MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupick Structured version   Visualization version   GIF version

Theorem eupick 2635
Description: Existential uniqueness "picks" a variable value for which another wff is true. If there is only one thing 𝑥 such that 𝜑 is true, and there is also an 𝑥 (actually the same one) such that 𝜑 and 𝜓 are both true, then 𝜑 implies 𝜓 regardless of 𝑥. This theorem can be useful for eliminating existential quantifiers in a hypothesis. Compare Theorem *14.26 in [WhiteheadRussell] p. 192. (Contributed by NM, 10-Jul-1994.)
Assertion
Ref Expression
eupick ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))

Proof of Theorem eupick
StepHypRef Expression
1 eumo 2578 . 2 (∃!𝑥𝜑 → ∃*𝑥𝜑)
2 mopick 2627 . 2 ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))
31, 2sylan 580 1 ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wex 1782  ∃*wmo 2538  ∃!weu 2568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-nf 1787  df-mo 2540  df-eu 2569
This theorem is referenced by:  eupicka  2636  eupickb  2637  reupick  4252  reupick3  4253  eusv2nf  5318  reusv2lem3  5323  copsexgw  5404  copsexg  5405  funssres  6478  oprabidw  7306  oprabid  7307  txcn  22777  isch3  29603  bnj849  32905  iotasbc  42037
  Copyright terms: Public domain W3C validator