![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eupickb | Structured version Visualization version GIF version |
Description: Existential uniqueness "pick" showing wff equivalence. (Contributed by NM, 25-Nov-1994.) (Proof shortened by Wolf Lammen, 27-Dec-2018.) |
Ref | Expression |
---|---|
eupickb | ⊢ ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eupick 2636 | . . 3 ⊢ ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 → 𝜓)) | |
2 | 1 | 3adant2 1131 | . 2 ⊢ ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 → 𝜓)) |
3 | exancom 1860 | . . . 4 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) | |
4 | eupick 2636 | . . . 4 ⊢ ((∃!𝑥𝜓 ∧ ∃𝑥(𝜓 ∧ 𝜑)) → (𝜓 → 𝜑)) | |
5 | 3, 4 | sylan2b 593 | . . 3 ⊢ ((∃!𝑥𝜓 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜓 → 𝜑)) |
6 | 5 | 3adant1 1130 | . 2 ⊢ ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜓 → 𝜑)) |
7 | 2, 6 | impbid 212 | 1 ⊢ ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∃wex 1777 ∃!weu 2571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-ex 1778 df-mo 2543 df-eu 2572 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |