MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsn Structured version   Visualization version   GIF version

Theorem fsn 7107
Description: A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 10-Dec-2003.)
Hypotheses
Ref Expression
fsn.1 𝐴 ∈ V
fsn.2 𝐵 ∈ V
Assertion
Ref Expression
fsn (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {⟨𝐴, 𝐵⟩})

Proof of Theorem fsn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelf 6721 . . . . . . . 8 ((𝐹:{𝐴}⟶{𝐵} ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐵}))
2 velsn 4605 . . . . . . . . 9 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
3 velsn 4605 . . . . . . . . 9 (𝑦 ∈ {𝐵} ↔ 𝑦 = 𝐵)
42, 3anbi12i 628 . . . . . . . 8 ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐵}) ↔ (𝑥 = 𝐴𝑦 = 𝐵))
51, 4sylib 218 . . . . . . 7 ((𝐹:{𝐴}⟶{𝐵} ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → (𝑥 = 𝐴𝑦 = 𝐵))
65ex 412 . . . . . 6 (𝐹:{𝐴}⟶{𝐵} → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → (𝑥 = 𝐴𝑦 = 𝐵)))
7 fsn.1 . . . . . . . . . 10 𝐴 ∈ V
87snid 4626 . . . . . . . . 9 𝐴 ∈ {𝐴}
9 feu 6736 . . . . . . . . 9 ((𝐹:{𝐴}⟶{𝐵} ∧ 𝐴 ∈ {𝐴}) → ∃!𝑦 ∈ {𝐵}⟨𝐴, 𝑦⟩ ∈ 𝐹)
108, 9mpan2 691 . . . . . . . 8 (𝐹:{𝐴}⟶{𝐵} → ∃!𝑦 ∈ {𝐵}⟨𝐴, 𝑦⟩ ∈ 𝐹)
113anbi1i 624 . . . . . . . . . . 11 ((𝑦 ∈ {𝐵} ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ↔ (𝑦 = 𝐵 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹))
12 opeq2 4838 . . . . . . . . . . . . . 14 (𝑦 = 𝐵 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
1312eleq1d 2813 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → (⟨𝐴, 𝑦⟩ ∈ 𝐹 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹))
1413pm5.32i 574 . . . . . . . . . . . 12 ((𝑦 = 𝐵 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ↔ (𝑦 = 𝐵 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐹))
1514biancomi 462 . . . . . . . . . . 11 ((𝑦 = 𝐵 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐹𝑦 = 𝐵))
1611, 15bitr2i 276 . . . . . . . . . 10 ((⟨𝐴, 𝐵⟩ ∈ 𝐹𝑦 = 𝐵) ↔ (𝑦 ∈ {𝐵} ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹))
1716eubii 2578 . . . . . . . . 9 (∃!𝑦(⟨𝐴, 𝐵⟩ ∈ 𝐹𝑦 = 𝐵) ↔ ∃!𝑦(𝑦 ∈ {𝐵} ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹))
18 fsn.2 . . . . . . . . . . . 12 𝐵 ∈ V
1918eueqi 3680 . . . . . . . . . . 11 ∃!𝑦 𝑦 = 𝐵
2019biantru 529 . . . . . . . . . 10 (⟨𝐴, 𝐵⟩ ∈ 𝐹 ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐹 ∧ ∃!𝑦 𝑦 = 𝐵))
21 euanv 2617 . . . . . . . . . 10 (∃!𝑦(⟨𝐴, 𝐵⟩ ∈ 𝐹𝑦 = 𝐵) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐹 ∧ ∃!𝑦 𝑦 = 𝐵))
2220, 21bitr4i 278 . . . . . . . . 9 (⟨𝐴, 𝐵⟩ ∈ 𝐹 ↔ ∃!𝑦(⟨𝐴, 𝐵⟩ ∈ 𝐹𝑦 = 𝐵))
23 df-reu 3355 . . . . . . . . 9 (∃!𝑦 ∈ {𝐵}⟨𝐴, 𝑦⟩ ∈ 𝐹 ↔ ∃!𝑦(𝑦 ∈ {𝐵} ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹))
2417, 22, 233bitr4i 303 . . . . . . . 8 (⟨𝐴, 𝐵⟩ ∈ 𝐹 ↔ ∃!𝑦 ∈ {𝐵}⟨𝐴, 𝑦⟩ ∈ 𝐹)
2510, 24sylibr 234 . . . . . . 7 (𝐹:{𝐴}⟶{𝐵} → ⟨𝐴, 𝐵⟩ ∈ 𝐹)
26 opeq12 4839 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
2726eleq1d 2813 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹))
2825, 27syl5ibrcom 247 . . . . . 6 (𝐹:{𝐴}⟶{𝐵} → ((𝑥 = 𝐴𝑦 = 𝐵) → ⟨𝑥, 𝑦⟩ ∈ 𝐹))
296, 28impbid 212 . . . . 5 (𝐹:{𝐴}⟶{𝐵} → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ (𝑥 = 𝐴𝑦 = 𝐵)))
30 opex 5424 . . . . . . 7 𝑥, 𝑦⟩ ∈ V
3130elsn 4604 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
327, 18opth2 5440 . . . . . 6 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑥 = 𝐴𝑦 = 𝐵))
3331, 32bitr2i 276 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩})
3429, 33bitrdi 287 . . . 4 (𝐹:{𝐴}⟶{𝐵} → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩}))
3534alrimivv 1928 . . 3 (𝐹:{𝐴}⟶{𝐵} → ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩}))
36 frel 6693 . . . 4 (𝐹:{𝐴}⟶{𝐵} → Rel 𝐹)
377, 18relsnop 5768 . . . 4 Rel {⟨𝐴, 𝐵⟩}
38 eqrel 5747 . . . 4 ((Rel 𝐹 ∧ Rel {⟨𝐴, 𝐵⟩}) → (𝐹 = {⟨𝐴, 𝐵⟩} ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩})))
3936, 37, 38sylancl 586 . . 3 (𝐹:{𝐴}⟶{𝐵} → (𝐹 = {⟨𝐴, 𝐵⟩} ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩})))
4035, 39mpbird 257 . 2 (𝐹:{𝐴}⟶{𝐵} → 𝐹 = {⟨𝐴, 𝐵⟩})
417, 18f1osn 6840 . . . 4 {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵}
42 f1oeq1 6788 . . . 4 (𝐹 = {⟨𝐴, 𝐵⟩} → (𝐹:{𝐴}–1-1-onto→{𝐵} ↔ {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵}))
4341, 42mpbiri 258 . . 3 (𝐹 = {⟨𝐴, 𝐵⟩} → 𝐹:{𝐴}–1-1-onto→{𝐵})
44 f1of 6800 . . 3 (𝐹:{𝐴}–1-1-onto→{𝐵} → 𝐹:{𝐴}⟶{𝐵})
4543, 44syl 17 . 2 (𝐹 = {⟨𝐴, 𝐵⟩} → 𝐹:{𝐴}⟶{𝐵})
4640, 45impbii 209 1 (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {⟨𝐴, 𝐵⟩})
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  ∃!weu 2561  ∃!wreu 3352  Vcvv 3447  {csn 4589  cop 4595  Rel wrel 5643  wf 6507  1-1-ontowf1o 6510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518
This theorem is referenced by:  fsn2  7108  fsng  7109  axlowdimlem7  28875  poimirlem3  37617  poimirlem9  37623  fdc  37739
  Copyright terms: Public domain W3C validator