| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eueqi | Structured version Visualization version GIF version | ||
| Description: There exists a unique set equal to a given set. Inference associated with euequ 2591. See euequ 2591 in the case of a setvar. (Contributed by NM, 5-Apr-1995.) |
| Ref | Expression |
|---|---|
| eueqi.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| eueqi | ⊢ ∃!𝑥 𝑥 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eueqi.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | eueq 3682 | . 2 ⊢ (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ ∃!𝑥 𝑥 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∃!weu 2562 Vcvv 3450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 |
| This theorem is referenced by: eueq2 3684 eueq3 3685 fsn 7110 bj-nuliota 37052 prprval 47519 |
| Copyright terms: Public domain | W3C validator |