MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eueq Structured version   Visualization version   GIF version

Theorem eueq 3665
Description: A class is a set if and only if there exists a unique set equal to it. (Contributed by NM, 25-Nov-1994.) Shorten combined proofs of moeq 3664 and eueq 3665. (Proof shortened by BJ, 24-Sep-2022.)
Assertion
Ref Expression
eueq (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem eueq
StepHypRef Expression
1 moeq 3664 . . 3 ∃*𝑥 𝑥 = 𝐴
21biantru 529 . 2 (∃𝑥 𝑥 = 𝐴 ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃*𝑥 𝑥 = 𝐴))
3 isset 3448 . 2 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
4 df-eu 2563 . 2 (∃!𝑥 𝑥 = 𝐴 ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃*𝑥 𝑥 = 𝐴))
52, 3, 43bitr4i 303 1 (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2110  ∃*wmo 2532  ∃!weu 2562  Vcvv 3434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3436
This theorem is referenced by:  eueqi  3666  reuhypd  5355  mptfnf  6612  mptfng  6616  upxp  23531  iotasbc  44431  sprval  47489
  Copyright terms: Public domain W3C validator