![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eupick | Structured version Visualization version GIF version |
Description: Existential uniqueness "picks" a variable value for which another wff is true. If there is only one thing 𝑥 such that 𝜑 is true, and there is also an 𝑥 (actually the same one) such that 𝜑 and 𝜓 are both true, then 𝜑 implies 𝜓 regardless of 𝑥. This theorem can be useful for eliminating existential quantifiers in a hypothesis. Compare Theorem *14.26 in [WhiteheadRussell] p. 192. (Contributed by NM, 10-Jul-1994.) |
Ref | Expression |
---|---|
eupick | ⊢ ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eumo 2564 | . 2 ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) | |
2 | mopick 2613 | . 2 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 → 𝜓)) | |
3 | 1, 2 | sylan 579 | 1 ⊢ ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1773 ∃*wmo 2524 ∃!weu 2554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-10 2129 ax-12 2163 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-ex 1774 df-nf 1778 df-mo 2526 df-eu 2555 |
This theorem is referenced by: eupicka 2622 eupickb 2623 reupick 4310 reupick3 4311 eusv2nf 5383 reusv2lem3 5388 copsexgw 5480 copsexg 5481 funssres 6582 oprabidw 7432 oprabid 7433 txcn 23440 isch3 30918 bnj849 34391 iotasbc 43633 |
Copyright terms: Public domain | W3C validator |