Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqneltrd | Structured version Visualization version GIF version |
Description: If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
eqneltrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqneltrd.2 | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) |
Ref | Expression |
---|---|
eqneltrd | ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqneltrd.2 | . 2 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) | |
2 | eqneltrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | eleq1d 2823 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) |
4 | 1, 3 | mtbird 324 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-clel 2817 |
This theorem is referenced by: eqneltrrd 2859 opabn1stprc 7871 omopth2 8377 fpwwe2 10330 znnn0nn 12362 sqrtneglem 14906 dvdsaddre2b 15944 2mulprm 16326 mreexmrid 17269 mplcoe1 21148 mplcoe5 21151 2sqn0 26487 nn0xmulclb 30996 pmtrcnel 31260 cycpmco2lem5 31299 extdg1id 31640 reprpmtf1o 32506 fmlafvel 33247 fvnobday 33808 bj-snmooreb 35212 islln2a 37458 islpln2a 37489 islvol2aN 37533 oddfl 42705 sumnnodd 43061 sinaover2ne0 43299 dvnprodlem1 43377 dirker2re 43523 dirkerdenne0 43524 dirkertrigeqlem3 43531 dirkercncflem1 43534 dirkercncflem2 43535 dirkercncflem4 43537 fouriersw 43662 sqrtnegnre 44687 requad01 44961 |
Copyright terms: Public domain | W3C validator |