| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqneltrd | Structured version Visualization version GIF version | ||
| Description: If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| eqneltrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqneltrd.2 | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| eqneltrd | ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqneltrd.2 | . 2 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) | |
| 2 | eqneltrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | eleq1d 2813 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) |
| 4 | 1, 3 | mtbird 325 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: eqneltrrd 2849 opabn1stprc 7993 omopth2 8502 fpwwe2 10537 znnn0nn 12587 sqrtneglem 15173 dvdsaddre2b 16218 2mulprm 16604 mreexmrid 17549 mplcoe1 21942 mplcoe5 21945 2sqn0 27343 fvnobday 27588 nn0xmulclb 32715 ccatws1f1o 32894 gsumfs2d 33009 pmtrcnel 33032 cycpmco2lem5 33073 elrgspnlem4 33186 qsnzr 33393 extdg1id 33639 minplyirred 33684 cos9thpiminplylem3 33757 reprpmtf1o 34600 onvf1od 35090 fmlafvel 35368 bj-snmooreb 37098 islln2a 39506 islpln2a 39537 islvol2aN 39581 oadif1lem 43362 oadif1 43363 oddfl 45270 sumnnodd 45621 sinaover2ne0 45859 dvnprodlem1 45937 dirker2re 46083 dirkerdenne0 46084 dirkertrigeqlem3 46091 dirkercncflem1 46094 dirkercncflem2 46095 dirkercncflem4 46097 fouriersw 46222 sqrtnegnre 47301 requad01 47615 |
| Copyright terms: Public domain | W3C validator |