Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sb8eulem | Structured version Visualization version GIF version |
Description: Lemma. Factor out the common proof skeleton of sb8euv 2599 and sb8eu 2600. Variable substitution in unique existential quantifier. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 24-Aug-2019.) Factor out common proof lines. (Revised by Wolf Lammen, 9-Feb-2023.) |
Ref | Expression |
---|---|
sb8eulem.nfsb | ⊢ Ⅎ𝑦[𝑤 / 𝑥]𝜑 |
Ref | Expression |
---|---|
sb8eulem | ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1918 | . . . . 5 ⊢ Ⅎ𝑤(𝜑 ↔ 𝑥 = 𝑧) | |
2 | 1 | sb8v 2352 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ∀𝑤[𝑤 / 𝑥](𝜑 ↔ 𝑥 = 𝑧)) |
3 | equsb3 2103 | . . . . . 6 ⊢ ([𝑤 / 𝑥]𝑥 = 𝑧 ↔ 𝑤 = 𝑧) | |
4 | 3 | sblbis 2309 | . . . . 5 ⊢ ([𝑤 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) ↔ ([𝑤 / 𝑥]𝜑 ↔ 𝑤 = 𝑧)) |
5 | 4 | albii 1823 | . . . 4 ⊢ (∀𝑤[𝑤 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) ↔ ∀𝑤([𝑤 / 𝑥]𝜑 ↔ 𝑤 = 𝑧)) |
6 | sb8eulem.nfsb | . . . . . 6 ⊢ Ⅎ𝑦[𝑤 / 𝑥]𝜑 | |
7 | nfv 1918 | . . . . . 6 ⊢ Ⅎ𝑦 𝑤 = 𝑧 | |
8 | 6, 7 | nfbi 1907 | . . . . 5 ⊢ Ⅎ𝑦([𝑤 / 𝑥]𝜑 ↔ 𝑤 = 𝑧) |
9 | nfv 1918 | . . . . 5 ⊢ Ⅎ𝑤([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧) | |
10 | sbequ 2087 | . . . . . 6 ⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
11 | equequ1 2029 | . . . . . 6 ⊢ (𝑤 = 𝑦 → (𝑤 = 𝑧 ↔ 𝑦 = 𝑧)) | |
12 | 10, 11 | bibi12d 345 | . . . . 5 ⊢ (𝑤 = 𝑦 → (([𝑤 / 𝑥]𝜑 ↔ 𝑤 = 𝑧) ↔ ([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧))) |
13 | 8, 9, 12 | cbvalv1 2340 | . . . 4 ⊢ (∀𝑤([𝑤 / 𝑥]𝜑 ↔ 𝑤 = 𝑧) ↔ ∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)) |
14 | 2, 5, 13 | 3bitri 296 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)) |
15 | 14 | exbii 1851 | . 2 ⊢ (∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ∃𝑧∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)) |
16 | eu6 2574 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | |
17 | eu6 2574 | . 2 ⊢ (∃!𝑦[𝑦 / 𝑥]𝜑 ↔ ∃𝑧∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)) | |
18 | 15, 16, 17 | 3bitr4i 302 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 ∃wex 1783 Ⅎwnf 1787 [wsb 2068 ∃!weu 2568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 |
This theorem is referenced by: sb8euv 2599 sb8eu 2600 |
Copyright terms: Public domain | W3C validator |