| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqneltrd | Structured version Visualization version GIF version | ||
| Description: If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| eqneltrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqneltrd.2 | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| eqneltrd | ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqneltrd.2 | . 2 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) | |
| 2 | eqneltrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | eleq1d 2826 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) |
| 4 | 1, 3 | mtbird 325 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2729 df-clel 2816 |
| This theorem is referenced by: eqneltrrd 2862 opabn1stprc 8083 omopth2 8622 fpwwe2 10683 znnn0nn 12729 sqrtneglem 15305 dvdsaddre2b 16344 2mulprm 16730 mreexmrid 17686 mplcoe1 22055 mplcoe5 22058 2sqn0 27478 fvnobday 27723 nn0xmulclb 32775 ccatws1f1o 32936 gsumfs2d 33058 pmtrcnel 33109 cycpmco2lem5 33150 elrgspnlem4 33249 qsnzr 33483 extdg1id 33716 minplyirred 33754 reprpmtf1o 34641 fmlafvel 35390 bj-snmooreb 37115 islln2a 39519 islpln2a 39550 islvol2aN 39594 oadif1lem 43392 oadif1 43393 oddfl 45289 sumnnodd 45645 sinaover2ne0 45883 dvnprodlem1 45961 dirker2re 46107 dirkerdenne0 46108 dirkertrigeqlem3 46115 dirkercncflem1 46118 dirkercncflem2 46119 dirkercncflem4 46121 fouriersw 46246 sqrtnegnre 47319 requad01 47608 |
| Copyright terms: Public domain | W3C validator |