MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eueqi Structured version   Visualization version   GIF version

Theorem eueqi 3731
Description: There exists a unique set equal to a given set. Inference associated with euequ 2600. See euequ 2600 in the case of a setvar. (Contributed by NM, 5-Apr-1995.)
Hypothesis
Ref Expression
eueqi.1 𝐴 ∈ V
Assertion
Ref Expression
eueqi ∃!𝑥 𝑥 = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem eueqi
StepHypRef Expression
1 eueqi.1 . 2 𝐴 ∈ V
2 eueq 3730 . 2 (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴)
31, 2mpbi 230 1 ∃!𝑥 𝑥 = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  ∃!weu 2571  Vcvv 3488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490
This theorem is referenced by:  eueq2  3732  eueq3  3733  fsn  7169  bj-nuliota  37023  prprval  47388
  Copyright terms: Public domain W3C validator