MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eueq Structured version   Visualization version   GIF version

Theorem eueq 3647
Description: A class is a set if and only if there exists a unique set equal to it. (Contributed by NM, 25-Nov-1994.) Shorten combined proofs of moeq 3646 and eueq 3647. (Proof shortened by BJ, 24-Sep-2022.)
Assertion
Ref Expression
eueq (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem eueq
StepHypRef Expression
1 moeq 3646 . . 3 ∃*𝑥 𝑥 = 𝐴
21biantru 533 . 2 (∃𝑥 𝑥 = 𝐴 ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃*𝑥 𝑥 = 𝐴))
3 isset 3453 . 2 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
4 df-eu 2629 . 2 (∃!𝑥 𝑥 = 𝐴 ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃*𝑥 𝑥 = 𝐴))
52, 3, 43bitr4i 306 1 (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2111  ∃*wmo 2596  ∃!weu 2628  Vcvv 3441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-v 3443
This theorem is referenced by:  eueqi  3648  reuhypd  5285  mptfnf  6455  mptfng  6459  upxp  22228  iotasbc  41123  sprval  43996
  Copyright terms: Public domain W3C validator