![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eueq | Structured version Visualization version GIF version |
Description: A class is a set if and only if there exists a unique set equal to it. (Contributed by NM, 25-Nov-1994.) Shorten combined proofs of moeq 3729 and eueq 3730. (Proof shortened by BJ, 24-Sep-2022.) |
Ref | Expression |
---|---|
eueq | ⊢ (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moeq 3729 | . . 3 ⊢ ∃*𝑥 𝑥 = 𝐴 | |
2 | 1 | biantru 529 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃*𝑥 𝑥 = 𝐴)) |
3 | isset 3502 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
4 | df-eu 2572 | . 2 ⊢ (∃!𝑥 𝑥 = 𝐴 ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃*𝑥 𝑥 = 𝐴)) | |
5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∃*wmo 2541 ∃!weu 2571 Vcvv 3488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 |
This theorem is referenced by: eueqi 3731 reuhypd 5437 mptfnf 6717 mptfng 6721 upxp 23654 iotasbc 44390 sprval 47355 |
Copyright terms: Public domain | W3C validator |