐵 ∈ 𝐽) | |
| 3 | simp3 1138 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵) → 𝐸 ∈ 𝐵) | |
| 4 | eqid 2731 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 5 | lbsind2.j | . . . . 5 ⊢ 𝐽 = (LBasis‘𝑊) | |
| 6 | 4, 5 | lbsel 21013 | . . . 4 ⊢ ((𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵) → 𝐸 ∈ (Base‘𝑊)) |
| 7 | 2, 3, 6 | syl2anc 584 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵) → 𝐸 ∈ (Base‘𝑊)) |
| 8 | lbsind2.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 9 | eqid 2731 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 10 | lbsind2.o | . . . 4 ⊢ 1 = (1r‘𝐹) | |
| 11 | 4, 8, 9, 10 | lmodvs1 20824 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐸 ∈ (Base‘𝑊)) → ( 1 ( ·𝑠 ‘𝑊)𝐸) = 𝐸) |
| 12 | 1, 7, 11 | syl2anc 584 | . 2 ⊢ (((𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵) → ( 1 ( ·𝑠 ‘𝑊)𝐸) = 𝐸) |
| 13 | 8 | lmodring 20802 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| 14 | eqid 2731 | . . . . 5 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 15 | 14, 10 | ringidcl 20184 | . . . 4 ⊢ (𝐹 ∈ Ring → 1 ∈ (Base‘𝐹)) |
| 16 | 1, 13, 15 | 3syl 18 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵) → 1 ∈ (Base‘𝐹)) |
| 17 | simp1r 1199 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵) → 1 ≠ 0 ) | |
| 18 | lbsind2.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 19 | lbsind2.z | . . . 4 ⊢ 0 = (0g‘𝐹) | |
| 20 | 4, 5, 18, 8, 9, 14, 19 | lbsind 21015 | . . 3 ⊢ (((𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵) ∧ ( 1 ∈ (Base‘𝐹) ∧ 1 ≠ 0 )) → ¬ ( 1 ( ·𝑠 ‘𝑊)𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))) |
| 21 | 2, 3, 16, 17, 20 | syl22anc 838 | . 2 ⊢ (((𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵) → ¬ ( 1 ( ·𝑠 ‘𝑊)𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))) |
| 22 | 12, 21 | eqneltrrd 2852 | 1 ⊢ (((𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵) → ¬ 𝐸 ∈ (𝑁‘(𝐵 ∖ {𝐸}))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∖ cdif 3899 {csn 4576 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 Scalarcsca 17164 ·𝑠 cvsca 17165 0gc0g 17343 1rcur 20100 Ringcrg 20152 LModclmod 20794 LSpanclspn 20905 LBasisclbs 21009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mgp 20060 df-ur 20101 df-ring 20154 df-lmod 20796 df-lbs 21010 |
| This theorem is referenced by: lbspss 21017 islbs2 21092 dimlssid 33643 |
| Copyright terms: Public domain | W3C validator |