| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqneltrd | Structured version Visualization version GIF version | ||
| Description: If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| eqneltrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqneltrd.2 | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| eqneltrd | ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqneltrd.2 | . 2 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) | |
| 2 | eqneltrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | eleq1d 2816 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) |
| 4 | 1, 3 | mtbird 325 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-clel 2806 |
| This theorem is referenced by: eqneltrrd 2852 opabn1stprc 7990 omopth2 8499 fpwwe2 10534 znnn0nn 12584 sqrtneglem 15173 dvdsaddre2b 16218 2mulprm 16604 mreexmrid 17549 mplcoe1 21972 mplcoe5 21975 2sqn0 27372 fvnobday 27617 nn0xmulclb 32754 ccatws1f1o 32932 gsumfs2d 33035 pmtrcnel 33058 cycpmco2lem5 33099 elrgspnlem4 33212 qsnzr 33420 extdg1id 33679 minplyirred 33724 cos9thpiminplylem3 33797 reprpmtf1o 34639 onvf1od 35151 fmlafvel 35429 bj-snmooreb 37158 islln2a 39615 islpln2a 39646 islvol2aN 39690 oadif1lem 43471 oadif1 43472 oddfl 45378 sumnnodd 45729 sinaover2ne0 45965 dvnprodlem1 46043 dirker2re 46189 dirkerdenne0 46190 dirkertrigeqlem3 46197 dirkercncflem1 46200 dirkercncflem2 46201 dirkercncflem4 46203 fouriersw 46328 sqrtnegnre 47406 requad01 47720 |
| Copyright terms: Public domain | W3C validator |