![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eueqi | Structured version Visualization version GIF version |
Description: There exists a unique set equal to a given set. Inference associated with euequ 2600. See euequ 2600 in the case of a setvar. (Contributed by NM, 5-Apr-1995.) |
Ref | Expression |
---|---|
eueqi.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
eueqi | ⊢ ∃!𝑥 𝑥 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eueqi.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | eueq 3730 | . 2 ⊢ (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴) | |
3 | 1, 2 | mpbi 230 | 1 ⊢ ∃!𝑥 𝑥 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 ∃!weu 2571 Vcvv 3488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 |
This theorem is referenced by: eueq2 3732 eueq3 3733 fsn 7169 bj-nuliota 37023 prprval 47388 |
Copyright terms: Public domain | W3C validator |