![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqneltrd | Structured version Visualization version GIF version |
Description: If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
eqneltrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqneltrd.2 | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) |
Ref | Expression |
---|---|
eqneltrd | ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqneltrd.2 | . 2 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) | |
2 | eqneltrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | eleq1d 2816 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) |
4 | 1, 3 | mtbird 324 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 df-cleq 2722 df-clel 2808 |
This theorem is referenced by: eqneltrrd 2852 opabn1stprc 8046 omopth2 8586 fpwwe2 10640 znnn0nn 12677 sqrtneglem 15217 dvdsaddre2b 16254 2mulprm 16634 mreexmrid 17591 mplcoe1 21811 mplcoe5 21814 2sqn0 27173 fvnobday 27417 nn0xmulclb 32251 pmtrcnel 32520 cycpmco2lem5 32559 qsnzr 32848 extdg1id 33030 minplyirred 33059 reprpmtf1o 33936 fmlafvel 34674 bj-snmooreb 36298 islln2a 38691 islpln2a 38722 islvol2aN 38766 oadif1lem 42431 oadif1 42432 oddfl 44285 sumnnodd 44644 sinaover2ne0 44882 dvnprodlem1 44960 dirker2re 45106 dirkerdenne0 45107 dirkertrigeqlem3 45114 dirkercncflem1 45117 dirkercncflem2 45118 dirkercncflem4 45120 fouriersw 45245 sqrtnegnre 46313 requad01 46587 |
Copyright terms: Public domain | W3C validator |