![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqneltrd | Structured version Visualization version GIF version |
Description: If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
eqneltrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqneltrd.2 | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) |
Ref | Expression |
---|---|
eqneltrd | ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqneltrd.2 | . 2 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) | |
2 | eqneltrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | eleq1d 2823 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) |
4 | 1, 3 | mtbird 325 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1536 ∈ wcel 2105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-cleq 2726 df-clel 2813 |
This theorem is referenced by: eqneltrrd 2859 opabn1stprc 8081 omopth2 8620 fpwwe2 10680 znnn0nn 12726 sqrtneglem 15301 dvdsaddre2b 16340 2mulprm 16726 mreexmrid 17687 mplcoe1 22072 mplcoe5 22075 2sqn0 27492 fvnobday 27737 nn0xmulclb 32781 ccatws1f1o 32920 gsumfs2d 33040 pmtrcnel 33091 cycpmco2lem5 33132 elrgspnlem4 33234 qsnzr 33462 extdg1id 33690 minplyirred 33718 reprpmtf1o 34619 fmlafvel 35369 bj-snmooreb 37096 islln2a 39499 islpln2a 39530 islvol2aN 39574 oadif1lem 43368 oadif1 43369 oddfl 45227 sumnnodd 45585 sinaover2ne0 45823 dvnprodlem1 45901 dirker2re 46047 dirkerdenne0 46048 dirkertrigeqlem3 46055 dirkercncflem1 46058 dirkercncflem2 46059 dirkercncflem4 46061 fouriersw 46186 sqrtnegnre 47256 requad01 47545 |
Copyright terms: Public domain | W3C validator |