| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqvinc | Structured version Visualization version GIF version | ||
| Description: A variable introduction law for class equality. (Contributed by NM, 14-Apr-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Proof shortened by Thierry Arnoux, 23-Jan-2022.) |
| Ref | Expression |
|---|---|
| eqvinc.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| eqvinc | ⊢ (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvinc.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | eqvincg 3623 | . 2 ⊢ (𝐴 ∈ V → (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3455 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 |
| This theorem is referenced by: eqvincf 3625 dff13 7236 f1eqcocnv 7283 tfindsg 7845 findsg 7882 findcard2s 9142 indpi 10878 fcoinvbr 32541 dfrdg4 35936 bj-elsngl 36953 |
| Copyright terms: Public domain | W3C validator |