MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eueq Structured version   Visualization version   GIF version

Theorem eueq 3699
Description: A class is a set if and only if there exists a unique set equal to it. (Contributed by NM, 25-Nov-1994.) Shorten combined proofs of moeq 3698 and eueq 3699. (Proof shortened by BJ, 24-Sep-2022.)
Assertion
Ref Expression
eueq (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem eueq
StepHypRef Expression
1 moeq 3698 . . 3 ∃*𝑥 𝑥 = 𝐴
21biantru 532 . 2 (∃𝑥 𝑥 = 𝐴 ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃*𝑥 𝑥 = 𝐴))
3 isset 3506 . 2 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
4 df-eu 2654 . 2 (∃!𝑥 𝑥 = 𝐴 ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃*𝑥 𝑥 = 𝐴))
52, 3, 43bitr4i 305 1 (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  ∃*wmo 2620  ∃!weu 2653  Vcvv 3494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-ex 1781  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-v 3496
This theorem is referenced by:  eueqi  3700  reuhypd  5320  mptfnf  6483  mptfng  6487  upxp  22231  iotasbc  40771  sprval  43661
  Copyright terms: Public domain W3C validator