| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1913 |
. . . . . 6
⊢
Ⅎ𝑤(𝜑 ↔ 𝑥 = 𝑧) |
| 2 | 1 | sb8 2520 |
. . . . 5
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ∀𝑤[𝑤 / 𝑥](𝜑 ↔ 𝑥 = 𝑧)) |
| 3 | | sbbi 2307 |
. . . . . . 7
⊢ ([𝑤 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) ↔ ([𝑤 / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝑥 = 𝑧)) |
| 4 | | sb8iota.1 |
. . . . . . . . 9
⊢
Ⅎ𝑦𝜑 |
| 5 | 4 | nfsb 2526 |
. . . . . . . 8
⊢
Ⅎ𝑦[𝑤 / 𝑥]𝜑 |
| 6 | | equsb3 2102 |
. . . . . . . . 9
⊢ ([𝑤 / 𝑥]𝑥 = 𝑧 ↔ 𝑤 = 𝑧) |
| 7 | | nfv 1913 |
. . . . . . . . 9
⊢
Ⅎ𝑦 𝑤 = 𝑧 |
| 8 | 6, 7 | nfxfr 1852 |
. . . . . . . 8
⊢
Ⅎ𝑦[𝑤 / 𝑥]𝑥 = 𝑧 |
| 9 | 5, 8 | nfbi 1902 |
. . . . . . 7
⊢
Ⅎ𝑦([𝑤 / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝑥 = 𝑧) |
| 10 | 3, 9 | nfxfr 1852 |
. . . . . 6
⊢
Ⅎ𝑦[𝑤 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) |
| 11 | | nfv 1913 |
. . . . . 6
⊢
Ⅎ𝑤[𝑦 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) |
| 12 | | sbequ 2082 |
. . . . . 6
⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) ↔ [𝑦 / 𝑥](𝜑 ↔ 𝑥 = 𝑧))) |
| 13 | 10, 11, 12 | cbvalv1 2341 |
. . . . 5
⊢
(∀𝑤[𝑤 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) ↔ ∀𝑦[𝑦 / 𝑥](𝜑 ↔ 𝑥 = 𝑧)) |
| 14 | | equsb3 2102 |
. . . . . . 7
⊢ ([𝑦 / 𝑥]𝑥 = 𝑧 ↔ 𝑦 = 𝑧) |
| 15 | 14 | sblbis 2308 |
. . . . . 6
⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) ↔ ([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)) |
| 16 | 15 | albii 1818 |
. . . . 5
⊢
(∀𝑦[𝑦 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) ↔ ∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)) |
| 17 | 2, 13, 16 | 3bitri 297 |
. . . 4
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)) |
| 18 | 17 | abbii 2801 |
. . 3
⊢ {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} = {𝑧 ∣ ∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)} |
| 19 | 18 | unieqi 4899 |
. 2
⊢ ∪ {𝑧
∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} = ∪ {𝑧 ∣ ∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)} |
| 20 | | dfiota2 6495 |
. 2
⊢
(℩𝑥𝜑) = ∪
{𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} |
| 21 | | dfiota2 6495 |
. 2
⊢
(℩𝑦[𝑦 / 𝑥]𝜑) = ∪ {𝑧 ∣ ∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)} |
| 22 | 19, 20, 21 | 3eqtr4i 2767 |
1
⊢
(℩𝑥𝜑) = (℩𝑦[𝑦 / 𝑥]𝜑) |