MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb8eulem Structured version   Visualization version   GIF version

Theorem sb8eulem 2598
Description: Lemma. Factor out the common proof skeleton of sb8euv 2599 and sb8eu 2600. Variable substitution in unique existential quantifier. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 24-Aug-2019.) Factor out common proof lines. (Revised by Wolf Lammen, 9-Feb-2023.)
Hypothesis
Ref Expression
sb8eulem.nfsb 𝑦[𝑤 / 𝑥]𝜑
Assertion
Ref Expression
sb8eulem (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑)
Distinct variable groups:   𝑦,𝑤   𝜑,𝑤   𝑥,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sb8eulem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sb8v 2350 . . . 4 (∀𝑥(𝜑𝑥 = 𝑧) ↔ ∀𝑤[𝑤 / 𝑥](𝜑𝑥 = 𝑧))
2 equsb3 2101 . . . . . 6 ([𝑤 / 𝑥]𝑥 = 𝑧𝑤 = 𝑧)
32sblbis 2306 . . . . 5 ([𝑤 / 𝑥](𝜑𝑥 = 𝑧) ↔ ([𝑤 / 𝑥]𝜑𝑤 = 𝑧))
43albii 1822 . . . 4 (∀𝑤[𝑤 / 𝑥](𝜑𝑥 = 𝑧) ↔ ∀𝑤([𝑤 / 𝑥]𝜑𝑤 = 𝑧))
5 sb8eulem.nfsb . . . . . 6 𝑦[𝑤 / 𝑥]𝜑
6 nfv 1917 . . . . . 6 𝑦 𝑤 = 𝑧
75, 6nfbi 1906 . . . . 5 𝑦([𝑤 / 𝑥]𝜑𝑤 = 𝑧)
8 nfv 1917 . . . . 5 𝑤([𝑦 / 𝑥]𝜑𝑦 = 𝑧)
9 sbequ 2086 . . . . . 6 (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
10 equequ1 2028 . . . . . 6 (𝑤 = 𝑦 → (𝑤 = 𝑧𝑦 = 𝑧))
119, 10bibi12d 346 . . . . 5 (𝑤 = 𝑦 → (([𝑤 / 𝑥]𝜑𝑤 = 𝑧) ↔ ([𝑦 / 𝑥]𝜑𝑦 = 𝑧)))
127, 8, 11cbvalv1 2338 . . . 4 (∀𝑤([𝑤 / 𝑥]𝜑𝑤 = 𝑧) ↔ ∀𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑧))
131, 4, 123bitri 297 . . 3 (∀𝑥(𝜑𝑥 = 𝑧) ↔ ∀𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑧))
1413exbii 1850 . 2 (∃𝑧𝑥(𝜑𝑥 = 𝑧) ↔ ∃𝑧𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑧))
15 eu6 2574 . 2 (∃!𝑥𝜑 ↔ ∃𝑧𝑥(𝜑𝑥 = 𝑧))
16 eu6 2574 . 2 (∃!𝑦[𝑦 / 𝑥]𝜑 ↔ ∃𝑧𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑧))
1714, 15, 163bitr4i 303 1 (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1537  wex 1782  wnf 1786  [wsb 2067  ∃!weu 2568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-11 2154  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569
This theorem is referenced by:  sb8euv  2599  sb8eu  2600
  Copyright terms: Public domain W3C validator