![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqneltrd | Structured version Visualization version GIF version |
Description: If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
eqneltrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqneltrd.2 | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) |
Ref | Expression |
---|---|
eqneltrd | ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqneltrd.2 | . 2 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) | |
2 | eqneltrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | eleq1d 2829 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) |
4 | 1, 3 | mtbird 325 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-clel 2819 |
This theorem is referenced by: eqneltrrd 2865 opabn1stprc 8099 omopth2 8640 fpwwe2 10712 znnn0nn 12754 sqrtneglem 15315 dvdsaddre2b 16355 2mulprm 16740 mreexmrid 17701 mplcoe1 22078 mplcoe5 22081 2sqn0 27496 fvnobday 27741 nn0xmulclb 32778 ccatws1f1o 32918 pmtrcnel 33082 cycpmco2lem5 33123 qsnzr 33448 extdg1id 33676 minplyirred 33704 reprpmtf1o 34603 fmlafvel 35353 bj-snmooreb 37080 islln2a 39474 islpln2a 39505 islvol2aN 39549 oadif1lem 43341 oadif1 43342 oddfl 45192 sumnnodd 45551 sinaover2ne0 45789 dvnprodlem1 45867 dirker2re 46013 dirkerdenne0 46014 dirkertrigeqlem3 46021 dirkercncflem1 46024 dirkercncflem2 46025 dirkercncflem4 46027 fouriersw 46152 sqrtnegnre 47222 requad01 47495 |
Copyright terms: Public domain | W3C validator |