MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eueqi Structured version   Visualization version   GIF version

Theorem eueqi 3702
Description: There exists a unique set equal to a given set. Inference associated with euequ 2586. See euequ 2586 in the case of a setvar. (Contributed by NM, 5-Apr-1995.)
Hypothesis
Ref Expression
eueqi.1 𝐴 ∈ V
Assertion
Ref Expression
eueqi ∃!𝑥 𝑥 = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem eueqi
StepHypRef Expression
1 eueqi.1 . 2 𝐴 ∈ V
2 eueq 3701 . 2 (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴)
31, 2mpbi 229 1 ∃!𝑥 𝑥 = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  ∃!weu 2557  Vcvv 3469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-v 3471
This theorem is referenced by:  eueq2  3703  eueq3  3704  fsn  7138  bj-nuliota  36526  prprval  46826
  Copyright terms: Public domain W3C validator