![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqneltrd | Structured version Visualization version GIF version |
Description: If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
eqneltrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqneltrd.2 | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) |
Ref | Expression |
---|---|
eqneltrd | ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqneltrd.2 | . 2 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) | |
2 | eqneltrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | eleq1d 2819 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) |
4 | 1, 3 | mtbird 325 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1542 ∈ wcel 2107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-cleq 2725 df-clel 2811 |
This theorem is referenced by: eqneltrrd 2855 opabn1stprc 8044 omopth2 8584 fpwwe2 10638 znnn0nn 12673 sqrtneglem 15213 dvdsaddre2b 16250 2mulprm 16630 mreexmrid 17587 mplcoe1 21592 mplcoe5 21595 2sqn0 26937 fvnobday 27181 nn0xmulclb 31984 pmtrcnel 32250 cycpmco2lem5 32289 qsnzr 32574 extdg1id 32742 minplyirred 32770 reprpmtf1o 33638 fmlafvel 34376 bj-snmooreb 35995 islln2a 38388 islpln2a 38419 islvol2aN 38463 oadif1lem 42129 oadif1 42130 oddfl 43987 sumnnodd 44346 sinaover2ne0 44584 dvnprodlem1 44662 dirker2re 44808 dirkerdenne0 44809 dirkertrigeqlem3 44816 dirkercncflem1 44819 dirkercncflem2 44820 dirkercncflem4 44822 fouriersw 44947 sqrtnegnre 46015 requad01 46289 |
Copyright terms: Public domain | W3C validator |