| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sb8eulem | Structured version Visualization version GIF version | ||
| Description: Lemma. Factor out the common proof skeleton of sb8euv 2594 and sb8eu 2595. Variable substitution in unique existential quantifier. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 24-Aug-2019.) Factor out common proof lines. (Revised by Wolf Lammen, 9-Feb-2023.) |
| Ref | Expression |
|---|---|
| sb8eulem.nfsb | ⊢ Ⅎ𝑦[𝑤 / 𝑥]𝜑 |
| Ref | Expression |
|---|---|
| sb8eulem | ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb8v 2353 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ∀𝑤[𝑤 / 𝑥](𝜑 ↔ 𝑥 = 𝑧)) | |
| 2 | equsb3 2106 | . . . . . 6 ⊢ ([𝑤 / 𝑥]𝑥 = 𝑧 ↔ 𝑤 = 𝑧) | |
| 3 | 2 | sblbis 2310 | . . . . 5 ⊢ ([𝑤 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) ↔ ([𝑤 / 𝑥]𝜑 ↔ 𝑤 = 𝑧)) |
| 4 | 3 | albii 1820 | . . . 4 ⊢ (∀𝑤[𝑤 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) ↔ ∀𝑤([𝑤 / 𝑥]𝜑 ↔ 𝑤 = 𝑧)) |
| 5 | sb8eulem.nfsb | . . . . . 6 ⊢ Ⅎ𝑦[𝑤 / 𝑥]𝜑 | |
| 6 | nfv 1915 | . . . . . 6 ⊢ Ⅎ𝑦 𝑤 = 𝑧 | |
| 7 | 5, 6 | nfbi 1904 | . . . . 5 ⊢ Ⅎ𝑦([𝑤 / 𝑥]𝜑 ↔ 𝑤 = 𝑧) |
| 8 | nfv 1915 | . . . . 5 ⊢ Ⅎ𝑤([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧) | |
| 9 | sbequ 2086 | . . . . . 6 ⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 10 | equequ1 2026 | . . . . . 6 ⊢ (𝑤 = 𝑦 → (𝑤 = 𝑧 ↔ 𝑦 = 𝑧)) | |
| 11 | 9, 10 | bibi12d 345 | . . . . 5 ⊢ (𝑤 = 𝑦 → (([𝑤 / 𝑥]𝜑 ↔ 𝑤 = 𝑧) ↔ ([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧))) |
| 12 | 7, 8, 11 | cbvalv1 2341 | . . . 4 ⊢ (∀𝑤([𝑤 / 𝑥]𝜑 ↔ 𝑤 = 𝑧) ↔ ∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)) |
| 13 | 1, 4, 12 | 3bitri 297 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)) |
| 14 | 13 | exbii 1849 | . 2 ⊢ (∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ∃𝑧∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)) |
| 15 | eu6 2569 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | |
| 16 | eu6 2569 | . 2 ⊢ (∃!𝑦[𝑦 / 𝑥]𝜑 ↔ ∃𝑧∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)) | |
| 17 | 14, 15, 16 | 3bitr4i 303 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1539 ∃wex 1780 Ⅎwnf 1784 [wsb 2067 ∃!weu 2563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-11 2160 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 |
| This theorem is referenced by: sb8euv 2594 sb8eu 2595 |
| Copyright terms: Public domain | W3C validator |