![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eupickb | Structured version Visualization version GIF version |
Description: Existential uniqueness "pick" showing wff equivalence. (Contributed by NM, 25-Nov-1994.) (Proof shortened by Wolf Lammen, 27-Dec-2018.) |
Ref | Expression |
---|---|
eupickb | ⊢ ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eupick 2659 | . . 3 ⊢ ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 → 𝜓)) | |
2 | 1 | 3adant2 1111 | . 2 ⊢ ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 → 𝜓)) |
3 | exancom 1822 | . . . 4 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) | |
4 | eupick 2659 | . . . 4 ⊢ ((∃!𝑥𝜓 ∧ ∃𝑥(𝜓 ∧ 𝜑)) → (𝜓 → 𝜑)) | |
5 | 3, 4 | sylan2b 584 | . . 3 ⊢ ((∃!𝑥𝜓 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜓 → 𝜑)) |
6 | 5 | 3adant1 1110 | . 2 ⊢ ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜓 → 𝜑)) |
7 | 2, 6 | impbid 204 | 1 ⊢ ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∧ w3a 1068 ∃wex 1742 ∃!weu 2579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-10 2077 ax-12 2104 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |