| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eueq | Structured version Visualization version GIF version | ||
| Description: A class is a set if and only if there exists a unique set equal to it. (Contributed by NM, 25-Nov-1994.) Shorten combined proofs of moeq 3695 and eueq 3696. (Proof shortened by BJ, 24-Sep-2022.) |
| Ref | Expression |
|---|---|
| eueq | ⊢ (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moeq 3695 | . . 3 ⊢ ∃*𝑥 𝑥 = 𝐴 | |
| 2 | 1 | biantru 529 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃*𝑥 𝑥 = 𝐴)) |
| 3 | isset 3477 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 4 | df-eu 2567 | . 2 ⊢ (∃!𝑥 𝑥 = 𝐴 ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃*𝑥 𝑥 = 𝐴)) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ∃*wmo 2536 ∃!weu 2566 Vcvv 3463 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 |
| This theorem is referenced by: eueqi 3697 reuhypd 5399 mptfnf 6683 mptfng 6687 upxp 23577 iotasbc 44395 sprval 47424 |
| Copyright terms: Public domain | W3C validator |