MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eueqi Structured version   Visualization version   GIF version

Theorem eueqi 3663
Description: There exists a unique set equal to a given set. Inference associated with euequ 2592. See euequ 2592 in the case of a setvar. (Contributed by NM, 5-Apr-1995.)
Hypothesis
Ref Expression
eueqi.1 𝐴 ∈ V
Assertion
Ref Expression
eueqi ∃!𝑥 𝑥 = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem eueqi
StepHypRef Expression
1 eueqi.1 . 2 𝐴 ∈ V
2 eueq 3662 . 2 (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴)
31, 2mpbi 230 1 ∃!𝑥 𝑥 = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  ∃!weu 2563  Vcvv 3436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438
This theorem is referenced by:  eueq2  3664  eueq3  3665  fsn  7068  fineqvnttrclse  35144  bj-nuliota  37101  prprval  47613
  Copyright terms: Public domain W3C validator