Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2atnelvolN Structured version   Visualization version   GIF version

Theorem 2atnelvolN 39588
Description: The join of two atoms is not a lattice volume. (Contributed by NM, 17-Jul-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
3atnelvol.j = (join‘𝐾)
3atnelvol.a 𝐴 = (Atoms‘𝐾)
3atnelvol.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
2atnelvolN ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ¬ (𝑃 𝑄) ∈ 𝑉)

Proof of Theorem 2atnelvolN
StepHypRef Expression
1 3atnelvol.j . . . . 5 = (join‘𝐾)
2 3atnelvol.a . . . . 5 𝐴 = (Atoms‘𝐾)
31, 2hlatjidm 39369 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑃 𝑃) = 𝑃)
433adant3 1132 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑃) = 𝑃)
54oveq1d 7405 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑃 𝑃) 𝑄) = (𝑃 𝑄))
6 simp1 1136 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝐾 ∈ HL)
7 simp2 1137 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑃𝐴)
8 simp3 1138 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑄𝐴)
9 3atnelvol.v . . . 4 𝑉 = (LVols‘𝐾)
101, 2, 93atnelvolN 39587 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑃𝐴𝑄𝐴)) → ¬ ((𝑃 𝑃) 𝑄) ∈ 𝑉)
116, 7, 7, 8, 10syl13anc 1374 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ¬ ((𝑃 𝑃) 𝑄) ∈ 𝑉)
125, 11eqneltrrd 2850 1 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ¬ (𝑃 𝑄) ∈ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1086   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  joincjn 18279  Atomscatm 39263  HLchlt 39350  LVolsclvol 39494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-lat 18398  df-clat 18465  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-llines 39499  df-lplanes 39500  df-lvols 39501
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator