Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2atnelvolN Structured version   Visualization version   GIF version

Theorem 2atnelvolN 39605
Description: The join of two atoms is not a lattice volume. (Contributed by NM, 17-Jul-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
3atnelvol.j = (join‘𝐾)
3atnelvol.a 𝐴 = (Atoms‘𝐾)
3atnelvol.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
2atnelvolN ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ¬ (𝑃 𝑄) ∈ 𝑉)

Proof of Theorem 2atnelvolN
StepHypRef Expression
1 3atnelvol.j . . . . 5 = (join‘𝐾)
2 3atnelvol.a . . . . 5 𝐴 = (Atoms‘𝐾)
31, 2hlatjidm 39387 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑃 𝑃) = 𝑃)
433adant3 1132 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑃) = 𝑃)
54oveq1d 7356 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑃 𝑃) 𝑄) = (𝑃 𝑄))
6 simp1 1136 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝐾 ∈ HL)
7 simp2 1137 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑃𝐴)
8 simp3 1138 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑄𝐴)
9 3atnelvol.v . . . 4 𝑉 = (LVols‘𝐾)
101, 2, 93atnelvolN 39604 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑃𝐴𝑄𝐴)) → ¬ ((𝑃 𝑃) 𝑄) ∈ 𝑉)
116, 7, 7, 8, 10syl13anc 1374 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ¬ ((𝑃 𝑃) 𝑄) ∈ 𝑉)
125, 11eqneltrrd 2850 1 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ¬ (𝑃 𝑄) ∈ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1086   = wceq 1541  wcel 2110  cfv 6477  (class class class)co 7341  joincjn 18209  Atomscatm 39281  HLchlt 39368  LVolsclvol 39511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-proset 18192  df-poset 18211  df-plt 18226  df-lub 18242  df-glb 18243  df-join 18244  df-meet 18245  df-p0 18321  df-lat 18330  df-clat 18397  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369  df-llines 39516  df-lplanes 39517  df-lvols 39518
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator