![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eueqi | Structured version Visualization version GIF version |
Description: There exists a unique set equal to a given set. Inference associated with euequ 2595. See euequ 2595 in the case of a setvar. (Contributed by NM, 5-Apr-1995.) |
Ref | Expression |
---|---|
eueqi.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
eueqi | ⊢ ∃!𝑥 𝑥 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eueqi.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | eueq 3717 | . 2 ⊢ (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴) | |
3 | 1, 2 | mpbi 230 | 1 ⊢ ∃!𝑥 𝑥 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 ∃!weu 2566 Vcvv 3478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 |
This theorem is referenced by: eueq2 3719 eueq3 3720 fsn 7155 bj-nuliota 37040 prprval 47439 |
Copyright terms: Public domain | W3C validator |