MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eueqi Structured version   Visualization version   GIF version

Theorem eueqi 3639
Description: There exists a unique set equal to a given set. Inference associated with euequ 2597. See euequ 2597 in the case of a setvar. (Contributed by NM, 5-Apr-1995.)
Hypothesis
Ref Expression
eueqi.1 𝐴 ∈ V
Assertion
Ref Expression
eueqi ∃!𝑥 𝑥 = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem eueqi
StepHypRef Expression
1 eueqi.1 . 2 𝐴 ∈ V
2 eueq 3638 . 2 (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴)
31, 2mpbi 229 1 ∃!𝑥 𝑥 = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  ∃!weu 2568  Vcvv 3422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424
This theorem is referenced by:  eueq2  3640  eueq3  3641  fsn  6989  bj-nuliota  35155  prprval  44854
  Copyright terms: Public domain W3C validator