| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqneltrd | Structured version Visualization version GIF version | ||
| Description: If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| eqneltrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqneltrd.2 | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| eqneltrd | ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqneltrd.2 | . 2 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) | |
| 2 | eqneltrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | eleq1d 2813 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) |
| 4 | 1, 3 | mtbird 325 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: eqneltrrd 2849 opabn1stprc 8016 omopth2 8525 fpwwe2 10572 znnn0nn 12621 sqrtneglem 15208 dvdsaddre2b 16253 2mulprm 16639 mreexmrid 17584 mplcoe1 21977 mplcoe5 21980 2sqn0 27378 fvnobday 27623 nn0xmulclb 32744 ccatws1f1o 32923 gsumfs2d 33038 pmtrcnel 33061 cycpmco2lem5 33102 elrgspnlem4 33212 qsnzr 33419 extdg1id 33654 minplyirred 33694 cos9thpiminplylem3 33767 reprpmtf1o 34610 onvf1od 35087 fmlafvel 35365 bj-snmooreb 37095 islln2a 39504 islpln2a 39535 islvol2aN 39579 oadif1lem 43361 oadif1 43362 oddfl 45269 sumnnodd 45621 sinaover2ne0 45859 dvnprodlem1 45937 dirker2re 46083 dirkerdenne0 46084 dirkertrigeqlem3 46091 dirkercncflem1 46094 dirkercncflem2 46095 dirkercncflem4 46097 fouriersw 46222 sqrtnegnre 47301 requad01 47615 |
| Copyright terms: Public domain | W3C validator |