| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eueqi | Structured version Visualization version GIF version | ||
| Description: There exists a unique set equal to a given set. Inference associated with euequ 2596. See euequ 2596 in the case of a setvar. (Contributed by NM, 5-Apr-1995.) |
| Ref | Expression |
|---|---|
| eueqi.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| eueqi | ⊢ ∃!𝑥 𝑥 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eueqi.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | eueq 3691 | . 2 ⊢ (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ ∃!𝑥 𝑥 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ∃!weu 2567 Vcvv 3459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 |
| This theorem is referenced by: eueq2 3693 eueq3 3694 fsn 7125 bj-nuliota 37075 prprval 47528 |
| Copyright terms: Public domain | W3C validator |