![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqvinc | Structured version Visualization version GIF version |
Description: A variable introduction law for class equality. (Contributed by NM, 14-Apr-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Proof shortened by Thierry Arnoux, 23-Jan-2022.) |
Ref | Expression |
---|---|
eqvinc.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
eqvinc | ⊢ (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvinc.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | eqvincg 3649 | . 2 ⊢ (𝐴 ∈ V → (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1538 ∃wex 1777 ∈ wcel 2107 Vcvv 3479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1541 df-ex 1778 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 |
This theorem is referenced by: eqvincf 3651 dff13 7279 f1eqcocnv 7325 tfindsg 7886 findsg 7924 findcard2s 9210 indpi 10951 fcoinvbr 32638 dfrdg4 35945 bj-elsngl 36963 |
Copyright terms: Public domain | W3C validator |