| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqneltrd | Structured version Visualization version GIF version | ||
| Description: If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| eqneltrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqneltrd.2 | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| eqneltrd | ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqneltrd.2 | . 2 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) | |
| 2 | eqneltrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | eleq1d 2819 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) |
| 4 | 1, 3 | mtbird 325 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-clel 2809 |
| This theorem is referenced by: eqneltrrd 2855 opabn1stprc 8057 omopth2 8596 fpwwe2 10657 znnn0nn 12704 sqrtneglem 15285 dvdsaddre2b 16326 2mulprm 16712 mreexmrid 17655 mplcoe1 21995 mplcoe5 21998 2sqn0 27397 fvnobday 27642 nn0xmulclb 32748 ccatws1f1o 32927 gsumfs2d 33049 pmtrcnel 33100 cycpmco2lem5 33141 elrgspnlem4 33240 qsnzr 33470 extdg1id 33707 minplyirred 33745 cos9thpiminplylem3 33818 reprpmtf1o 34658 fmlafvel 35407 bj-snmooreb 37132 islln2a 39536 islpln2a 39567 islvol2aN 39611 oadif1lem 43403 oadif1 43404 oddfl 45306 sumnnodd 45659 sinaover2ne0 45897 dvnprodlem1 45975 dirker2re 46121 dirkerdenne0 46122 dirkertrigeqlem3 46129 dirkercncflem1 46132 dirkercncflem2 46133 dirkercncflem4 46135 fouriersw 46260 sqrtnegnre 47336 requad01 47635 |
| Copyright terms: Public domain | W3C validator |