| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqneltrd | Structured version Visualization version GIF version | ||
| Description: If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| eqneltrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqneltrd.2 | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| eqneltrd | ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqneltrd.2 | . 2 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) | |
| 2 | eqneltrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | eleq1d 2813 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) |
| 4 | 1, 3 | mtbird 325 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: eqneltrrd 2849 opabn1stprc 8037 omopth2 8548 fpwwe2 10596 znnn0nn 12645 sqrtneglem 15232 dvdsaddre2b 16277 2mulprm 16663 mreexmrid 17604 mplcoe1 21944 mplcoe5 21947 2sqn0 27345 fvnobday 27590 nn0xmulclb 32694 ccatws1f1o 32873 gsumfs2d 32995 pmtrcnel 33046 cycpmco2lem5 33087 elrgspnlem4 33196 qsnzr 33426 extdg1id 33661 minplyirred 33701 cos9thpiminplylem3 33774 reprpmtf1o 34617 onvf1od 35094 fmlafvel 35372 bj-snmooreb 37102 islln2a 39511 islpln2a 39542 islvol2aN 39586 oadif1lem 43368 oadif1 43369 oddfl 45276 sumnnodd 45628 sinaover2ne0 45866 dvnprodlem1 45944 dirker2re 46090 dirkerdenne0 46091 dirkertrigeqlem3 46098 dirkercncflem1 46101 dirkercncflem2 46102 dirkercncflem4 46104 fouriersw 46229 sqrtnegnre 47308 requad01 47622 |
| Copyright terms: Public domain | W3C validator |