MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb8iota Structured version   Visualization version   GIF version

Theorem sb8iota 6388
Description: Variable substitution in description binder. Compare sb8eu 2600. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 18-Mar-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
sb8iota.1 𝑦𝜑
Assertion
Ref Expression
sb8iota (℩𝑥𝜑) = (℩𝑦[𝑦 / 𝑥]𝜑)

Proof of Theorem sb8iota
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1918 . . . . . 6 𝑤(𝜑𝑥 = 𝑧)
21sb8 2521 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑧) ↔ ∀𝑤[𝑤 / 𝑥](𝜑𝑥 = 𝑧))
3 sbbi 2308 . . . . . . 7 ([𝑤 / 𝑥](𝜑𝑥 = 𝑧) ↔ ([𝑤 / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝑥 = 𝑧))
4 sb8iota.1 . . . . . . . . 9 𝑦𝜑
54nfsb 2527 . . . . . . . 8 𝑦[𝑤 / 𝑥]𝜑
6 equsb3 2103 . . . . . . . . 9 ([𝑤 / 𝑥]𝑥 = 𝑧𝑤 = 𝑧)
7 nfv 1918 . . . . . . . . 9 𝑦 𝑤 = 𝑧
86, 7nfxfr 1856 . . . . . . . 8 𝑦[𝑤 / 𝑥]𝑥 = 𝑧
95, 8nfbi 1907 . . . . . . 7 𝑦([𝑤 / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝑥 = 𝑧)
103, 9nfxfr 1856 . . . . . 6 𝑦[𝑤 / 𝑥](𝜑𝑥 = 𝑧)
11 nfv 1918 . . . . . 6 𝑤[𝑦 / 𝑥](𝜑𝑥 = 𝑧)
12 sbequ 2087 . . . . . 6 (𝑤 = 𝑦 → ([𝑤 / 𝑥](𝜑𝑥 = 𝑧) ↔ [𝑦 / 𝑥](𝜑𝑥 = 𝑧)))
1310, 11, 12cbvalv1 2340 . . . . 5 (∀𝑤[𝑤 / 𝑥](𝜑𝑥 = 𝑧) ↔ ∀𝑦[𝑦 / 𝑥](𝜑𝑥 = 𝑧))
14 equsb3 2103 . . . . . . 7 ([𝑦 / 𝑥]𝑥 = 𝑧𝑦 = 𝑧)
1514sblbis 2309 . . . . . 6 ([𝑦 / 𝑥](𝜑𝑥 = 𝑧) ↔ ([𝑦 / 𝑥]𝜑𝑦 = 𝑧))
1615albii 1823 . . . . 5 (∀𝑦[𝑦 / 𝑥](𝜑𝑥 = 𝑧) ↔ ∀𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑧))
172, 13, 163bitri 296 . . . 4 (∀𝑥(𝜑𝑥 = 𝑧) ↔ ∀𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑧))
1817abbii 2809 . . 3 {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} = {𝑧 ∣ ∀𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑧)}
1918unieqi 4849 . 2 {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} = {𝑧 ∣ ∀𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑧)}
20 dfiota2 6377 . 2 (℩𝑥𝜑) = {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)}
21 dfiota2 6377 . 2 (℩𝑦[𝑦 / 𝑥]𝜑) = {𝑧 ∣ ∀𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑧)}
2219, 20, 213eqtr4i 2776 1 (℩𝑥𝜑) = (℩𝑦[𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1537   = wceq 1539  wnf 1787  [wsb 2068  {cab 2715   cuni 4836  cio 6374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-13 2372  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-sn 4559  df-uni 4837  df-iota 6376
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator