| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqneltrd | Structured version Visualization version GIF version | ||
| Description: If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| eqneltrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqneltrd.2 | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| eqneltrd | ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqneltrd.2 | . 2 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) | |
| 2 | eqneltrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | eleq1d 2814 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) |
| 4 | 1, 3 | mtbird 325 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-clel 2804 |
| This theorem is referenced by: eqneltrrd 2850 opabn1stprc 8040 omopth2 8551 fpwwe2 10603 znnn0nn 12652 sqrtneglem 15239 dvdsaddre2b 16284 2mulprm 16670 mreexmrid 17611 mplcoe1 21951 mplcoe5 21954 2sqn0 27352 fvnobday 27597 nn0xmulclb 32701 ccatws1f1o 32880 gsumfs2d 33002 pmtrcnel 33053 cycpmco2lem5 33094 elrgspnlem4 33203 qsnzr 33433 extdg1id 33668 minplyirred 33708 cos9thpiminplylem3 33781 reprpmtf1o 34624 onvf1od 35101 fmlafvel 35379 bj-snmooreb 37109 islln2a 39518 islpln2a 39549 islvol2aN 39593 oadif1lem 43375 oadif1 43376 oddfl 45283 sumnnodd 45635 sinaover2ne0 45873 dvnprodlem1 45951 dirker2re 46097 dirkerdenne0 46098 dirkertrigeqlem3 46105 dirkercncflem1 46108 dirkercncflem2 46109 dirkercncflem4 46111 fouriersw 46236 sqrtnegnre 47312 requad01 47626 |
| Copyright terms: Public domain | W3C validator |