Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eupick | Structured version Visualization version GIF version |
Description: Existential uniqueness "picks" a variable value for which another wff is true. If there is only one thing 𝑥 such that 𝜑 is true, and there is also an 𝑥 (actually the same one) such that 𝜑 and 𝜓 are both true, then 𝜑 implies 𝜓 regardless of 𝑥. This theorem can be useful for eliminating existential quantifiers in a hypothesis. Compare Theorem *14.26 in [WhiteheadRussell] p. 192. (Contributed by NM, 10-Jul-1994.) |
Ref | Expression |
---|---|
eupick | ⊢ ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eumo 2597 | . 2 ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) | |
2 | mopick 2646 | . 2 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 → 𝜓)) | |
3 | 1, 2 | sylan 583 | 1 ⊢ ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∃wex 1781 ∃*wmo 2555 ∃!weu 2587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-10 2142 ax-12 2175 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 |
This theorem is referenced by: eupicka 2655 eupickb 2656 reupick 4223 reupick3 4224 eusv2nf 5268 reusv2lem3 5273 copsexgw 5353 copsexg 5354 funssres 6384 oprabidw 7187 oprabid 7188 txcn 22339 isch3 29136 bnj849 32437 iotasbc 41531 |
Copyright terms: Public domain | W3C validator |