| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | nfv 1914 | . . . . . 6
⊢
Ⅎ𝑤(𝜑 ↔ 𝑥 = 𝑧) | 
| 2 | 1 | sb8 2522 | . . . . 5
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ∀𝑤[𝑤 / 𝑥](𝜑 ↔ 𝑥 = 𝑧)) | 
| 3 |  | sbbi 2308 | . . . . . . 7
⊢ ([𝑤 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) ↔ ([𝑤 / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝑥 = 𝑧)) | 
| 4 |  | sb8iota.1 | . . . . . . . . 9
⊢
Ⅎ𝑦𝜑 | 
| 5 | 4 | nfsb 2528 | . . . . . . . 8
⊢
Ⅎ𝑦[𝑤 / 𝑥]𝜑 | 
| 6 |  | equsb3 2103 | . . . . . . . . 9
⊢ ([𝑤 / 𝑥]𝑥 = 𝑧 ↔ 𝑤 = 𝑧) | 
| 7 |  | nfv 1914 | . . . . . . . . 9
⊢
Ⅎ𝑦 𝑤 = 𝑧 | 
| 8 | 6, 7 | nfxfr 1853 | . . . . . . . 8
⊢
Ⅎ𝑦[𝑤 / 𝑥]𝑥 = 𝑧 | 
| 9 | 5, 8 | nfbi 1903 | . . . . . . 7
⊢
Ⅎ𝑦([𝑤 / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝑥 = 𝑧) | 
| 10 | 3, 9 | nfxfr 1853 | . . . . . 6
⊢
Ⅎ𝑦[𝑤 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) | 
| 11 |  | nfv 1914 | . . . . . 6
⊢
Ⅎ𝑤[𝑦 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) | 
| 12 |  | sbequ 2083 | . . . . . 6
⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) ↔ [𝑦 / 𝑥](𝜑 ↔ 𝑥 = 𝑧))) | 
| 13 | 10, 11, 12 | cbvalv1 2343 | . . . . 5
⊢
(∀𝑤[𝑤 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) ↔ ∀𝑦[𝑦 / 𝑥](𝜑 ↔ 𝑥 = 𝑧)) | 
| 14 |  | equsb3 2103 | . . . . . . 7
⊢ ([𝑦 / 𝑥]𝑥 = 𝑧 ↔ 𝑦 = 𝑧) | 
| 15 | 14 | sblbis 2309 | . . . . . 6
⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) ↔ ([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)) | 
| 16 | 15 | albii 1819 | . . . . 5
⊢
(∀𝑦[𝑦 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) ↔ ∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)) | 
| 17 | 2, 13, 16 | 3bitri 297 | . . . 4
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)) | 
| 18 | 17 | abbii 2809 | . . 3
⊢ {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} = {𝑧 ∣ ∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)} | 
| 19 | 18 | unieqi 4919 | . 2
⊢ ∪ {𝑧
∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} = ∪ {𝑧 ∣ ∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)} | 
| 20 |  | dfiota2 6515 | . 2
⊢
(℩𝑥𝜑) = ∪
{𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} | 
| 21 |  | dfiota2 6515 | . 2
⊢
(℩𝑦[𝑦 / 𝑥]𝜑) = ∪ {𝑧 ∣ ∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)} | 
| 22 | 19, 20, 21 | 3eqtr4i 2775 | 1
⊢
(℩𝑥𝜑) = (℩𝑦[𝑦 / 𝑥]𝜑) |