![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eueqi | Structured version Visualization version GIF version |
Description: There exists a unique set equal to a given set. Inference associated with euequ 2587. See euequ 2587 in the case of a setvar. (Contributed by NM, 5-Apr-1995.) |
Ref | Expression |
---|---|
eueqi.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
eueqi | ⊢ ∃!𝑥 𝑥 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eueqi.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | eueq 3703 | . 2 ⊢ (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ ∃!𝑥 𝑥 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 ∃!weu 2558 Vcvv 3471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3473 |
This theorem is referenced by: eueq2 3705 eueq3 3706 fsn 7144 bj-nuliota 36536 prprval 46854 |
Copyright terms: Public domain | W3C validator |