![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sb8eulem | Structured version Visualization version GIF version |
Description: Lemma. Factor out the common proof skeleton of sb8euv 2602 and sb8eu 2603. Variable substitution in unique existential quantifier. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 24-Aug-2019.) Factor out common proof lines. (Revised by Wolf Lammen, 9-Feb-2023.) |
Ref | Expression |
---|---|
sb8eulem.nfsb | ⊢ Ⅎ𝑦[𝑤 / 𝑥]𝜑 |
Ref | Expression |
---|---|
sb8eulem | ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb8v 2358 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ∀𝑤[𝑤 / 𝑥](𝜑 ↔ 𝑥 = 𝑧)) | |
2 | equsb3 2103 | . . . . . 6 ⊢ ([𝑤 / 𝑥]𝑥 = 𝑧 ↔ 𝑤 = 𝑧) | |
3 | 2 | sblbis 2313 | . . . . 5 ⊢ ([𝑤 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) ↔ ([𝑤 / 𝑥]𝜑 ↔ 𝑤 = 𝑧)) |
4 | 3 | albii 1817 | . . . 4 ⊢ (∀𝑤[𝑤 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) ↔ ∀𝑤([𝑤 / 𝑥]𝜑 ↔ 𝑤 = 𝑧)) |
5 | sb8eulem.nfsb | . . . . . 6 ⊢ Ⅎ𝑦[𝑤 / 𝑥]𝜑 | |
6 | nfv 1913 | . . . . . 6 ⊢ Ⅎ𝑦 𝑤 = 𝑧 | |
7 | 5, 6 | nfbi 1902 | . . . . 5 ⊢ Ⅎ𝑦([𝑤 / 𝑥]𝜑 ↔ 𝑤 = 𝑧) |
8 | nfv 1913 | . . . . 5 ⊢ Ⅎ𝑤([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧) | |
9 | sbequ 2083 | . . . . . 6 ⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
10 | equequ1 2024 | . . . . . 6 ⊢ (𝑤 = 𝑦 → (𝑤 = 𝑧 ↔ 𝑦 = 𝑧)) | |
11 | 9, 10 | bibi12d 345 | . . . . 5 ⊢ (𝑤 = 𝑦 → (([𝑤 / 𝑥]𝜑 ↔ 𝑤 = 𝑧) ↔ ([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧))) |
12 | 7, 8, 11 | cbvalv1 2347 | . . . 4 ⊢ (∀𝑤([𝑤 / 𝑥]𝜑 ↔ 𝑤 = 𝑧) ↔ ∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)) |
13 | 1, 4, 12 | 3bitri 297 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)) |
14 | 13 | exbii 1846 | . 2 ⊢ (∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ∃𝑧∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)) |
15 | eu6 2577 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | |
16 | eu6 2577 | . 2 ⊢ (∃!𝑦[𝑦 / 𝑥]𝜑 ↔ ∃𝑧∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)) | |
17 | 14, 15, 16 | 3bitr4i 303 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∀wal 1535 ∃wex 1777 Ⅎwnf 1781 [wsb 2064 ∃!weu 2571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2158 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 |
This theorem is referenced by: sb8euv 2602 sb8eu 2603 |
Copyright terms: Public domain | W3C validator |